caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2015 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | #include "SkIntersections.h" |
| 8 | #include "SkLineParameters.h" |
| 9 | #include "SkPathOpsConic.h" |
| 10 | #include "SkPathOpsCubic.h" |
| 11 | #include "SkPathOpsQuad.h" |
| 12 | |
| 13 | // cribbed from the float version in SkGeometry.cpp |
| 14 | static void conic_deriv_coeff(const double src[], |
| 15 | SkScalar w, |
| 16 | double coeff[3]) { |
| 17 | const double P20 = src[4] - src[0]; |
| 18 | const double P10 = src[2] - src[0]; |
| 19 | const double wP10 = w * P10; |
| 20 | coeff[0] = w * P20 - P20; |
| 21 | coeff[1] = P20 - 2 * wP10; |
| 22 | coeff[2] = wP10; |
| 23 | } |
| 24 | |
| 25 | static double conic_eval_tan(const double coord[], SkScalar w, double t) { |
| 26 | double coeff[3]; |
| 27 | conic_deriv_coeff(coord, w, coeff); |
| 28 | return t * (t * coeff[0] + coeff[1]) + coeff[2]; |
| 29 | } |
| 30 | |
| 31 | int SkDConic::FindExtrema(const double src[], SkScalar w, double t[1]) { |
| 32 | double coeff[3]; |
| 33 | conic_deriv_coeff(src, w, coeff); |
| 34 | |
| 35 | double tValues[2]; |
| 36 | int roots = SkDQuad::RootsValidT(coeff[0], coeff[1], coeff[2], tValues); |
caryclark | 3f0753d | 2016-06-28 09:23:57 -0700 | [diff] [blame] | 37 | // In extreme cases, the number of roots returned can be 2. Pathops |
| 38 | // will fail later on, so there's no advantage to plumbing in an error |
| 39 | // return here. |
| 40 | // SkASSERT(0 == roots || 1 == roots); |
caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 41 | |
| 42 | if (1 == roots) { |
| 43 | t[0] = tValues[0]; |
| 44 | return 1; |
| 45 | } |
| 46 | return 0; |
| 47 | } |
| 48 | |
| 49 | SkDVector SkDConic::dxdyAtT(double t) const { |
| 50 | SkDVector result = { |
| 51 | conic_eval_tan(&fPts[0].fX, fWeight, t), |
| 52 | conic_eval_tan(&fPts[0].fY, fWeight, t) |
| 53 | }; |
caryclark | 94c902e | 2015-08-18 07:12:43 -0700 | [diff] [blame] | 54 | if (result.fX == 0 && result.fY == 0) { |
| 55 | if (zero_or_one(t)) { |
| 56 | result = fPts[2] - fPts[0]; |
| 57 | } else { |
| 58 | // incomplete |
| 59 | SkDebugf("!k"); |
| 60 | } |
| 61 | } |
caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 62 | return result; |
| 63 | } |
| 64 | |
| 65 | static double conic_eval_numerator(const double src[], SkScalar w, double t) { |
| 66 | SkASSERT(src); |
| 67 | SkASSERT(t >= 0 && t <= 1); |
| 68 | double src2w = src[2] * w; |
| 69 | double C = src[0]; |
| 70 | double A = src[4] - 2 * src2w + C; |
| 71 | double B = 2 * (src2w - C); |
| 72 | return (A * t + B) * t + C; |
| 73 | } |
| 74 | |
| 75 | |
| 76 | static double conic_eval_denominator(SkScalar w, double t) { |
| 77 | double B = 2 * (w - 1); |
| 78 | double C = 1; |
| 79 | double A = -B; |
| 80 | return (A * t + B) * t + C; |
| 81 | } |
| 82 | |
| 83 | bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { |
| 84 | return cubic.hullIntersects(*this, isLinear); |
| 85 | } |
| 86 | |
| 87 | SkDPoint SkDConic::ptAtT(double t) const { |
caryclark | bb13433 | 2015-07-28 05:12:19 -0700 | [diff] [blame] | 88 | if (t == 0) { |
| 89 | return fPts[0]; |
| 90 | } |
| 91 | if (t == 1) { |
| 92 | return fPts[2]; |
| 93 | } |
caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 94 | double denominator = conic_eval_denominator(fWeight, t); |
| 95 | SkDPoint result = { |
| 96 | conic_eval_numerator(&fPts[0].fX, fWeight, t) / denominator, |
| 97 | conic_eval_numerator(&fPts[0].fY, fWeight, t) / denominator |
| 98 | }; |
| 99 | return result; |
| 100 | } |
| 101 | |
caryclark | ed0935a | 2015-10-22 07:23:52 -0700 | [diff] [blame] | 102 | /* see quad subdivide for point rationale */ |
| 103 | /* w rationale : the mid point between t1 and t2 could be determined from the computed a/b/c |
| 104 | values if the computed w was known. Since we know the mid point at (t1+t2)/2, we'll assume |
| 105 | that it is the same as the point on the new curve t==(0+1)/2. |
| 106 | |
| 107 | d / dz == conic_poly(dst, unknownW, .5) / conic_weight(unknownW, .5); |
| 108 | |
| 109 | conic_poly(dst, unknownW, .5) |
| 110 | = a / 4 + (b * unknownW) / 2 + c / 4 |
| 111 | = (a + c) / 4 + (bx * unknownW) / 2 |
| 112 | |
| 113 | conic_weight(unknownW, .5) |
| 114 | = unknownW / 2 + 1 / 2 |
| 115 | |
| 116 | d / dz == ((a + c) / 2 + b * unknownW) / (unknownW + 1) |
| 117 | d / dz * (unknownW + 1) == (a + c) / 2 + b * unknownW |
| 118 | unknownW = ((a + c) / 2 - d / dz) / (d / dz - b) |
| 119 | |
| 120 | Thus, w is the ratio of the distance from the mid of end points to the on-curve point, and the |
| 121 | distance of the on-curve point to the control point. |
| 122 | */ |
caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 123 | SkDConic SkDConic::subDivide(double t1, double t2) const { |
caryclark | bb13433 | 2015-07-28 05:12:19 -0700 | [diff] [blame] | 124 | double ax, ay, az; |
| 125 | if (t1 == 0) { |
| 126 | ax = fPts[0].fX; |
| 127 | ay = fPts[0].fY; |
| 128 | az = 1; |
| 129 | } else if (t1 != 1) { |
| 130 | ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1); |
| 131 | ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1); |
| 132 | az = conic_eval_denominator(fWeight, t1); |
| 133 | } else { |
| 134 | ax = fPts[2].fX; |
| 135 | ay = fPts[2].fY; |
| 136 | az = 1; |
| 137 | } |
caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 138 | double midT = (t1 + t2) / 2; |
| 139 | double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT); |
| 140 | double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT); |
| 141 | double dz = conic_eval_denominator(fWeight, midT); |
caryclark | bb13433 | 2015-07-28 05:12:19 -0700 | [diff] [blame] | 142 | double cx, cy, cz; |
| 143 | if (t2 == 1) { |
| 144 | cx = fPts[2].fX; |
| 145 | cy = fPts[2].fY; |
| 146 | cz = 1; |
| 147 | } else if (t2 != 0) { |
| 148 | cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2); |
| 149 | cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2); |
| 150 | cz = conic_eval_denominator(fWeight, t2); |
| 151 | } else { |
| 152 | cx = fPts[0].fX; |
| 153 | cy = fPts[0].fY; |
| 154 | cz = 1; |
| 155 | } |
caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 156 | double bx = 2 * dx - (ax + cx) / 2; |
| 157 | double by = 2 * dy - (ay + cy) / 2; |
| 158 | double bz = 2 * dz - (az + cz) / 2; |
caryclark | a35ab3e | 2016-10-20 08:32:18 -0700 | [diff] [blame] | 159 | SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}} |
| 160 | SkDEBUGPARAMS(fPts.fDebugGlobalState) }, |
caryclark | ef784fb | 2015-10-30 12:03:06 -0700 | [diff] [blame] | 161 | SkDoubleToScalar(bz / sqrt(az * cz)) }; |
caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 162 | return dst; |
| 163 | } |
| 164 | |
| 165 | SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2, |
| 166 | SkScalar* weight) const { |
| 167 | SkDConic chopped = this->subDivide(t1, t2); |
| 168 | *weight = chopped.fWeight; |
| 169 | return chopped[1]; |
| 170 | } |