blob: 82f3a7b0ccfe0be6eaa2d2bbd6869e4358a070cc [file] [log] [blame]
caryclark1049f122015-04-20 08:31:59 -07001/*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7#include "SkIntersections.h"
8#include "SkLineParameters.h"
9#include "SkPathOpsConic.h"
10#include "SkPathOpsCubic.h"
11#include "SkPathOpsQuad.h"
12
13// cribbed from the float version in SkGeometry.cpp
14static void conic_deriv_coeff(const double src[],
15 SkScalar w,
16 double coeff[3]) {
17 const double P20 = src[4] - src[0];
18 const double P10 = src[2] - src[0];
19 const double wP10 = w * P10;
20 coeff[0] = w * P20 - P20;
21 coeff[1] = P20 - 2 * wP10;
22 coeff[2] = wP10;
23}
24
25static double conic_eval_tan(const double coord[], SkScalar w, double t) {
26 double coeff[3];
27 conic_deriv_coeff(coord, w, coeff);
28 return t * (t * coeff[0] + coeff[1]) + coeff[2];
29}
30
31int SkDConic::FindExtrema(const double src[], SkScalar w, double t[1]) {
32 double coeff[3];
33 conic_deriv_coeff(src, w, coeff);
34
35 double tValues[2];
36 int roots = SkDQuad::RootsValidT(coeff[0], coeff[1], coeff[2], tValues);
caryclark3f0753d2016-06-28 09:23:57 -070037 // In extreme cases, the number of roots returned can be 2. Pathops
38 // will fail later on, so there's no advantage to plumbing in an error
39 // return here.
40 // SkASSERT(0 == roots || 1 == roots);
caryclark1049f122015-04-20 08:31:59 -070041
42 if (1 == roots) {
43 t[0] = tValues[0];
44 return 1;
45 }
46 return 0;
47}
48
49SkDVector SkDConic::dxdyAtT(double t) const {
50 SkDVector result = {
51 conic_eval_tan(&fPts[0].fX, fWeight, t),
52 conic_eval_tan(&fPts[0].fY, fWeight, t)
53 };
caryclark94c902e2015-08-18 07:12:43 -070054 if (result.fX == 0 && result.fY == 0) {
55 if (zero_or_one(t)) {
56 result = fPts[2] - fPts[0];
57 } else {
58 // incomplete
59 SkDebugf("!k");
60 }
61 }
caryclark1049f122015-04-20 08:31:59 -070062 return result;
63}
64
65static double conic_eval_numerator(const double src[], SkScalar w, double t) {
66 SkASSERT(src);
67 SkASSERT(t >= 0 && t <= 1);
68 double src2w = src[2] * w;
69 double C = src[0];
70 double A = src[4] - 2 * src2w + C;
71 double B = 2 * (src2w - C);
72 return (A * t + B) * t + C;
73}
74
75
76static double conic_eval_denominator(SkScalar w, double t) {
77 double B = 2 * (w - 1);
78 double C = 1;
79 double A = -B;
80 return (A * t + B) * t + C;
81}
82
83bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const {
84 return cubic.hullIntersects(*this, isLinear);
85}
86
87SkDPoint SkDConic::ptAtT(double t) const {
caryclarkbb134332015-07-28 05:12:19 -070088 if (t == 0) {
89 return fPts[0];
90 }
91 if (t == 1) {
92 return fPts[2];
93 }
caryclark1049f122015-04-20 08:31:59 -070094 double denominator = conic_eval_denominator(fWeight, t);
95 SkDPoint result = {
96 conic_eval_numerator(&fPts[0].fX, fWeight, t) / denominator,
97 conic_eval_numerator(&fPts[0].fY, fWeight, t) / denominator
98 };
99 return result;
100}
101
caryclarked0935a2015-10-22 07:23:52 -0700102/* see quad subdivide for point rationale */
103/* w rationale : the mid point between t1 and t2 could be determined from the computed a/b/c
104 values if the computed w was known. Since we know the mid point at (t1+t2)/2, we'll assume
105 that it is the same as the point on the new curve t==(0+1)/2.
106
107 d / dz == conic_poly(dst, unknownW, .5) / conic_weight(unknownW, .5);
108
109 conic_poly(dst, unknownW, .5)
110 = a / 4 + (b * unknownW) / 2 + c / 4
111 = (a + c) / 4 + (bx * unknownW) / 2
112
113 conic_weight(unknownW, .5)
114 = unknownW / 2 + 1 / 2
115
116 d / dz == ((a + c) / 2 + b * unknownW) / (unknownW + 1)
117 d / dz * (unknownW + 1) == (a + c) / 2 + b * unknownW
118 unknownW = ((a + c) / 2 - d / dz) / (d / dz - b)
119
120 Thus, w is the ratio of the distance from the mid of end points to the on-curve point, and the
121 distance of the on-curve point to the control point.
122 */
caryclark1049f122015-04-20 08:31:59 -0700123SkDConic SkDConic::subDivide(double t1, double t2) const {
caryclarkbb134332015-07-28 05:12:19 -0700124 double ax, ay, az;
125 if (t1 == 0) {
126 ax = fPts[0].fX;
127 ay = fPts[0].fY;
128 az = 1;
129 } else if (t1 != 1) {
130 ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1);
131 ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1);
132 az = conic_eval_denominator(fWeight, t1);
133 } else {
134 ax = fPts[2].fX;
135 ay = fPts[2].fY;
136 az = 1;
137 }
caryclark1049f122015-04-20 08:31:59 -0700138 double midT = (t1 + t2) / 2;
139 double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT);
140 double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT);
141 double dz = conic_eval_denominator(fWeight, midT);
caryclarkbb134332015-07-28 05:12:19 -0700142 double cx, cy, cz;
143 if (t2 == 1) {
144 cx = fPts[2].fX;
145 cy = fPts[2].fY;
146 cz = 1;
147 } else if (t2 != 0) {
148 cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2);
149 cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2);
150 cz = conic_eval_denominator(fWeight, t2);
151 } else {
152 cx = fPts[0].fX;
153 cy = fPts[0].fY;
154 cz = 1;
155 }
caryclark1049f122015-04-20 08:31:59 -0700156 double bx = 2 * dx - (ax + cx) / 2;
157 double by = 2 * dy - (ay + cy) / 2;
158 double bz = 2 * dz - (az + cz) / 2;
caryclarka35ab3e2016-10-20 08:32:18 -0700159 SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}}
160 SkDEBUGPARAMS(fPts.fDebugGlobalState) },
caryclarkef784fb2015-10-30 12:03:06 -0700161 SkDoubleToScalar(bz / sqrt(az * cz)) };
caryclark1049f122015-04-20 08:31:59 -0700162 return dst;
163}
164
165SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2,
166 SkScalar* weight) const {
167 SkDConic chopped = this->subDivide(t1, t2);
168 *weight = chopped.fWeight;
169 return chopped[1];
170}