blob: 6bf29953247963f96a6d7abcdf42f952525651f0 [file] [log] [blame]
Brian Osman0a442b72020-12-02 11:12:51 -05001/*
2 * Copyright 2020 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
Ethan Nicholas24c17722021-03-09 13:10:59 -05008#include "include/private/SkSLProgramElement.h"
9#include "include/private/SkSLStatement.h"
Brian Osman0a442b72020-12-02 11:12:51 -050010#include "include/private/SkTArray.h"
Brian Osmanb8ebe232021-01-19 16:33:11 -050011#include "include/private/SkTPin.h"
Brian Osman0a442b72020-12-02 11:12:51 -050012#include "src/sksl/SkSLCodeGenerator.h"
Brian Osman00185012021-02-04 16:07:11 -050013#include "src/sksl/SkSLCompiler.h"
14#include "src/sksl/SkSLOperators.h"
Brian Osman0a442b72020-12-02 11:12:51 -050015#include "src/sksl/SkSLVMGenerator.h"
16#include "src/sksl/ir/SkSLBinaryExpression.h"
17#include "src/sksl/ir/SkSLBlock.h"
18#include "src/sksl/ir/SkSLBoolLiteral.h"
19#include "src/sksl/ir/SkSLBreakStatement.h"
20#include "src/sksl/ir/SkSLConstructor.h"
21#include "src/sksl/ir/SkSLContinueStatement.h"
22#include "src/sksl/ir/SkSLDoStatement.h"
23#include "src/sksl/ir/SkSLExpressionStatement.h"
24#include "src/sksl/ir/SkSLExternalFunctionCall.h"
Brian Osmanbe0b3b72021-01-06 14:27:35 -050025#include "src/sksl/ir/SkSLExternalFunctionReference.h"
Brian Osman0a442b72020-12-02 11:12:51 -050026#include "src/sksl/ir/SkSLFieldAccess.h"
27#include "src/sksl/ir/SkSLFloatLiteral.h"
28#include "src/sksl/ir/SkSLForStatement.h"
29#include "src/sksl/ir/SkSLFunctionCall.h"
30#include "src/sksl/ir/SkSLFunctionDeclaration.h"
31#include "src/sksl/ir/SkSLFunctionDefinition.h"
32#include "src/sksl/ir/SkSLIfStatement.h"
33#include "src/sksl/ir/SkSLIndexExpression.h"
34#include "src/sksl/ir/SkSLIntLiteral.h"
Brian Osman0a442b72020-12-02 11:12:51 -050035#include "src/sksl/ir/SkSLPostfixExpression.h"
36#include "src/sksl/ir/SkSLPrefixExpression.h"
Brian Osman0a442b72020-12-02 11:12:51 -050037#include "src/sksl/ir/SkSLReturnStatement.h"
Brian Osman0a442b72020-12-02 11:12:51 -050038#include "src/sksl/ir/SkSLSwitchStatement.h"
39#include "src/sksl/ir/SkSLSwizzle.h"
40#include "src/sksl/ir/SkSLTernaryExpression.h"
41#include "src/sksl/ir/SkSLVarDeclarations.h"
42#include "src/sksl/ir/SkSLVariableReference.h"
43
44#include <algorithm>
45#include <unordered_map>
46
Mike Kleinff4decc2021-02-10 16:13:35 -060047namespace {
48 // sksl allows the optimizations of fast_mul(), so we want to use that most of the time.
49 // This little sneaky snippet of code lets us use ** as a fast multiply infix operator.
50 struct FastF32 { skvm::F32 val; };
51 static FastF32 operator*(skvm::F32 y) { return {y}; }
52 static skvm::F32 operator*(skvm::F32 x, FastF32 y) { return fast_mul(x, y.val); }
53 static skvm::F32 operator*(float x, FastF32 y) { return fast_mul(x, y.val); }
54}
55
Brian Osman0a442b72020-12-02 11:12:51 -050056namespace SkSL {
57
58namespace {
59
Brian Osman0a442b72020-12-02 11:12:51 -050060// Holds scalars, vectors, or matrices
61struct Value {
62 Value() = default;
63 explicit Value(size_t slots) {
64 fVals.resize(slots);
65 }
66 Value(skvm::F32 x) : fVals({ x.id }) {}
67 Value(skvm::I32 x) : fVals({ x.id }) {}
68
69 explicit operator bool() const { return !fVals.empty(); }
70
71 size_t slots() const { return fVals.size(); }
72
73 struct ValRef {
74 ValRef(skvm::Val& val) : fVal(val) {}
75
76 ValRef& operator=(ValRef v) { fVal = v.fVal; return *this; }
77 ValRef& operator=(skvm::Val v) { fVal = v; return *this; }
78 ValRef& operator=(skvm::F32 v) { fVal = v.id; return *this; }
79 ValRef& operator=(skvm::I32 v) { fVal = v.id; return *this; }
80
81 operator skvm::Val() { return fVal; }
82
83 skvm::Val& fVal;
84 };
85
Brian Osmanf932c692021-01-26 13:54:07 -050086 ValRef operator[](size_t i) {
87 // These redundant asserts work around what we think is a codegen bug in GCC 8.x for
88 // 32-bit x86 Debug builds.
89 SkASSERT(i < fVals.size());
90 return fVals[i];
91 }
92 skvm::Val operator[](size_t i) const {
93 // These redundant asserts work around what we think is a codegen bug in GCC 8.x for
94 // 32-bit x86 Debug builds.
95 SkASSERT(i < fVals.size());
96 return fVals[i];
97 }
Brian Osman0a442b72020-12-02 11:12:51 -050098
Brian Osman54515b72021-01-07 14:38:08 -050099 SkSpan<skvm::Val> asSpan() { return fVals; }
100
Brian Osman0a442b72020-12-02 11:12:51 -0500101private:
102 SkSTArray<4, skvm::Val, true> fVals;
103};
104
105} // namespace
106
107class SkVMGenerator {
108public:
109 SkVMGenerator(const Program& program,
Brian Osman0a442b72020-12-02 11:12:51 -0500110 skvm::Builder* builder,
111 SkSpan<skvm::Val> uniforms,
Brian Osman0a442b72020-12-02 11:12:51 -0500112 skvm::Coord device,
113 skvm::Coord local,
Brian Osmandb2dad52021-01-07 14:08:30 -0500114 SampleChildFn sampleChild);
Brian Osman0a442b72020-12-02 11:12:51 -0500115
Brian Osmandb2dad52021-01-07 14:08:30 -0500116 void writeFunction(const FunctionDefinition& function,
117 SkSpan<skvm::Val> arguments,
118 SkSpan<skvm::Val> outReturn);
Brian Osman0a442b72020-12-02 11:12:51 -0500119
120private:
121 enum class Intrinsic {
122 // sksl_public.sksl declares these intrinsics (and defines some other inline)
123
124 // Angle & Trigonometry
Brian Osman22cc3be2020-12-30 10:38:15 -0500125 kRadians,
126 kDegrees,
Brian Osman0a442b72020-12-02 11:12:51 -0500127 kSin,
128 kCos,
129 kTan,
130
131 kASin,
132 kACos,
133 kATan,
134
135 // Exponential
136 kPow,
137 kExp,
138 kLog,
139 kExp2,
140 kLog2,
141
142 kSqrt,
143 kInverseSqrt,
144
145 // Common
146 kAbs,
147 kSign,
148 kFloor,
149 kCeil,
150 kFract,
151 kMod,
152
153 kMin,
154 kMax,
155 kClamp,
156 kSaturate,
157 kMix,
158 kStep,
159 kSmoothstep,
160
161 // Geometric
162 kLength,
163 kDistance,
164 kDot,
Brian Osman22cc3be2020-12-30 10:38:15 -0500165 kCross,
Brian Osman0a442b72020-12-02 11:12:51 -0500166 kNormalize,
Brian Osman22cc3be2020-12-30 10:38:15 -0500167 kFaceforward,
168 kReflect,
169 kRefract,
Brian Osman0a442b72020-12-02 11:12:51 -0500170
171 // Matrix
Brian Osman93aed9a2020-12-28 15:18:46 -0500172 kMatrixCompMult,
Brian Osman0a442b72020-12-02 11:12:51 -0500173 kInverse,
174
175 // Vector Relational
176 kLessThan,
177 kLessThanEqual,
178 kGreaterThan,
179 kGreaterThanEqual,
180 kEqual,
181 kNotEqual,
182
183 kAny,
184 kAll,
185 kNot,
186
187 // SkSL
188 kSample,
189 };
190
Brian Osman0a442b72020-12-02 11:12:51 -0500191 /**
192 * In SkSL, a Variable represents a named, typed value (along with qualifiers, etc).
Brian Osman21f57072021-01-25 13:51:57 -0500193 * Every Variable is mapped to one (or several, contiguous) indices into our vector of
Brian Osman0a442b72020-12-02 11:12:51 -0500194 * skvm::Val. Those skvm::Val entries hold the current actual value of that variable.
195 *
196 * NOTE: Conceptually, each Variable is just mapped to a Value. We could implement it that way,
Brian Osman21f57072021-01-25 13:51:57 -0500197 * (and eliminate the indirection), but it would add overhead for each Variable,
Brian Osman0a442b72020-12-02 11:12:51 -0500198 * and add additional (different) bookkeeping for things like lvalue-swizzles.
199 *
200 * Any time a variable appears in an expression, that's a VariableReference, which is a kind of
201 * Expression. Evaluating that VariableReference (or any other Expression) produces a Value,
202 * which is a set of skvm::Val. (This allows an Expression to produce a vector or matrix, in
203 * addition to a scalar).
204 *
Brian Osman21f57072021-01-25 13:51:57 -0500205 * For a VariableReference, producing a Value is straightforward - we get the slot of the
206 * Variable (from fVariableMap), use that to look up the current skvm::Vals holding the
207 * variable's contents, and construct a Value with those ids.
Brian Osman0a442b72020-12-02 11:12:51 -0500208 */
209
210 /**
Brian Osman21f57072021-01-25 13:51:57 -0500211 * Returns the slot holding v's Val(s). Allocates storage if this is first time 'v' is
Brian Osman0a442b72020-12-02 11:12:51 -0500212 * referenced. Compound variables (e.g. vectors) will consume more than one slot, with
213 * getSlot returning the start of the contiguous chunk of slots.
214 */
Brian Osman21f57072021-01-25 13:51:57 -0500215 size_t getSlot(const Variable& v);
Brian Osman0a442b72020-12-02 11:12:51 -0500216
Mike Kleinaebcf732021-01-14 10:15:00 -0600217 skvm::F32 f32(skvm::Val id) { SkASSERT(id != skvm::NA); return {fBuilder, id}; }
218 skvm::I32 i32(skvm::Val id) { SkASSERT(id != skvm::NA); return {fBuilder, id}; }
Brian Osman0a442b72020-12-02 11:12:51 -0500219
220 // Shorthand for scalars
221 skvm::F32 f32(const Value& v) { SkASSERT(v.slots() == 1); return f32(v[0]); }
222 skvm::I32 i32(const Value& v) { SkASSERT(v.slots() == 1); return i32(v[0]); }
223
224 template <typename Fn>
225 Value unary(const Value& v, Fn&& fn) {
226 Value result(v.slots());
227 for (size_t i = 0; i < v.slots(); ++i) {
228 result[i] = fn({fBuilder, v[i]});
229 }
230 return result;
231 }
232
Brian Osman54515b72021-01-07 14:38:08 -0500233 skvm::I32 mask() {
234 // As we encounter (possibly conditional) return statements, fReturned is updated to store
235 // the lanes that have already returned. For the remainder of the current function, those
236 // lanes should be disabled.
Brian Osman9333c872021-01-13 15:06:17 -0500237 return fConditionMask & fLoopMask & ~currentFunction().fReturned;
Brian Osman54515b72021-01-07 14:38:08 -0500238 }
Brian Osman0a442b72020-12-02 11:12:51 -0500239
Brian Osmanfa71ffa2021-01-26 14:05:31 -0500240 size_t fieldSlotOffset(const FieldAccess& expr);
241 size_t indexSlotOffset(const IndexExpression& expr);
242
Brian Osman0a442b72020-12-02 11:12:51 -0500243 Value writeExpression(const Expression& expr);
244 Value writeBinaryExpression(const BinaryExpression& b);
245 Value writeConstructor(const Constructor& c);
246 Value writeFunctionCall(const FunctionCall& c);
Brian Osmandd50b0c2021-01-11 17:04:29 -0500247 Value writeExternalFunctionCall(const ExternalFunctionCall& c);
Brian Osmanfa71ffa2021-01-26 14:05:31 -0500248 Value writeFieldAccess(const FieldAccess& expr);
249 Value writeIndexExpression(const IndexExpression& expr);
Brian Osman0a442b72020-12-02 11:12:51 -0500250 Value writeIntrinsicCall(const FunctionCall& c);
251 Value writePostfixExpression(const PostfixExpression& p);
252 Value writePrefixExpression(const PrefixExpression& p);
253 Value writeSwizzle(const Swizzle& swizzle);
254 Value writeTernaryExpression(const TernaryExpression& t);
Brian Osmanfa71ffa2021-01-26 14:05:31 -0500255 Value writeVariableExpression(const VariableReference& expr);
Brian Osman0a442b72020-12-02 11:12:51 -0500256
257 void writeStatement(const Statement& s);
258 void writeBlock(const Block& b);
Brian Osman9333c872021-01-13 15:06:17 -0500259 void writeBreakStatement();
260 void writeContinueStatement();
261 void writeForStatement(const ForStatement& f);
Brian Osman0a442b72020-12-02 11:12:51 -0500262 void writeIfStatement(const IfStatement& stmt);
263 void writeReturnStatement(const ReturnStatement& r);
264 void writeVarDeclaration(const VarDeclaration& decl);
265
266 Value writeStore(const Expression& lhs, const Value& rhs);
267
268 Value writeMatrixInverse2x2(const Value& m);
269 Value writeMatrixInverse3x3(const Value& m);
270 Value writeMatrixInverse4x4(const Value& m);
271
Brian Osmandb2dad52021-01-07 14:08:30 -0500272 //
273 // Global state for the lifetime of the generator:
274 //
Brian Osman0a442b72020-12-02 11:12:51 -0500275 const Program& fProgram;
Brian Osman0a442b72020-12-02 11:12:51 -0500276 skvm::Builder* fBuilder;
277
Brian Osman0a442b72020-12-02 11:12:51 -0500278 const skvm::Coord fLocalCoord;
279 const SampleChildFn fSampleChild;
Brian Osman0a442b72020-12-02 11:12:51 -0500280
281 // [Variable, first slot in fSlots]
Brian Osman21f57072021-01-25 13:51:57 -0500282 std::unordered_map<const Variable*, size_t> fVariableMap;
Brian Osmandb2dad52021-01-07 14:08:30 -0500283 std::vector<skvm::Val> fSlots;
Brian Osman0a442b72020-12-02 11:12:51 -0500284
Brian Osman9333c872021-01-13 15:06:17 -0500285 // Conditional execution mask (managed by ScopedCondition, and tied to control-flow scopes)
286 skvm::I32 fConditionMask;
287
288 // Similar: loop execution masks. Each loop starts with all lanes active (fLoopMask).
289 // 'break' disables a lane in fLoopMask until the loop finishes
290 // 'continue' disables a lane in fLoopMask, and sets fContinueMask to be re-enabled on the next
291 // iteration
292 skvm::I32 fLoopMask;
293 skvm::I32 fContinueMask;
Brian Osman54515b72021-01-07 14:38:08 -0500294
Brian Osmandb2dad52021-01-07 14:08:30 -0500295 //
296 // State that's local to the generation of a single function:
297 //
Brian Osman54515b72021-01-07 14:38:08 -0500298 struct Function {
299 const SkSpan<skvm::Val> fReturnValue;
300 skvm::I32 fReturned;
301 };
302 std::vector<Function> fFunctionStack;
303 Function& currentFunction() { return fFunctionStack.back(); }
Brian Osman0a442b72020-12-02 11:12:51 -0500304
Brian Osman9333c872021-01-13 15:06:17 -0500305 class ScopedCondition {
Brian Osman0a442b72020-12-02 11:12:51 -0500306 public:
Brian Osman9333c872021-01-13 15:06:17 -0500307 ScopedCondition(SkVMGenerator* generator, skvm::I32 mask)
308 : fGenerator(generator), fOldConditionMask(fGenerator->fConditionMask) {
309 fGenerator->fConditionMask &= mask;
Brian Osman0a442b72020-12-02 11:12:51 -0500310 }
311
Brian Osman9333c872021-01-13 15:06:17 -0500312 ~ScopedCondition() { fGenerator->fConditionMask = fOldConditionMask; }
Brian Osman0a442b72020-12-02 11:12:51 -0500313
314 private:
315 SkVMGenerator* fGenerator;
Brian Osman9333c872021-01-13 15:06:17 -0500316 skvm::I32 fOldConditionMask;
Brian Osman0a442b72020-12-02 11:12:51 -0500317 };
318};
319
320static Type::NumberKind base_number_kind(const Type& type) {
321 if (type.typeKind() == Type::TypeKind::kMatrix || type.typeKind() == Type::TypeKind::kVector) {
322 return base_number_kind(type.componentType());
323 }
324 return type.numberKind();
325}
326
327static inline bool is_uniform(const SkSL::Variable& var) {
328 return var.modifiers().fFlags & Modifiers::kUniform_Flag;
329}
330
331static size_t slot_count(const Type& type) {
332 switch (type.typeKind()) {
333 case Type::TypeKind::kOther:
334 return 0;
335 case Type::TypeKind::kStruct: {
336 size_t slots = 0;
337 for (const auto& f : type.fields()) {
338 slots += slot_count(*f.fType);
339 }
340 return slots;
341 }
342 case Type::TypeKind::kArray:
343 SkASSERT(type.columns() > 0);
344 return type.columns() * slot_count(type.componentType());
345 default:
346 return type.columns() * type.rows();
347 }
348}
349
350SkVMGenerator::SkVMGenerator(const Program& program,
Brian Osman0a442b72020-12-02 11:12:51 -0500351 skvm::Builder* builder,
352 SkSpan<skvm::Val> uniforms,
Brian Osman0a442b72020-12-02 11:12:51 -0500353 skvm::Coord device,
354 skvm::Coord local,
Brian Osmandb2dad52021-01-07 14:08:30 -0500355 SampleChildFn sampleChild)
Brian Osman0a442b72020-12-02 11:12:51 -0500356 : fProgram(program)
Brian Osman0a442b72020-12-02 11:12:51 -0500357 , fBuilder(builder)
358 , fLocalCoord(local)
Brian Osman317e5882021-03-11 11:11:45 -0500359 , fSampleChild(std::move(sampleChild)) {
Brian Osman9333c872021-01-13 15:06:17 -0500360 fConditionMask = fLoopMask = fBuilder->splat(0xffff'ffff);
Brian Osman0a442b72020-12-02 11:12:51 -0500361
362 // Now, add storage for each global variable (including uniforms) to fSlots, and entries in
363 // fVariableMap to remember where every variable is stored.
364 const skvm::Val* uniformIter = uniforms.begin();
365 size_t fpCount = 0;
366 for (const ProgramElement* e : fProgram.elements()) {
367 if (e->is<GlobalVarDeclaration>()) {
Brian Osmanc0576692021-02-17 13:52:35 -0500368 const GlobalVarDeclaration& gvd = e->as<GlobalVarDeclaration>();
369 const VarDeclaration& decl = gvd.declaration()->as<VarDeclaration>();
370 const Variable& var = decl.var();
Brian Osman0a442b72020-12-02 11:12:51 -0500371 SkASSERT(fVariableMap.find(&var) == fVariableMap.end());
372
373 // For most variables, fVariableMap stores an index into fSlots, but for fragment
374 // processors (child shaders), fVariableMap stores the index to pass to fSampleChild().
John Stiles54e7c052021-01-11 14:22:36 -0500375 if (var.type() == *fProgram.fContext->fTypes.fFragmentProcessor) {
Brian Osman0a442b72020-12-02 11:12:51 -0500376 fVariableMap[&var] = fpCount++;
377 continue;
378 }
379
380 // Opaque types include fragment processors, GL objects (samplers, textures, etc), and
381 // special types like 'void'. Of those, only fragment processors are legal variables.
382 SkASSERT(!var.type().isOpaque());
383
Brian Osmanc0576692021-02-17 13:52:35 -0500384 // getSlot() allocates space for the variable's value in fSlots, initializes it to zero,
385 // and populates fVariableMap.
386 size_t slot = this->getSlot(var),
387 nslots = slot_count(var.type());
Brian Osman0a442b72020-12-02 11:12:51 -0500388
389 if (int builtin = var.modifiers().fLayout.fBuiltin; builtin >= 0) {
390 // builtin variables are system-defined, with special semantics. The only builtin
391 // variable exposed to runtime effects is sk_FragCoord.
392 switch (builtin) {
393 case SK_FRAGCOORD_BUILTIN:
394 SkASSERT(nslots == 4);
Brian Osmanc0576692021-02-17 13:52:35 -0500395 fSlots[slot + 0] = device.x.id;
396 fSlots[slot + 1] = device.y.id;
397 fSlots[slot + 2] = fBuilder->splat(0.0f).id;
398 fSlots[slot + 3] = fBuilder->splat(1.0f).id;
Brian Osman0a442b72020-12-02 11:12:51 -0500399 break;
400 default:
401 SkDEBUGFAIL("Unsupported builtin");
402 }
403 } else if (is_uniform(var)) {
404 // For uniforms, copy the supplied IDs over
405 SkASSERT(uniformIter + nslots <= uniforms.end());
Brian Osmanc0576692021-02-17 13:52:35 -0500406 std::copy(uniformIter, uniformIter + nslots, fSlots.begin() + slot);
Brian Osman0a442b72020-12-02 11:12:51 -0500407 uniformIter += nslots;
Brian Osmanc0576692021-02-17 13:52:35 -0500408 } else if (decl.value()) {
409 // For other globals, populate with the initializer expression (if there is one)
410 Value val = this->writeExpression(*decl.value());
411 for (size_t i = 0; i < nslots; ++i) {
412 fSlots[slot + i] = val[i];
413 }
Brian Osman0a442b72020-12-02 11:12:51 -0500414 }
415 }
416 }
417 SkASSERT(uniformIter == uniforms.end());
Brian Osman0a442b72020-12-02 11:12:51 -0500418}
419
Brian Osmandb2dad52021-01-07 14:08:30 -0500420void SkVMGenerator::writeFunction(const FunctionDefinition& function,
421 SkSpan<skvm::Val> arguments,
422 SkSpan<skvm::Val> outReturn) {
Brian Osmandb2dad52021-01-07 14:08:30 -0500423 const FunctionDeclaration& decl = function.declaration();
Brian Osman54515b72021-01-07 14:38:08 -0500424 SkASSERT(slot_count(decl.returnType()) == outReturn.size());
Brian Osmandb2dad52021-01-07 14:08:30 -0500425
Brian Osman54515b72021-01-07 14:38:08 -0500426 fFunctionStack.push_back({outReturn, /*returned=*/fBuilder->splat(0)});
Brian Osmandb2dad52021-01-07 14:08:30 -0500427
428 // For all parameters, copy incoming argument IDs to our vector of (all) variable IDs
Brian Osman5933d4c2021-01-05 13:02:20 -0500429 size_t argIdx = 0;
Brian Osmandb2dad52021-01-07 14:08:30 -0500430 for (const Variable* p : decl.parameters()) {
Brian Osman21f57072021-01-25 13:51:57 -0500431 size_t paramSlot = this->getSlot(*p),
432 nslots = slot_count(p->type());
Brian Osman5933d4c2021-01-05 13:02:20 -0500433
Brian Osmandb2dad52021-01-07 14:08:30 -0500434 for (size_t i = 0; i < nslots; ++i) {
435 fSlots[paramSlot + i] = arguments[argIdx + i];
436 }
437 argIdx += nslots;
438 }
439 SkASSERT(argIdx == arguments.size());
440
441 this->writeStatement(*function.body());
442
443 // Copy 'out' and 'inout' parameters back to their caller-supplied argument storage
444 argIdx = 0;
445 for (const Variable* p : decl.parameters()) {
446 size_t nslots = slot_count(p->type());
447
Brian Osman5933d4c2021-01-05 13:02:20 -0500448 if (p->modifiers().fFlags & Modifiers::kOut_Flag) {
Brian Osman21f57072021-01-25 13:51:57 -0500449 size_t paramSlot = this->getSlot(*p);
Brian Osman5933d4c2021-01-05 13:02:20 -0500450 for (size_t i = 0; i < nslots; ++i) {
Brian Osmandb2dad52021-01-07 14:08:30 -0500451 arguments[argIdx + i] = fSlots[paramSlot + i];
Brian Osman5933d4c2021-01-05 13:02:20 -0500452 }
453 }
454 argIdx += nslots;
455 }
Brian Osmandb2dad52021-01-07 14:08:30 -0500456 SkASSERT(argIdx == arguments.size());
Brian Osman54515b72021-01-07 14:38:08 -0500457
458 fFunctionStack.pop_back();
Brian Osman0a442b72020-12-02 11:12:51 -0500459}
460
Brian Osman21f57072021-01-25 13:51:57 -0500461size_t SkVMGenerator::getSlot(const Variable& v) {
Brian Osman0a442b72020-12-02 11:12:51 -0500462 auto entry = fVariableMap.find(&v);
463 if (entry != fVariableMap.end()) {
464 return entry->second;
465 }
466
Brian Osman0a442b72020-12-02 11:12:51 -0500467 size_t slot = fSlots.size(),
468 nslots = slot_count(v.type());
469 fSlots.resize(slot + nslots, fBuilder->splat(0.0f).id);
470 fVariableMap[&v] = slot;
471 return slot;
472}
473
Brian Osman0a442b72020-12-02 11:12:51 -0500474Value SkVMGenerator::writeBinaryExpression(const BinaryExpression& b) {
475 const Expression& left = *b.left();
476 const Expression& right = *b.right();
John Stiles45990502021-02-16 10:55:27 -0500477 Operator op = b.getOperator();
478 if (op.kind() == Token::Kind::TK_EQ) {
Brian Osman0a442b72020-12-02 11:12:51 -0500479 return this->writeStore(left, this->writeExpression(right));
480 }
481
482 const Type& lType = left.type();
483 const Type& rType = right.type();
484 bool lVecOrMtx = (lType.isVector() || lType.isMatrix());
485 bool rVecOrMtx = (rType.isVector() || rType.isMatrix());
John Stiles45990502021-02-16 10:55:27 -0500486 bool isAssignment = op.isAssignment();
Brian Osman0a442b72020-12-02 11:12:51 -0500487 if (isAssignment) {
John Stiles45990502021-02-16 10:55:27 -0500488 op = op.removeAssignment();
Brian Osman0a442b72020-12-02 11:12:51 -0500489 }
490 Type::NumberKind nk = base_number_kind(lType);
491
492 // A few ops require special treatment:
John Stiles45990502021-02-16 10:55:27 -0500493 switch (op.kind()) {
Brian Osman0a442b72020-12-02 11:12:51 -0500494 case Token::Kind::TK_LOGICALAND: {
495 SkASSERT(!isAssignment);
496 SkASSERT(nk == Type::NumberKind::kBoolean);
497 skvm::I32 lVal = i32(this->writeExpression(left));
Brian Osman9333c872021-01-13 15:06:17 -0500498 ScopedCondition shortCircuit(this, lVal);
Brian Osman0a442b72020-12-02 11:12:51 -0500499 skvm::I32 rVal = i32(this->writeExpression(right));
500 return lVal & rVal;
501 }
502 case Token::Kind::TK_LOGICALOR: {
503 SkASSERT(!isAssignment);
504 SkASSERT(nk == Type::NumberKind::kBoolean);
505 skvm::I32 lVal = i32(this->writeExpression(left));
Brian Osman9333c872021-01-13 15:06:17 -0500506 ScopedCondition shortCircuit(this, ~lVal);
Brian Osman0a442b72020-12-02 11:12:51 -0500507 skvm::I32 rVal = i32(this->writeExpression(right));
508 return lVal | rVal;
509 }
John Stiles94e72b92021-01-30 11:06:18 -0500510 case Token::Kind::TK_COMMA:
511 // We write the left side of the expression to preserve its side effects, even though we
512 // immediately discard the result.
513 this->writeExpression(left);
514 return this->writeExpression(right);
Brian Osman0a442b72020-12-02 11:12:51 -0500515 default:
516 break;
517 }
518
519 // All of the other ops always evaluate both sides of the expression
520 Value lVal = this->writeExpression(left),
521 rVal = this->writeExpression(right);
522
523 // Special case for M*V, V*M, M*M (but not V*V!)
John Stiles45990502021-02-16 10:55:27 -0500524 if (op.kind() == Token::Kind::TK_STAR
Brian Osman0a442b72020-12-02 11:12:51 -0500525 && lVecOrMtx && rVecOrMtx && !(lType.isVector() && rType.isVector())) {
526 int rCols = rType.columns(),
527 rRows = rType.rows(),
528 lCols = lType.columns(),
529 lRows = lType.rows();
530 // M*V treats the vector as a column
531 if (rType.isVector()) {
532 std::swap(rCols, rRows);
533 }
534 SkASSERT(lCols == rRows);
535 SkASSERT(slot_count(b.type()) == static_cast<size_t>(lRows * rCols));
536 Value result(lRows * rCols);
537 size_t resultIdx = 0;
538 for (int c = 0; c < rCols; ++c)
539 for (int r = 0; r < lRows; ++r) {
540 skvm::F32 sum = fBuilder->splat(0.0f);
541 for (int j = 0; j < lCols; ++j) {
542 sum += f32(lVal[j*lRows + r]) * f32(rVal[c*rRows + j]);
543 }
544 result[resultIdx++] = sum;
545 }
546 SkASSERT(resultIdx == result.slots());
547 return isAssignment ? this->writeStore(left, result) : result;
548 }
549
550 size_t nslots = std::max(lVal.slots(), rVal.slots());
551
Brian Osman0a442b72020-12-02 11:12:51 -0500552 auto binary = [&](auto&& f_fn, auto&& i_fn) {
553 Value result(nslots);
554 for (size_t i = 0; i < nslots; ++i) {
555 // If one side is scalar, replicate it to all channels
556 skvm::Val L = lVal.slots() == 1 ? lVal[0] : lVal[i],
557 R = rVal.slots() == 1 ? rVal[0] : rVal[i];
558 if (nk == Type::NumberKind::kFloat) {
559 result[i] = f_fn(f32(L), f32(R));
560 } else {
561 result[i] = i_fn(i32(L), i32(R));
562 }
563 }
564 return isAssignment ? this->writeStore(left, result) : result;
565 };
566
567 auto unsupported_f = [&](skvm::F32, skvm::F32) {
568 SkDEBUGFAIL("Unsupported operator");
569 return skvm::F32{};
570 };
571
John Stiles45990502021-02-16 10:55:27 -0500572 switch (op.kind()) {
Brian Osman0a442b72020-12-02 11:12:51 -0500573 case Token::Kind::TK_EQEQ: {
574 SkASSERT(!isAssignment);
575 Value cmp = binary([](skvm::F32 x, skvm::F32 y) { return x == y; },
576 [](skvm::I32 x, skvm::I32 y) { return x == y; });
577 skvm::I32 folded = i32(cmp[0]);
578 for (size_t i = 1; i < nslots; ++i) {
579 folded &= i32(cmp[i]);
580 }
581 return folded;
582 }
583 case Token::Kind::TK_NEQ: {
584 SkASSERT(!isAssignment);
585 Value cmp = binary([](skvm::F32 x, skvm::F32 y) { return x != y; },
586 [](skvm::I32 x, skvm::I32 y) { return x != y; });
587 skvm::I32 folded = i32(cmp[0]);
588 for (size_t i = 1; i < nslots; ++i) {
589 folded |= i32(cmp[i]);
590 }
591 return folded;
592 }
593 case Token::Kind::TK_GT:
594 return binary([](skvm::F32 x, skvm::F32 y) { return x > y; },
595 [](skvm::I32 x, skvm::I32 y) { return x > y; });
596 case Token::Kind::TK_GTEQ:
597 return binary([](skvm::F32 x, skvm::F32 y) { return x >= y; },
598 [](skvm::I32 x, skvm::I32 y) { return x >= y; });
599 case Token::Kind::TK_LT:
600 return binary([](skvm::F32 x, skvm::F32 y) { return x < y; },
601 [](skvm::I32 x, skvm::I32 y) { return x < y; });
602 case Token::Kind::TK_LTEQ:
603 return binary([](skvm::F32 x, skvm::F32 y) { return x <= y; },
604 [](skvm::I32 x, skvm::I32 y) { return x <= y; });
605
606 case Token::Kind::TK_PLUS:
607 return binary([](skvm::F32 x, skvm::F32 y) { return x + y; },
608 [](skvm::I32 x, skvm::I32 y) { return x + y; });
609 case Token::Kind::TK_MINUS:
610 return binary([](skvm::F32 x, skvm::F32 y) { return x - y; },
611 [](skvm::I32 x, skvm::I32 y) { return x - y; });
612 case Token::Kind::TK_STAR:
Mike Kleinff4decc2021-02-10 16:13:35 -0600613 return binary([](skvm::F32 x, skvm::F32 y) { return x ** y; },
Brian Osman0a442b72020-12-02 11:12:51 -0500614 [](skvm::I32 x, skvm::I32 y) { return x * y; });
615 case Token::Kind::TK_SLASH:
616 // Minimum spec (GLSL ES 1.0) has very loose requirements for integer operations.
617 // (Low-end GPUs may not have integer ALUs). Given that, we are allowed to do floating
618 // point division plus rounding. Section 10.28 of the spec even clarifies that the
619 // rounding mode is undefined (but round-towards-zero is the obvious/common choice).
620 return binary([](skvm::F32 x, skvm::F32 y) { return x / y; },
621 [](skvm::I32 x, skvm::I32 y) {
622 return skvm::trunc(skvm::to_F32(x) / skvm::to_F32(y));
623 });
624
625 case Token::Kind::TK_BITWISEXOR:
626 case Token::Kind::TK_LOGICALXOR:
627 return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x ^ y; });
628 case Token::Kind::TK_BITWISEAND:
629 return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x & y; });
630 case Token::Kind::TK_BITWISEOR:
631 return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x | y; });
632
633 // These three operators are all 'reserved' (illegal) in our minimum spec, but will require
634 // implementation in the future.
635 case Token::Kind::TK_PERCENT:
636 case Token::Kind::TK_SHL:
637 case Token::Kind::TK_SHR:
638 default:
639 SkDEBUGFAIL("Unsupported operator");
640 return {};
641 }
642}
643
644Value SkVMGenerator::writeConstructor(const Constructor& c) {
645 if (c.arguments().size() > 1) {
646 // Multi-argument constructors just aggregate their arguments, with no conversion
647 // NOTE: This (SkSL rule) is actually more restrictive than GLSL.
648 Value result(slot_count(c.type()));
649 size_t resultIdx = 0;
650 for (const auto &arg : c.arguments()) {
651 Value tmp = this->writeExpression(*arg);
652 for (size_t tmpSlot = 0; tmpSlot < tmp.slots(); ++tmpSlot) {
653 result[resultIdx++] = tmp[tmpSlot];
654 }
655 }
656 return result;
657 }
658
659 const Type& srcType = c.arguments()[0]->type();
660 const Type& dstType = c.type();
661 Type::NumberKind srcKind = base_number_kind(srcType),
John Stiles32d68532021-01-05 21:38:59 -0500662 dstKind = base_number_kind(dstType);
Brian Osman0a442b72020-12-02 11:12:51 -0500663 Value src = this->writeExpression(*c.arguments()[0]);
664 size_t dstSlots = slot_count(dstType);
665
666 // Conversion among "similar" types (floatN <-> halfN), (shortN <-> intN), etc. is a no-op
667 if (srcKind == dstKind && src.slots() == dstSlots) {
668 return src;
669 }
670
John Stiles32d68532021-01-05 21:38:59 -0500671 // TODO: Handle signed vs. unsigned. GLSL ES 1.0 only has 'int', so no problem yet.
Brian Osman0a442b72020-12-02 11:12:51 -0500672 if (srcKind != dstKind) {
673 // One argument constructors can do type conversion
674 Value dst(src.slots());
John Stiles32d68532021-01-05 21:38:59 -0500675 switch (dstKind) {
676 case Type::NumberKind::kFloat:
677 if (srcKind == Type::NumberKind::kSigned) {
678 // int -> float
679 for (size_t i = 0; i < src.slots(); ++i) {
680 dst[i] = skvm::to_F32(i32(src[i]));
681 }
682 return dst;
683 } else if (srcKind == Type::NumberKind::kBoolean) {
684 // bool -> float
685 for (size_t i = 0; i < src.slots(); ++i) {
686 dst[i] = skvm::select(i32(src[i]), 1.0f, 0.0f);
687 }
688 return dst;
689 }
690 break;
691
692 case Type::NumberKind::kSigned:
693 if (srcKind == Type::NumberKind::kFloat) {
694 // float -> int
695 for (size_t i = 0; i < src.slots(); ++i) {
696 dst[i] = skvm::trunc(f32(src[i]));
697 }
698 return dst;
699 } else if (srcKind == Type::NumberKind::kBoolean) {
700 // bool -> int
701 for (size_t i = 0; i < src.slots(); ++i) {
Mike Kleina738fb52021-01-14 12:11:48 -0600702 dst[i] = skvm::select(i32(src[i]), 1, 0);
John Stiles32d68532021-01-05 21:38:59 -0500703 }
704 return dst;
705 }
706 break;
707
708 case Type::NumberKind::kBoolean:
709 if (srcKind == Type::NumberKind::kSigned) {
710 // int -> bool
711 for (size_t i = 0; i < src.slots(); ++i) {
712 dst[i] = i32(src[i]) != 0;
713 }
714 return dst;
715 } else if (srcKind == Type::NumberKind::kFloat) {
716 // float -> bool
717 for (size_t i = 0; i < src.slots(); ++i) {
718 dst[i] = f32(src[i]) != 0.0;
719 }
720 return dst;
721 }
722 break;
723
724 default:
725 break;
Brian Osman0a442b72020-12-02 11:12:51 -0500726 }
John Stiles32d68532021-01-05 21:38:59 -0500727 SkDEBUGFAILF("Unsupported type conversion: %s -> %s", srcType.displayName().c_str(),
728 dstType.displayName().c_str());
729 return {};
Brian Osman0a442b72020-12-02 11:12:51 -0500730 }
731
732 // Matrices can be constructed from scalars or other matrices
733 if (dstType.isMatrix()) {
734 Value dst(dstType.rows() * dstType.columns());
735 size_t dstIndex = 0;
736 if (srcType.isMatrix()) {
737 // Matrix-from-matrix uses src where it overlaps, fills in missing with identity
738 for (int c = 0; c < dstType.columns(); ++c)
739 for (int r = 0; r < dstType.rows(); ++r) {
740 if (c < srcType.columns() && r < srcType.rows()) {
741 dst[dstIndex++] = src[c * srcType.rows() + r];
742 } else {
743 dst[dstIndex++] = fBuilder->splat(c == r ? 1.0f : 0.0f);
744 }
745 }
746 } else if (srcType.isScalar()) {
747 // Matrix-from-scalar builds a diagonal scale matrix
748 for (int c = 0; c < dstType.columns(); ++c)
749 for (int r = 0; r < dstType.rows(); ++r) {
750 dst[dstIndex++] = (c == r ? f32(src) : fBuilder->splat(0.0f));
751 }
752 } else {
753 SkDEBUGFAIL("Invalid matrix constructor");
754 }
755 SkASSERT(dstIndex == dst.slots());
756 return dst;
757 }
758
759 // We can splat scalars to all components of a vector
760 if (dstType.isVector() && srcType.isScalar()) {
761 Value dst(dstType.columns());
762 for (int i = 0; i < dstType.columns(); ++i) {
763 dst[i] = src[0];
764 }
765 return dst;
766 }
767
768 SkDEBUGFAIL("Invalid constructor");
769 return {};
770}
771
Brian Osmanfa71ffa2021-01-26 14:05:31 -0500772size_t SkVMGenerator::fieldSlotOffset(const FieldAccess& expr) {
Brian Osman21f57072021-01-25 13:51:57 -0500773 size_t offset = 0;
Brian Osmanfa71ffa2021-01-26 14:05:31 -0500774 for (int i = 0; i < expr.fieldIndex(); ++i) {
775 offset += slot_count(*expr.base()->type().fields()[i].fType);
776 }
777 return offset;
778}
779
780Value SkVMGenerator::writeFieldAccess(const FieldAccess& expr) {
781 Value base = this->writeExpression(*expr.base());
782 Value field(slot_count(expr.type()));
783 size_t offset = this->fieldSlotOffset(expr);
784 for (size_t i = 0; i < field.slots(); ++i) {
785 field[i] = base[offset + i];
786 }
787 return field;
788}
789
790size_t SkVMGenerator::indexSlotOffset(const IndexExpression& expr) {
791 Value index = this->writeExpression(*expr.index());
792 int indexValue = -1;
793 SkAssertResult(fBuilder->allImm(index[0], &indexValue));
794
795 // When indexing by a literal, the front-end guarantees that we don't go out of bounds.
796 // But when indexing by a loop variable, it's possible to generate out-of-bounds access.
797 // The GLSL spec leaves that behavior undefined - we'll just clamp everything here.
798 indexValue = SkTPin(indexValue, 0, expr.base()->type().columns() - 1);
799
800 size_t stride = slot_count(expr.type());
801 return indexValue * stride;
802}
803
804Value SkVMGenerator::writeIndexExpression(const IndexExpression& expr) {
805 Value base = this->writeExpression(*expr.base());
806 Value element(slot_count(expr.type()));
807 size_t offset = this->indexSlotOffset(expr);
808 for (size_t i = 0; i < element.slots(); ++i) {
809 element[i] = base[offset + i];
810 }
811 return element;
812}
813
814Value SkVMGenerator::writeVariableExpression(const VariableReference& expr) {
Brian Osman21f57072021-01-25 13:51:57 -0500815 size_t slot = this->getSlot(*expr.variable());
Brian Osmanfa71ffa2021-01-26 14:05:31 -0500816 Value val(slot_count(expr.type()));
Brian Osman0a442b72020-12-02 11:12:51 -0500817 for (size_t i = 0; i < val.slots(); ++i) {
818 val[i] = fSlots[slot + i];
819 }
820 return val;
821}
822
823Value SkVMGenerator::writeMatrixInverse2x2(const Value& m) {
824 SkASSERT(m.slots() == 4);
825 skvm::F32 a = f32(m[0]),
826 b = f32(m[1]),
827 c = f32(m[2]),
828 d = f32(m[3]);
829 skvm::F32 idet = 1.0f / (a*d - b*c);
830
831 Value result(m.slots());
Mike Kleinff4decc2021-02-10 16:13:35 -0600832 result[0] = ( d ** idet);
833 result[1] = (-b ** idet);
834 result[2] = (-c ** idet);
835 result[3] = ( a ** idet);
Brian Osman0a442b72020-12-02 11:12:51 -0500836 return result;
837}
838
839Value SkVMGenerator::writeMatrixInverse3x3(const Value& m) {
840 SkASSERT(m.slots() == 9);
841 skvm::F32 a11 = f32(m[0]), a12 = f32(m[3]), a13 = f32(m[6]),
842 a21 = f32(m[1]), a22 = f32(m[4]), a23 = f32(m[7]),
843 a31 = f32(m[2]), a32 = f32(m[5]), a33 = f32(m[8]);
844 skvm::F32 idet = 1.0f / (a11*a22*a33 + a12*a23*a31 + a13*a21*a32 -
845 a11*a23*a32 - a12*a21*a33 - a13*a22*a31);
846
847 Value result(m.slots());
Mike Kleinff4decc2021-02-10 16:13:35 -0600848 result[0] = ((a22**a33 - a23**a32) ** idet);
849 result[1] = ((a23**a31 - a21**a33) ** idet);
850 result[2] = ((a21**a32 - a22**a31) ** idet);
851 result[3] = ((a13**a32 - a12**a33) ** idet);
852 result[4] = ((a11**a33 - a13**a31) ** idet);
853 result[5] = ((a12**a31 - a11**a32) ** idet);
854 result[6] = ((a12**a23 - a13**a22) ** idet);
855 result[7] = ((a13**a21 - a11**a23) ** idet);
856 result[8] = ((a11**a22 - a12**a21) ** idet);
Brian Osman0a442b72020-12-02 11:12:51 -0500857 return result;
858}
859
860Value SkVMGenerator::writeMatrixInverse4x4(const Value& m) {
861 SkASSERT(m.slots() == 16);
862 skvm::F32 a00 = f32(m[0]), a10 = f32(m[4]), a20 = f32(m[ 8]), a30 = f32(m[12]),
863 a01 = f32(m[1]), a11 = f32(m[5]), a21 = f32(m[ 9]), a31 = f32(m[13]),
864 a02 = f32(m[2]), a12 = f32(m[6]), a22 = f32(m[10]), a32 = f32(m[14]),
865 a03 = f32(m[3]), a13 = f32(m[7]), a23 = f32(m[11]), a33 = f32(m[15]);
866
Mike Kleinff4decc2021-02-10 16:13:35 -0600867 skvm::F32 b00 = a00**a11 - a01**a10,
868 b01 = a00**a12 - a02**a10,
869 b02 = a00**a13 - a03**a10,
870 b03 = a01**a12 - a02**a11,
871 b04 = a01**a13 - a03**a11,
872 b05 = a02**a13 - a03**a12,
873 b06 = a20**a31 - a21**a30,
874 b07 = a20**a32 - a22**a30,
875 b08 = a20**a33 - a23**a30,
876 b09 = a21**a32 - a22**a31,
877 b10 = a21**a33 - a23**a31,
878 b11 = a22**a33 - a23**a32;
Brian Osman0a442b72020-12-02 11:12:51 -0500879
Mike Kleinff4decc2021-02-10 16:13:35 -0600880 skvm::F32 idet = 1.0f / (b00**b11 - b01**b10 + b02**b09 + b03**b08 - b04**b07 + b05**b06);
Brian Osman0a442b72020-12-02 11:12:51 -0500881
882 b00 *= idet;
883 b01 *= idet;
884 b02 *= idet;
885 b03 *= idet;
886 b04 *= idet;
887 b05 *= idet;
888 b06 *= idet;
889 b07 *= idet;
890 b08 *= idet;
891 b09 *= idet;
892 b10 *= idet;
893 b11 *= idet;
894
895 Value result(m.slots());
896 result[ 0] = (a11*b11 - a12*b10 + a13*b09);
897 result[ 1] = (a02*b10 - a01*b11 - a03*b09);
898 result[ 2] = (a31*b05 - a32*b04 + a33*b03);
899 result[ 3] = (a22*b04 - a21*b05 - a23*b03);
900 result[ 4] = (a12*b08 - a10*b11 - a13*b07);
901 result[ 5] = (a00*b11 - a02*b08 + a03*b07);
902 result[ 6] = (a32*b02 - a30*b05 - a33*b01);
903 result[ 7] = (a20*b05 - a22*b02 + a23*b01);
904 result[ 8] = (a10*b10 - a11*b08 + a13*b06);
905 result[ 9] = (a01*b08 - a00*b10 - a03*b06);
906 result[10] = (a30*b04 - a31*b02 + a33*b00);
907 result[11] = (a21*b02 - a20*b04 - a23*b00);
908 result[12] = (a11*b07 - a10*b09 - a12*b06);
909 result[13] = (a00*b09 - a01*b07 + a02*b06);
910 result[14] = (a31*b01 - a30*b03 - a32*b00);
911 result[15] = (a20*b03 - a21*b01 + a22*b00);
912 return result;
913}
914
915Value SkVMGenerator::writeIntrinsicCall(const FunctionCall& c) {
Brian Osman317e5882021-03-11 11:11:45 -0500916 static std::unordered_map<String, Intrinsic> intrinsics {
917 { "radians", Intrinsic::kRadians },
918 { "degrees", Intrinsic::kDegrees },
919 { "sin", Intrinsic::kSin },
920 { "cos", Intrinsic::kCos },
921 { "tan", Intrinsic::kTan },
922 { "asin", Intrinsic::kASin },
923 { "acos", Intrinsic::kACos },
924 { "atan", Intrinsic::kATan },
925
926 { "pow", Intrinsic::kPow },
927 { "exp", Intrinsic::kExp },
928 { "log", Intrinsic::kLog },
929 { "exp2", Intrinsic::kExp2 },
930 { "log2", Intrinsic::kLog2 },
931 { "sqrt", Intrinsic::kSqrt },
932 { "inversesqrt", Intrinsic::kInverseSqrt },
933
934 { "abs", Intrinsic::kAbs },
935 { "sign", Intrinsic::kSign },
936 { "floor", Intrinsic::kFloor },
937 { "ceil", Intrinsic::kCeil },
938 { "fract", Intrinsic::kFract },
939 { "mod", Intrinsic::kMod },
940
941 { "min", Intrinsic::kMin },
942 { "max", Intrinsic::kMax },
943 { "clamp", Intrinsic::kClamp },
944 { "saturate", Intrinsic::kSaturate },
945 { "mix", Intrinsic::kMix },
946 { "step", Intrinsic::kStep },
947 { "smoothstep", Intrinsic::kSmoothstep },
948
949 { "length", Intrinsic::kLength },
950 { "distance", Intrinsic::kDistance },
951 { "dot", Intrinsic::kDot },
952 { "cross", Intrinsic::kCross },
953 { "normalize", Intrinsic::kNormalize },
954 { "faceforward", Intrinsic::kFaceforward },
955 { "reflect", Intrinsic::kReflect },
956 { "refract", Intrinsic::kRefract },
957
958 { "matrixCompMult", Intrinsic::kMatrixCompMult },
959 { "inverse", Intrinsic::kInverse },
960
961 { "lessThan", Intrinsic::kLessThan },
962 { "lessThanEqual", Intrinsic::kLessThanEqual },
963 { "greaterThan", Intrinsic::kGreaterThan },
964 { "greaterThanEqual", Intrinsic::kGreaterThanEqual },
965 { "equal", Intrinsic::kEqual },
966 { "notEqual", Intrinsic::kNotEqual },
967
968 { "any", Intrinsic::kAny },
969 { "all", Intrinsic::kAll },
970 { "not", Intrinsic::kNot },
971
972 { "sample", Intrinsic::kSample } };
973
974 auto found = intrinsics.find(c.function().name());
975 if (found == intrinsics.end()) {
Brian Osman47726a12020-12-17 16:02:08 -0500976 SkDEBUGFAILF("Missing intrinsic: '%s'", String(c.function().name()).c_str());
Brian Osman0a442b72020-12-02 11:12:51 -0500977 return {};
978 }
979
980 const size_t nargs = c.arguments().size();
981
982 if (found->second == Intrinsic::kSample) {
983 // Sample is very special, the first argument is an FP, which can't be evaluated
984 const Context& ctx = *fProgram.fContext;
John Stiles54e7c052021-01-11 14:22:36 -0500985 if (nargs > 2 || c.arguments()[0]->type() != *ctx.fTypes.fFragmentProcessor ||
986 (nargs == 2 && (c.arguments()[1]->type() != *ctx.fTypes.fFloat2 &&
987 c.arguments()[1]->type() != *ctx.fTypes.fFloat3x3))) {
Brian Osman0a442b72020-12-02 11:12:51 -0500988 SkDEBUGFAIL("Invalid call to sample");
989 return {};
990 }
991
992 auto fp_it = fVariableMap.find(c.arguments()[0]->as<VariableReference>().variable());
993 SkASSERT(fp_it != fVariableMap.end());
994
995 skvm::Coord coord = fLocalCoord;
996 if (nargs == 2) {
997 Value arg = this->writeExpression(*c.arguments()[1]);
998 if (arg.slots() == 2) {
999 // explicit sampling
1000 coord = {f32(arg[0]), f32(arg[1])};
1001 } else {
1002 // matrix sampling
1003 SkASSERT(arg.slots() == 9);
Mike Kleinff4decc2021-02-10 16:13:35 -06001004 skvm::F32 x = f32(arg[0])**coord.x + f32(arg[3])**coord.y + f32(arg[6]),
1005 y = f32(arg[1])**coord.x + f32(arg[4])**coord.y + f32(arg[7]),
1006 w = f32(arg[2])**coord.x + f32(arg[5])**coord.y + f32(arg[8]);
1007 x = x ** (1.0f / w);
1008 y = y ** (1.0f / w);
Brian Osman0a442b72020-12-02 11:12:51 -05001009 coord = {x, y};
1010 }
1011 }
1012
1013 skvm::Color color = fSampleChild(fp_it->second, coord);
1014 Value result(4);
1015 result[0] = color.r;
1016 result[1] = color.g;
1017 result[2] = color.b;
1018 result[3] = color.a;
1019 return result;
1020 }
1021
1022 const size_t kMaxArgs = 3; // eg: clamp, mix, smoothstep
1023 Value args[kMaxArgs];
1024 SkASSERT(nargs >= 1 && nargs <= SK_ARRAY_COUNT(args));
1025
1026 // All other intrinsics have at most three args, and those can all be evaluated up front:
1027 for (size_t i = 0; i < nargs; ++i) {
1028 args[i] = this->writeExpression(*c.arguments()[i]);
1029 }
1030 Type::NumberKind nk = base_number_kind(c.arguments()[0]->type());
1031
1032 auto binary = [&](auto&& fn) {
1033 // Binary intrinsics are (vecN, vecN), (vecN, float), or (float, vecN)
1034 size_t nslots = std::max(args[0].slots(), args[1].slots());
1035 Value result(nslots);
1036 SkASSERT(args[0].slots() == nslots || args[0].slots() == 1);
1037 SkASSERT(args[1].slots() == nslots || args[1].slots() == 1);
1038
1039 for (size_t i = 0; i < nslots; ++i) {
1040 result[i] = fn({fBuilder, args[0][args[0].slots() == 1 ? 0 : i]},
1041 {fBuilder, args[1][args[1].slots() == 1 ? 0 : i]});
1042 }
1043 return result;
1044 };
1045
1046 auto ternary = [&](auto&& fn) {
1047 // Ternary intrinsics are some combination of vecN and float
1048 size_t nslots = std::max({args[0].slots(), args[1].slots(), args[2].slots()});
1049 Value result(nslots);
1050 SkASSERT(args[0].slots() == nslots || args[0].slots() == 1);
1051 SkASSERT(args[1].slots() == nslots || args[1].slots() == 1);
1052 SkASSERT(args[2].slots() == nslots || args[2].slots() == 1);
1053
1054 for (size_t i = 0; i < nslots; ++i) {
1055 result[i] = fn({fBuilder, args[0][args[0].slots() == 1 ? 0 : i]},
1056 {fBuilder, args[1][args[1].slots() == 1 ? 0 : i]},
1057 {fBuilder, args[2][args[2].slots() == 1 ? 0 : i]});
1058 }
1059 return result;
1060 };
1061
1062 auto dot = [&](const Value& x, const Value& y) {
1063 SkASSERT(x.slots() == y.slots());
1064 skvm::F32 result = f32(x[0]) * f32(y[0]);
1065 for (size_t i = 1; i < x.slots(); ++i) {
1066 result += f32(x[i]) * f32(y[i]);
1067 }
1068 return result;
1069 };
1070
1071 switch (found->second) {
Brian Osman22cc3be2020-12-30 10:38:15 -05001072 case Intrinsic::kRadians:
1073 return unary(args[0], [](skvm::F32 deg) { return deg * (SK_FloatPI / 180); });
1074 case Intrinsic::kDegrees:
1075 return unary(args[0], [](skvm::F32 rad) { return rad * (180 / SK_FloatPI); });
1076
Brian Osman0a442b72020-12-02 11:12:51 -05001077 case Intrinsic::kSin: return unary(args[0], skvm::approx_sin);
1078 case Intrinsic::kCos: return unary(args[0], skvm::approx_cos);
1079 case Intrinsic::kTan: return unary(args[0], skvm::approx_tan);
1080
1081 case Intrinsic::kASin: return unary(args[0], skvm::approx_asin);
1082 case Intrinsic::kACos: return unary(args[0], skvm::approx_acos);
1083
1084 case Intrinsic::kATan: return nargs == 1 ? unary(args[0], skvm::approx_atan)
1085 : binary(skvm::approx_atan2);
1086
1087 case Intrinsic::kPow:
1088 return binary([](skvm::F32 x, skvm::F32 y) { return skvm::approx_powf(x, y); });
1089 case Intrinsic::kExp: return unary(args[0], skvm::approx_exp);
1090 case Intrinsic::kLog: return unary(args[0], skvm::approx_log);
1091 case Intrinsic::kExp2: return unary(args[0], skvm::approx_pow2);
1092 case Intrinsic::kLog2: return unary(args[0], skvm::approx_log2);
1093
1094 case Intrinsic::kSqrt: return unary(args[0], skvm::sqrt);
1095 case Intrinsic::kInverseSqrt:
1096 return unary(args[0], [](skvm::F32 x) { return 1.0f / skvm::sqrt(x); });
1097
1098 case Intrinsic::kAbs: return unary(args[0], skvm::abs);
1099 case Intrinsic::kSign:
1100 return unary(args[0], [](skvm::F32 x) { return select(x < 0, -1.0f,
1101 select(x > 0, +1.0f, 0.0f)); });
1102 case Intrinsic::kFloor: return unary(args[0], skvm::floor);
1103 case Intrinsic::kCeil: return unary(args[0], skvm::ceil);
1104 case Intrinsic::kFract: return unary(args[0], skvm::fract);
1105 case Intrinsic::kMod:
1106 return binary([](skvm::F32 x, skvm::F32 y) { return x - y*skvm::floor(x / y); });
1107
1108 case Intrinsic::kMin:
1109 return binary([](skvm::F32 x, skvm::F32 y) { return skvm::min(x, y); });
1110 case Intrinsic::kMax:
1111 return binary([](skvm::F32 x, skvm::F32 y) { return skvm::max(x, y); });
1112 case Intrinsic::kClamp:
1113 return ternary(
1114 [](skvm::F32 x, skvm::F32 lo, skvm::F32 hi) { return skvm::clamp(x, lo, hi); });
1115 case Intrinsic::kSaturate:
1116 return unary(args[0], [](skvm::F32 x) { return skvm::clamp01(x); });
1117 case Intrinsic::kMix:
1118 return ternary(
1119 [](skvm::F32 x, skvm::F32 y, skvm::F32 t) { return skvm::lerp(x, y, t); });
1120 case Intrinsic::kStep:
1121 return binary([](skvm::F32 edge, skvm::F32 x) { return select(x < edge, 0.0f, 1.0f); });
1122 case Intrinsic::kSmoothstep:
1123 return ternary([](skvm::F32 edge0, skvm::F32 edge1, skvm::F32 x) {
1124 skvm::F32 t = skvm::clamp01((x - edge0) / (edge1 - edge0));
Mike Kleinff4decc2021-02-10 16:13:35 -06001125 return t ** t ** (3 - 2 ** t);
Brian Osman0a442b72020-12-02 11:12:51 -05001126 });
1127
1128 case Intrinsic::kLength: return skvm::sqrt(dot(args[0], args[0]));
1129 case Intrinsic::kDistance: {
1130 Value vec = binary([](skvm::F32 x, skvm::F32 y) { return x - y; });
1131 return skvm::sqrt(dot(vec, vec));
1132 }
1133 case Intrinsic::kDot: return dot(args[0], args[1]);
Brian Osman22cc3be2020-12-30 10:38:15 -05001134 case Intrinsic::kCross: {
1135 skvm::F32 ax = f32(args[0][0]), ay = f32(args[0][1]), az = f32(args[0][2]),
1136 bx = f32(args[1][0]), by = f32(args[1][1]), bz = f32(args[1][2]);
1137 Value result(3);
Mike Kleinff4decc2021-02-10 16:13:35 -06001138 result[0] = ay**bz - az**by;
1139 result[1] = az**bx - ax**bz;
1140 result[2] = ax**by - ay**bx;
Brian Osman22cc3be2020-12-30 10:38:15 -05001141 return result;
1142 }
Brian Osman0a442b72020-12-02 11:12:51 -05001143 case Intrinsic::kNormalize: {
1144 skvm::F32 invLen = 1.0f / skvm::sqrt(dot(args[0], args[0]));
Mike Kleinff4decc2021-02-10 16:13:35 -06001145 return unary(args[0], [&](skvm::F32 x) { return x ** invLen; });
Brian Osman0a442b72020-12-02 11:12:51 -05001146 }
Brian Osman22cc3be2020-12-30 10:38:15 -05001147 case Intrinsic::kFaceforward: {
1148 const Value &N = args[0],
1149 &I = args[1],
1150 &Nref = args[2];
1151
1152 skvm::F32 dotNrefI = dot(Nref, I);
1153 return unary(N, [&](skvm::F32 n) { return select(dotNrefI<0, n, -n); });
1154 }
1155 case Intrinsic::kReflect: {
1156 const Value &I = args[0],
1157 &N = args[1];
1158
1159 skvm::F32 dotNI = dot(N, I);
1160 return binary([&](skvm::F32 i, skvm::F32 n) {
Mike Kleinff4decc2021-02-10 16:13:35 -06001161 return i - 2**dotNI**n;
Brian Osman22cc3be2020-12-30 10:38:15 -05001162 });
1163 }
1164 case Intrinsic::kRefract: {
1165 const Value &I = args[0],
1166 &N = args[1];
1167 skvm::F32 eta = f32(args[2]);
1168
1169 skvm::F32 dotNI = dot(N, I),
Mike Kleinff4decc2021-02-10 16:13:35 -06001170 k = 1 - eta**eta**(1 - dotNI**dotNI);
Brian Osman22cc3be2020-12-30 10:38:15 -05001171 return binary([&](skvm::F32 i, skvm::F32 n) {
Mike Kleinff4decc2021-02-10 16:13:35 -06001172 return select(k<0, 0.0f, eta**i - (eta**dotNI + sqrt(k))**n);
Brian Osman22cc3be2020-12-30 10:38:15 -05001173 });
1174 }
Brian Osman0a442b72020-12-02 11:12:51 -05001175
Brian Osman93aed9a2020-12-28 15:18:46 -05001176 case Intrinsic::kMatrixCompMult:
Mike Kleinff4decc2021-02-10 16:13:35 -06001177 return binary([](skvm::F32 x, skvm::F32 y) { return x ** y; });
Brian Osman0a442b72020-12-02 11:12:51 -05001178 case Intrinsic::kInverse: {
1179 switch (args[0].slots()) {
1180 case 4: return this->writeMatrixInverse2x2(args[0]);
1181 case 9: return this->writeMatrixInverse3x3(args[0]);
1182 case 16: return this->writeMatrixInverse4x4(args[0]);
1183 default:
1184 SkDEBUGFAIL("Invalid call to inverse");
1185 return {};
1186 }
1187 }
1188
1189 case Intrinsic::kLessThan:
Brian Osman30b67292020-12-23 13:02:09 -05001190 return nk == Type::NumberKind::kFloat
1191 ? binary([](skvm::F32 x, skvm::F32 y) { return x < y; })
1192 : binary([](skvm::I32 x, skvm::I32 y) { return x < y; });
Brian Osman0a442b72020-12-02 11:12:51 -05001193 case Intrinsic::kLessThanEqual:
Brian Osman30b67292020-12-23 13:02:09 -05001194 return nk == Type::NumberKind::kFloat
1195 ? binary([](skvm::F32 x, skvm::F32 y) { return x <= y; })
1196 : binary([](skvm::I32 x, skvm::I32 y) { return x <= y; });
Brian Osman0a442b72020-12-02 11:12:51 -05001197 case Intrinsic::kGreaterThan:
Brian Osman30b67292020-12-23 13:02:09 -05001198 return nk == Type::NumberKind::kFloat
1199 ? binary([](skvm::F32 x, skvm::F32 y) { return x > y; })
1200 : binary([](skvm::I32 x, skvm::I32 y) { return x > y; });
Brian Osman0a442b72020-12-02 11:12:51 -05001201 case Intrinsic::kGreaterThanEqual:
Brian Osman30b67292020-12-23 13:02:09 -05001202 return nk == Type::NumberKind::kFloat
1203 ? binary([](skvm::F32 x, skvm::F32 y) { return x >= y; })
1204 : binary([](skvm::I32 x, skvm::I32 y) { return x >= y; });
Brian Osman0a442b72020-12-02 11:12:51 -05001205
1206 case Intrinsic::kEqual:
1207 return nk == Type::NumberKind::kFloat
1208 ? binary([](skvm::F32 x, skvm::F32 y) { return x == y; })
1209 : binary([](skvm::I32 x, skvm::I32 y) { return x == y; });
1210 case Intrinsic::kNotEqual:
1211 return nk == Type::NumberKind::kFloat
1212 ? binary([](skvm::F32 x, skvm::F32 y) { return x != y; })
1213 : binary([](skvm::I32 x, skvm::I32 y) { return x != y; });
1214
1215 case Intrinsic::kAny: {
1216 skvm::I32 result = i32(args[0][0]);
1217 for (size_t i = 1; i < args[0].slots(); ++i) {
1218 result |= i32(args[0][i]);
1219 }
1220 return result;
1221 }
1222 case Intrinsic::kAll: {
1223 skvm::I32 result = i32(args[0][0]);
1224 for (size_t i = 1; i < args[0].slots(); ++i) {
1225 result &= i32(args[0][i]);
1226 }
1227 return result;
1228 }
1229 case Intrinsic::kNot: return unary(args[0], [](skvm::I32 x) { return ~x; });
1230
1231 case Intrinsic::kSample:
1232 // Handled earlier
1233 SkASSERT(false);
1234 return {};
1235 }
1236 SkUNREACHABLE;
1237}
1238
1239Value SkVMGenerator::writeFunctionCall(const FunctionCall& f) {
Brian Osman54515b72021-01-07 14:38:08 -05001240 if (f.function().isBuiltin() && !f.function().definition()) {
Brian Osman0a442b72020-12-02 11:12:51 -05001241 return this->writeIntrinsicCall(f);
1242 }
1243
Brian Osman54515b72021-01-07 14:38:08 -05001244 const FunctionDeclaration& decl = f.function();
1245
1246 // Evaluate all arguments, gather the results into a contiguous list of IDs
1247 std::vector<skvm::Val> argVals;
1248 for (const auto& arg : f.arguments()) {
1249 Value v = this->writeExpression(*arg);
1250 for (size_t i = 0; i < v.slots(); ++i) {
1251 argVals.push_back(v[i]);
1252 }
1253 }
1254
1255 // Create storage for the return value
1256 size_t nslots = slot_count(f.type());
1257 Value result(nslots);
1258 for (size_t i = 0; i < nslots; ++i) {
1259 result[i] = fBuilder->splat(0.0f);
1260 }
1261
1262 {
Brian Osman9333c872021-01-13 15:06:17 -05001263 // This merges currentFunction().fReturned into fConditionMask. Lanes that conditionally
Brian Osman54515b72021-01-07 14:38:08 -05001264 // returned in the current function would otherwise resume execution within the child.
Brian Osman9333c872021-01-13 15:06:17 -05001265 ScopedCondition m(this, ~currentFunction().fReturned);
Brian Osman54515b72021-01-07 14:38:08 -05001266 this->writeFunction(*f.function().definition(), argVals, result.asSpan());
1267 }
1268
1269 // Propagate new values of any 'out' params back to the original arguments
1270 const std::unique_ptr<Expression>* argIter = f.arguments().begin();
1271 size_t valIdx = 0;
1272 for (const Variable* p : decl.parameters()) {
1273 size_t nslots = slot_count(p->type());
1274 if (p->modifiers().fFlags & Modifiers::kOut_Flag) {
1275 Value v(nslots);
1276 for (size_t i = 0; i < nslots; ++i) {
1277 v[i] = argVals[valIdx + i];
1278 }
1279 const std::unique_ptr<Expression>& arg = *argIter;
1280 this->writeStore(*arg, v);
1281 }
1282 valIdx += nslots;
1283 argIter++;
1284 }
1285
1286 return result;
Brian Osman0a442b72020-12-02 11:12:51 -05001287}
1288
Brian Osmandd50b0c2021-01-11 17:04:29 -05001289Value SkVMGenerator::writeExternalFunctionCall(const ExternalFunctionCall& c) {
1290 // Evaluate all arguments, gather the results into a contiguous list of F32
1291 std::vector<skvm::F32> args;
1292 for (const auto& arg : c.arguments()) {
1293 Value v = this->writeExpression(*arg);
1294 for (size_t i = 0; i < v.slots(); ++i) {
1295 args.push_back(f32(v[i]));
1296 }
1297 }
1298
1299 // Create storage for the return value
1300 size_t nslots = slot_count(c.type());
1301 std::vector<skvm::F32> result(nslots, fBuilder->splat(0.0f));
1302
1303 c.function().call(fBuilder, args.data(), result.data(), this->mask());
1304
1305 // Convert from 'vector of F32' to Value
1306 Value resultVal(nslots);
1307 for (size_t i = 0; i < nslots; ++i) {
1308 resultVal[i] = result[i];
1309 }
1310
1311 return resultVal;
1312}
1313
Brian Osman0a442b72020-12-02 11:12:51 -05001314Value SkVMGenerator::writePrefixExpression(const PrefixExpression& p) {
1315 Value val = this->writeExpression(*p.operand());
1316
John Stiles45990502021-02-16 10:55:27 -05001317 switch (p.getOperator().kind()) {
Brian Osman0a442b72020-12-02 11:12:51 -05001318 case Token::Kind::TK_PLUSPLUS:
1319 case Token::Kind::TK_MINUSMINUS: {
John Stiles45990502021-02-16 10:55:27 -05001320 bool incr = p.getOperator().kind() == Token::Kind::TK_PLUSPLUS;
Brian Osman0a442b72020-12-02 11:12:51 -05001321
1322 switch (base_number_kind(p.type())) {
1323 case Type::NumberKind::kFloat:
1324 val = f32(val) + fBuilder->splat(incr ? 1.0f : -1.0f);
1325 break;
1326 case Type::NumberKind::kSigned:
1327 val = i32(val) + fBuilder->splat(incr ? 1 : -1);
1328 break;
1329 default:
1330 SkASSERT(false);
1331 return {};
1332 }
1333 return this->writeStore(*p.operand(), val);
1334 }
1335 case Token::Kind::TK_MINUS: {
1336 switch (base_number_kind(p.type())) {
1337 case Type::NumberKind::kFloat:
1338 return this->unary(val, [](skvm::F32 x) { return -x; });
1339 case Type::NumberKind::kSigned:
1340 return this->unary(val, [](skvm::I32 x) { return -x; });
1341 default:
1342 SkASSERT(false);
1343 return {};
1344 }
1345 }
1346 case Token::Kind::TK_LOGICALNOT:
1347 case Token::Kind::TK_BITWISENOT:
1348 return this->unary(val, [](skvm::I32 x) { return ~x; });
1349 default:
1350 SkASSERT(false);
1351 return {};
1352 }
1353}
1354
1355Value SkVMGenerator::writePostfixExpression(const PostfixExpression& p) {
John Stiles45990502021-02-16 10:55:27 -05001356 switch (p.getOperator().kind()) {
Brian Osman0a442b72020-12-02 11:12:51 -05001357 case Token::Kind::TK_PLUSPLUS:
1358 case Token::Kind::TK_MINUSMINUS: {
1359 Value old = this->writeExpression(*p.operand()),
1360 val = old;
1361 SkASSERT(val.slots() == 1);
John Stiles45990502021-02-16 10:55:27 -05001362 bool incr = p.getOperator().kind() == Token::Kind::TK_PLUSPLUS;
Brian Osman0a442b72020-12-02 11:12:51 -05001363
1364 switch (base_number_kind(p.type())) {
1365 case Type::NumberKind::kFloat:
1366 val = f32(val) + fBuilder->splat(incr ? 1.0f : -1.0f);
1367 break;
1368 case Type::NumberKind::kSigned:
1369 val = i32(val) + fBuilder->splat(incr ? 1 : -1);
1370 break;
1371 default:
1372 SkASSERT(false);
1373 return {};
1374 }
1375 this->writeStore(*p.operand(), val);
1376 return old;
1377 }
1378 default:
1379 SkASSERT(false);
1380 return {};
1381 }
1382}
1383
1384Value SkVMGenerator::writeSwizzle(const Swizzle& s) {
1385 Value base = this->writeExpression(*s.base());
1386 Value swizzled(s.components().size());
1387 for (size_t i = 0; i < s.components().size(); ++i) {
1388 swizzled[i] = base[s.components()[i]];
1389 }
1390 return swizzled;
1391}
1392
1393Value SkVMGenerator::writeTernaryExpression(const TernaryExpression& t) {
1394 skvm::I32 test = i32(this->writeExpression(*t.test()));
1395 Value ifTrue, ifFalse;
1396
1397 {
Brian Osman9333c872021-01-13 15:06:17 -05001398 ScopedCondition m(this, test);
Brian Osman0a442b72020-12-02 11:12:51 -05001399 ifTrue = this->writeExpression(*t.ifTrue());
1400 }
1401 {
Brian Osman9333c872021-01-13 15:06:17 -05001402 ScopedCondition m(this, ~test);
Brian Osman0a442b72020-12-02 11:12:51 -05001403 ifFalse = this->writeExpression(*t.ifFalse());
1404 }
1405
1406 size_t nslots = ifTrue.slots();
1407 SkASSERT(nslots == ifFalse.slots());
1408
1409 Value result(nslots);
1410 for (size_t i = 0; i < nslots; ++i) {
1411 result[i] = skvm::select(test, i32(ifTrue[i]), i32(ifFalse[i]));
1412 }
1413 return result;
1414}
1415
1416Value SkVMGenerator::writeExpression(const Expression& e) {
1417 switch (e.kind()) {
1418 case Expression::Kind::kBinary:
1419 return this->writeBinaryExpression(e.as<BinaryExpression>());
1420 case Expression::Kind::kBoolLiteral:
1421 return fBuilder->splat(e.as<BoolLiteral>().value() ? ~0 : 0);
1422 case Expression::Kind::kConstructor:
1423 return this->writeConstructor(e.as<Constructor>());
1424 case Expression::Kind::kFieldAccess:
Brian Osmanfa71ffa2021-01-26 14:05:31 -05001425 return this->writeFieldAccess(e.as<FieldAccess>());
Brian Osman0a442b72020-12-02 11:12:51 -05001426 case Expression::Kind::kIndex:
Brian Osmanfa71ffa2021-01-26 14:05:31 -05001427 return this->writeIndexExpression(e.as<IndexExpression>());
Brian Osman0a442b72020-12-02 11:12:51 -05001428 case Expression::Kind::kVariableReference:
Brian Osmanfa71ffa2021-01-26 14:05:31 -05001429 return this->writeVariableExpression(e.as<VariableReference>());
Brian Osman0a442b72020-12-02 11:12:51 -05001430 case Expression::Kind::kFloatLiteral:
1431 return fBuilder->splat(e.as<FloatLiteral>().value());
1432 case Expression::Kind::kFunctionCall:
1433 return this->writeFunctionCall(e.as<FunctionCall>());
Brian Osmandd50b0c2021-01-11 17:04:29 -05001434 case Expression::Kind::kExternalFunctionCall:
1435 return this->writeExternalFunctionCall(e.as<ExternalFunctionCall>());
Brian Osman0a442b72020-12-02 11:12:51 -05001436 case Expression::Kind::kIntLiteral:
1437 return fBuilder->splat(static_cast<int>(e.as<IntLiteral>().value()));
Brian Osman0a442b72020-12-02 11:12:51 -05001438 case Expression::Kind::kPrefix:
1439 return this->writePrefixExpression(e.as<PrefixExpression>());
1440 case Expression::Kind::kPostfix:
1441 return this->writePostfixExpression(e.as<PostfixExpression>());
1442 case Expression::Kind::kSwizzle:
1443 return this->writeSwizzle(e.as<Swizzle>());
1444 case Expression::Kind::kTernary:
1445 return this->writeTernaryExpression(e.as<TernaryExpression>());
Brian Osmanbe0b3b72021-01-06 14:27:35 -05001446 case Expression::Kind::kExternalFunctionReference:
Brian Osman0a442b72020-12-02 11:12:51 -05001447 default:
1448 SkDEBUGFAIL("Unsupported expression");
1449 return {};
1450 }
1451}
1452
1453Value SkVMGenerator::writeStore(const Expression& lhs, const Value& rhs) {
John Stiles94e72b92021-01-30 11:06:18 -05001454 SkASSERTF(rhs.slots() == slot_count(lhs.type()),
1455 "lhs=%s (%s)\nrhs=%d slot",
1456 lhs.type().description().c_str(), lhs.description().c_str(), rhs.slots());
Brian Osman0a442b72020-12-02 11:12:51 -05001457
Brian Osman21f57072021-01-25 13:51:57 -05001458 // We need to figure out the collection of slots that we're storing into. The l-value (lhs)
1459 // is always a VariableReference, possibly wrapped by one or more Swizzle, FieldAccess, or
1460 // IndexExpressions. The underlying VariableReference has a range of slots for its storage,
1461 // and each expression wrapped around that selects a sub-set of those slots (Field/Index),
1462 // or rearranges them (Swizzle).
1463 SkSTArray<4, size_t, true> slots;
1464 slots.resize(rhs.slots());
1465
1466 // Start with the identity slot map - this basically says that the values from rhs belong in
1467 // slots [0, 1, 2 ... N] of the lhs.
1468 for (size_t i = 0; i < slots.size(); ++i) {
1469 slots[i] = i;
1470 }
1471
1472 // Now, as we peel off each outer expression, adjust 'slots' to be the locations relative to
1473 // the next (inner) expression:
1474 const Expression* expr = &lhs;
1475 while (!expr->is<VariableReference>()) {
1476 switch (expr->kind()) {
1477 case Expression::Kind::kFieldAccess: {
1478 const FieldAccess& fld = expr->as<FieldAccess>();
1479 size_t offset = this->fieldSlotOffset(fld);
1480 for (size_t& s : slots) {
1481 s += offset;
1482 }
1483 expr = fld.base().get();
1484 } break;
1485 case Expression::Kind::kIndex: {
1486 const IndexExpression& idx = expr->as<IndexExpression>();
1487 size_t offset = this->indexSlotOffset(idx);
1488 for (size_t& s : slots) {
1489 s += offset;
1490 }
1491 expr = idx.base().get();
1492 } break;
1493 case Expression::Kind::kSwizzle: {
1494 const Swizzle& swz = expr->as<Swizzle>();
1495 for (size_t& s : slots) {
1496 s = swz.components()[s];
1497 }
1498 expr = swz.base().get();
1499 } break;
1500 default:
1501 // No other kinds of expressions are valid in lvalues. (see Analysis::IsAssignable)
1502 SkDEBUGFAIL("Invalid expression type");
1503 return {};
1504 }
1505 }
1506
1507 // When we get here, 'slots' are all relative to the first slot holding 'var's storage
1508 const Variable& var = *expr->as<VariableReference>().variable();
1509 size_t varSlot = this->getSlot(var);
Brian Osman0a442b72020-12-02 11:12:51 -05001510 skvm::I32 mask = this->mask();
1511 for (size_t i = rhs.slots(); i --> 0;) {
Brian Osman21f57072021-01-25 13:51:57 -05001512 SkASSERT(slots[i] < slot_count(var.type()));
1513 skvm::F32 curr = f32(fSlots[varSlot + slots[i]]),
Brian Osman0a442b72020-12-02 11:12:51 -05001514 next = f32(rhs[i]);
Brian Osman21f57072021-01-25 13:51:57 -05001515 fSlots[varSlot + slots[i]] = select(mask, next, curr).id;
Brian Osman0a442b72020-12-02 11:12:51 -05001516 }
1517 return rhs;
1518}
1519
1520void SkVMGenerator::writeBlock(const Block& b) {
1521 for (const std::unique_ptr<Statement>& stmt : b.children()) {
1522 this->writeStatement(*stmt);
1523 }
1524}
1525
Brian Osman9333c872021-01-13 15:06:17 -05001526void SkVMGenerator::writeBreakStatement() {
1527 // Any active lanes stop executing for the duration of the current loop
1528 fLoopMask &= ~this->mask();
1529}
1530
1531void SkVMGenerator::writeContinueStatement() {
1532 // Any active lanes stop executing for the current iteration.
1533 // Remember them in fContinueMask, to be re-enabled later.
1534 skvm::I32 mask = this->mask();
1535 fLoopMask &= ~mask;
1536 fContinueMask |= mask;
1537}
1538
1539void SkVMGenerator::writeForStatement(const ForStatement& f) {
1540 // We require that all loops be ES2-compliant (unrollable), and actually unroll them here
1541 Analysis::UnrollableLoopInfo loop;
John Stiles232b4ce2021-03-01 22:14:22 -05001542 SkAssertResult(Analysis::ForLoopIsValidForES2(f.fOffset, f.initializer().get(), f.test().get(),
1543 f.next().get(), f.statement().get(), &loop,
1544 /*errors=*/nullptr));
Brian Osman9333c872021-01-13 15:06:17 -05001545 SkASSERT(slot_count(loop.fIndex->type()) == 1);
1546
Brian Osman21f57072021-01-25 13:51:57 -05001547 size_t indexSlot = this->getSlot(*loop.fIndex);
Brian Osman9333c872021-01-13 15:06:17 -05001548 double val = loop.fStart;
1549
1550 skvm::I32 oldLoopMask = fLoopMask,
1551 oldContinueMask = fContinueMask;
1552
1553 for (int i = 0; i < loop.fCount; ++i) {
Brian Osman21f57072021-01-25 13:51:57 -05001554 fSlots[indexSlot] = loop.fIndex->type().isInteger()
1555 ? fBuilder->splat(static_cast<int>(val)).id
1556 : fBuilder->splat(static_cast<float>(val)).id;
Brian Osman9333c872021-01-13 15:06:17 -05001557
1558 fContinueMask = fBuilder->splat(0);
1559 this->writeStatement(*f.statement());
1560 fLoopMask |= fContinueMask;
1561
1562 val += loop.fDelta;
1563 }
1564
1565 fLoopMask = oldLoopMask;
1566 fContinueMask = oldContinueMask;
1567}
1568
Brian Osman0a442b72020-12-02 11:12:51 -05001569void SkVMGenerator::writeIfStatement(const IfStatement& i) {
1570 Value test = this->writeExpression(*i.test());
1571 {
Brian Osman9333c872021-01-13 15:06:17 -05001572 ScopedCondition ifTrue(this, i32(test));
Brian Osman0a442b72020-12-02 11:12:51 -05001573 this->writeStatement(*i.ifTrue());
1574 }
1575 if (i.ifFalse()) {
Brian Osman9333c872021-01-13 15:06:17 -05001576 ScopedCondition ifFalse(this, ~i32(test));
Brian Osman0a442b72020-12-02 11:12:51 -05001577 this->writeStatement(*i.ifFalse());
1578 }
1579}
1580
1581void SkVMGenerator::writeReturnStatement(const ReturnStatement& r) {
Brian Osman54515b72021-01-07 14:38:08 -05001582 skvm::I32 returnsHere = this->mask();
Brian Osman0a442b72020-12-02 11:12:51 -05001583
Brian Osman54515b72021-01-07 14:38:08 -05001584 if (r.expression()) {
1585 Value val = this->writeExpression(*r.expression());
Brian Osman0a442b72020-12-02 11:12:51 -05001586
Brian Osman54515b72021-01-07 14:38:08 -05001587 int i = 0;
1588 for (skvm::Val& slot : currentFunction().fReturnValue) {
1589 slot = select(returnsHere, f32(val[i]), f32(slot)).id;
1590 i++;
1591 }
Brian Osman0a442b72020-12-02 11:12:51 -05001592 }
1593
Brian Osman54515b72021-01-07 14:38:08 -05001594 currentFunction().fReturned |= returnsHere;
Brian Osman0a442b72020-12-02 11:12:51 -05001595}
1596
1597void SkVMGenerator::writeVarDeclaration(const VarDeclaration& decl) {
Brian Osman21f57072021-01-25 13:51:57 -05001598 size_t slot = this->getSlot(decl.var()),
1599 nslots = slot_count(decl.var().type());
Brian Osman0a442b72020-12-02 11:12:51 -05001600
1601 Value val = decl.value() ? this->writeExpression(*decl.value()) : Value{};
1602 for (size_t i = 0; i < nslots; ++i) {
1603 fSlots[slot + i] = val ? val[i] : fBuilder->splat(0.0f).id;
1604 }
1605}
1606
1607void SkVMGenerator::writeStatement(const Statement& s) {
1608 switch (s.kind()) {
1609 case Statement::Kind::kBlock:
1610 this->writeBlock(s.as<Block>());
1611 break;
Brian Osman9333c872021-01-13 15:06:17 -05001612 case Statement::Kind::kBreak:
1613 this->writeBreakStatement();
1614 break;
1615 case Statement::Kind::kContinue:
1616 this->writeContinueStatement();
1617 break;
Brian Osman0a442b72020-12-02 11:12:51 -05001618 case Statement::Kind::kExpression:
1619 this->writeExpression(*s.as<ExpressionStatement>().expression());
1620 break;
Brian Osman9333c872021-01-13 15:06:17 -05001621 case Statement::Kind::kFor:
1622 this->writeForStatement(s.as<ForStatement>());
1623 break;
Brian Osman0a442b72020-12-02 11:12:51 -05001624 case Statement::Kind::kIf:
1625 this->writeIfStatement(s.as<IfStatement>());
1626 break;
1627 case Statement::Kind::kReturn:
1628 this->writeReturnStatement(s.as<ReturnStatement>());
1629 break;
1630 case Statement::Kind::kVarDeclaration:
1631 this->writeVarDeclaration(s.as<VarDeclaration>());
1632 break;
Brian Osman0a442b72020-12-02 11:12:51 -05001633 case Statement::Kind::kDiscard:
1634 case Statement::Kind::kDo:
Brian Osman0a442b72020-12-02 11:12:51 -05001635 case Statement::Kind::kSwitch:
Brian Osman57e353f2021-01-07 15:55:20 -05001636 SkDEBUGFAIL("Unsupported control flow");
Brian Osman0a442b72020-12-02 11:12:51 -05001637 break;
1638 case Statement::Kind::kInlineMarker:
1639 case Statement::Kind::kNop:
1640 break;
1641 default:
1642 SkASSERT(false);
1643 }
1644}
1645
1646skvm::Color ProgramToSkVM(const Program& program,
1647 const FunctionDefinition& function,
1648 skvm::Builder* builder,
1649 SkSpan<skvm::Val> uniforms,
1650 skvm::Coord device,
1651 skvm::Coord local,
1652 SampleChildFn sampleChild) {
Brian Osman5933d4c2021-01-05 13:02:20 -05001653 skvm::Val args[2] = {local.x.id, local.y.id};
Mike Kleinaebcf732021-01-14 10:15:00 -06001654 skvm::Val zero = builder->splat(0.0f).id;
1655 skvm::Val result[4] = {zero,zero,zero,zero};
Brian Osman0a442b72020-12-02 11:12:51 -05001656 size_t paramSlots = 0;
1657 for (const SkSL::Variable* param : function.declaration().parameters()) {
1658 paramSlots += slot_count(param->type());
1659 }
Brian Osman5933d4c2021-01-05 13:02:20 -05001660 SkASSERT(paramSlots <= SK_ARRAY_COUNT(args));
Brian Osman0a442b72020-12-02 11:12:51 -05001661
Brian Osmandb2dad52021-01-07 14:08:30 -05001662 SkVMGenerator generator(program, builder, uniforms, device, local, std::move(sampleChild));
1663 generator.writeFunction(function, {args, paramSlots}, result);
Brian Osman0a442b72020-12-02 11:12:51 -05001664
Brian Osman57e353f2021-01-07 15:55:20 -05001665 return skvm::Color{{builder, result[0]},
1666 {builder, result[1]},
1667 {builder, result[2]},
1668 {builder, result[3]}};
Brian Osman0a442b72020-12-02 11:12:51 -05001669}
1670
Brian Osmanf4a77732020-12-28 09:03:00 -05001671bool ProgramToSkVM(const Program& program,
1672 const FunctionDefinition& function,
1673 skvm::Builder* b,
Brian Osmanc92df392021-01-11 13:16:28 -05001674 SkSpan<skvm::Val> uniforms,
Brian Osmanf4a77732020-12-28 09:03:00 -05001675 SkVMSignature* outSignature) {
Brian Osmanf4a77732020-12-28 09:03:00 -05001676 SkVMSignature ignored,
1677 *signature = outSignature ? outSignature : &ignored;
1678
Mike Klein00e43df2021-01-08 13:45:42 -06001679 std::vector<skvm::Ptr> argPtrs;
Brian Osmanf4a77732020-12-28 09:03:00 -05001680 std::vector<skvm::Val> argVals;
1681
1682 for (const Variable* p : function.declaration().parameters()) {
1683 size_t slots = slot_count(p->type());
1684 signature->fParameterSlots += slots;
1685 for (size_t i = 0; i < slots; ++i) {
1686 argPtrs.push_back(b->varying<float>());
1687 argVals.push_back(b->loadF(argPtrs.back()).id);
1688 }
1689 }
1690
Mike Klein00e43df2021-01-08 13:45:42 -06001691 std::vector<skvm::Ptr> returnPtrs;
Brian Osmanf4a77732020-12-28 09:03:00 -05001692 std::vector<skvm::Val> returnVals;
1693
1694 signature->fReturnSlots = slot_count(function.declaration().returnType());
1695 for (size_t i = 0; i < signature->fReturnSlots; ++i) {
1696 returnPtrs.push_back(b->varying<float>());
1697 returnVals.push_back(b->splat(0.0f).id);
1698 }
1699
1700 skvm::Coord zeroCoord = {b->splat(0.0f), b->splat(0.0f)};
Brian Osmanc92df392021-01-11 13:16:28 -05001701 SkVMGenerator generator(program, b, uniforms, /*device=*/zeroCoord, /*local=*/zeroCoord,
Brian Osmandb2dad52021-01-07 14:08:30 -05001702 /*sampleChild=*/{});
1703 generator.writeFunction(function, argVals, returnVals);
Brian Osmanf4a77732020-12-28 09:03:00 -05001704
1705 // generateCode has updated the contents of 'argVals' for any 'out' or 'inout' parameters.
1706 // Propagate those changes back to our varying buffers:
1707 size_t argIdx = 0;
1708 for (const Variable* p : function.declaration().parameters()) {
1709 size_t nslots = slot_count(p->type());
1710 if (p->modifiers().fFlags & Modifiers::kOut_Flag) {
1711 for (size_t i = 0; i < nslots; ++i) {
1712 b->storeF(argPtrs[argIdx + i], skvm::F32{b, argVals[argIdx + i]});
1713 }
1714 }
1715 argIdx += nslots;
1716 }
1717
1718 // It's also updated the contents of 'returnVals' with the return value of the entry point.
1719 // Store that as well:
1720 for (size_t i = 0; i < signature->fReturnSlots; ++i) {
1721 b->storeF(returnPtrs[i], skvm::F32{b, returnVals[i]});
1722 }
1723
1724 return true;
1725}
1726
Brian Osman5933d4c2021-01-05 13:02:20 -05001727const FunctionDefinition* Program_GetFunction(const Program& program, const char* function) {
1728 for (const ProgramElement* e : program.elements()) {
1729 if (e->is<FunctionDefinition>() &&
1730 e->as<FunctionDefinition>().declaration().name() == function) {
1731 return &e->as<FunctionDefinition>();
1732 }
1733 }
1734 return nullptr;
1735}
1736
Brian Osmane89d8ea2021-01-20 14:01:30 -05001737static void gather_uniforms(UniformInfo* info, const Type& type, const String& name) {
1738 switch (type.typeKind()) {
1739 case Type::TypeKind::kStruct:
1740 for (const auto& f : type.fields()) {
1741 gather_uniforms(info, *f.fType, name + "." + f.fName);
1742 }
1743 break;
1744 case Type::TypeKind::kArray:
1745 for (int i = 0; i < type.columns(); ++i) {
1746 gather_uniforms(info, type.componentType(),
1747 String::printf("%s[%d]", name.c_str(), i));
1748 }
1749 break;
1750 case Type::TypeKind::kScalar:
1751 case Type::TypeKind::kVector:
1752 case Type::TypeKind::kMatrix:
1753 info->fUniforms.push_back({name, base_number_kind(type), type.rows(), type.columns(),
1754 info->fUniformSlotCount});
1755 info->fUniformSlotCount += type.columns() * type.rows();
1756 break;
1757 default:
1758 break;
1759 }
1760}
1761
1762std::unique_ptr<UniformInfo> Program_GetUniformInfo(const Program& program) {
1763 auto info = std::make_unique<UniformInfo>();
1764 for (const ProgramElement* e : program.elements()) {
1765 if (!e->is<GlobalVarDeclaration>()) {
1766 continue;
1767 }
1768 const GlobalVarDeclaration& decl = e->as<GlobalVarDeclaration>();
1769 const Variable& var = decl.declaration()->as<VarDeclaration>().var();
1770 if (var.modifiers().fFlags & Modifiers::kUniform_Flag) {
1771 gather_uniforms(info.get(), var.type(), var.name());
1772 }
1773 }
1774 return info;
1775}
1776
Brian Osman47726a12020-12-17 16:02:08 -05001777/*
1778 * Testing utility function that emits program's "main" with a minimal harness. Used to create
1779 * representative skvm op sequences for SkSL tests.
1780 */
1781bool testingOnly_ProgramToSkVMShader(const Program& program, skvm::Builder* builder) {
Brian Osman5933d4c2021-01-05 13:02:20 -05001782 const SkSL::FunctionDefinition* main = Program_GetFunction(program, "main");
1783 if (!main) {
1784 return false;
1785 }
1786
Brian Osman47726a12020-12-17 16:02:08 -05001787 size_t uniformSlots = 0;
1788 int childSlots = 0;
1789 for (const SkSL::ProgramElement* e : program.elements()) {
Brian Osman47726a12020-12-17 16:02:08 -05001790 if (e->is<GlobalVarDeclaration>()) {
1791 const GlobalVarDeclaration& decl = e->as<GlobalVarDeclaration>();
1792 const Variable& var = decl.declaration()->as<VarDeclaration>().var();
John Stiles54e7c052021-01-11 14:22:36 -05001793 if (var.type() == *program.fContext->fTypes.fFragmentProcessor) {
Brian Osman47726a12020-12-17 16:02:08 -05001794 childSlots++;
1795 } else if (is_uniform(var)) {
1796 uniformSlots += slot_count(var.type());
1797 }
1798 }
1799 }
Brian Osman0a442b72020-12-02 11:12:51 -05001800
Mike Kleinae562bd2021-01-08 14:15:55 -06001801 skvm::Uniforms uniforms(builder->uniform(), 0);
Brian Osman47726a12020-12-17 16:02:08 -05001802
1803 auto new_uni = [&]() { return builder->uniformF(uniforms.pushF(0.0f)); };
1804
1805 // Assume identity CTM
1806 skvm::Coord device = {pun_to_F32(builder->index()), new_uni()};
1807 skvm::Coord local = device;
1808
1809 struct Child {
1810 skvm::Uniform addr;
1811 skvm::I32 rowBytesAsPixels;
1812 };
1813
1814 std::vector<Child> children;
1815 for (int i = 0; i < childSlots; ++i) {
1816 children.push_back({uniforms.pushPtr(nullptr), builder->uniform32(uniforms.push(0))});
1817 }
1818
1819 auto sampleChild = [&](int i, skvm::Coord coord) {
Mike Klein447f3312021-02-08 09:46:59 -06001820 skvm::PixelFormat pixelFormat = skvm::SkColorType_to_PixelFormat(kRGBA_F32_SkColorType);
Brian Osman3f904db2021-01-28 13:24:31 -05001821 skvm::I32 index = trunc(coord.x);
1822 index += trunc(coord.y) * children[i].rowBytesAsPixels;
Brian Osman47726a12020-12-17 16:02:08 -05001823 return gather(pixelFormat, children[i].addr, index);
1824 };
1825
1826 std::vector<skvm::Val> uniformVals;
1827 for (size_t i = 0; i < uniformSlots; ++i) {
1828 uniformVals.push_back(new_uni().id);
1829 }
1830
1831 skvm::Color result =
1832 SkSL::ProgramToSkVM(program, *main, builder, uniformVals, device, local, sampleChild);
1833
1834 storeF(builder->varying<float>(), result.r);
1835 storeF(builder->varying<float>(), result.g);
1836 storeF(builder->varying<float>(), result.b);
1837 storeF(builder->varying<float>(), result.a);
1838
1839 return true;
1840
1841}
1842
1843} // namespace SkSL