csmartdalton | 42eafa4 | 2016-06-30 12:15:49 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2016 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "InstanceProcessor.h" |
| 9 | |
| 10 | #include "GrContext.h" |
| 11 | #include "GrRenderTargetPriv.h" |
| 12 | #include "GrResourceCache.h" |
| 13 | #include "GrResourceProvider.h" |
| 14 | #include "glsl/GrGLSLGeometryProcessor.h" |
| 15 | #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| 16 | #include "glsl/GrGLSLProgramBuilder.h" |
| 17 | #include "glsl/GrGLSLVarying.h" |
| 18 | |
| 19 | namespace gr_instanced { |
| 20 | |
| 21 | bool InstanceProcessor::IsSupported(const GrGLSLCaps& glslCaps, const GrCaps& caps, |
| 22 | AntialiasMode* lastSupportedAAMode) { |
| 23 | if (!glslCaps.canUseAnyFunctionInShader() || |
| 24 | !glslCaps.flatInterpolationSupport() || |
| 25 | !glslCaps.integerSupport() || |
| 26 | 0 == glslCaps.maxVertexSamplers() || |
| 27 | !caps.shaderCaps()->texelBufferSupport() || |
| 28 | caps.maxVertexAttributes() < kNumAttribs) { |
| 29 | return false; |
| 30 | } |
| 31 | if (caps.sampleLocationsSupport() && |
| 32 | glslCaps.sampleVariablesSupport() && |
| 33 | glslCaps.shaderDerivativeSupport()) { |
| 34 | if (0 != caps.maxRasterSamples() && |
| 35 | glslCaps.sampleMaskOverrideCoverageSupport()) { |
| 36 | *lastSupportedAAMode = AntialiasMode::kMixedSamples; |
| 37 | } else { |
| 38 | *lastSupportedAAMode = AntialiasMode::kMSAA; |
| 39 | } |
| 40 | } else { |
| 41 | *lastSupportedAAMode = AntialiasMode::kCoverage; |
| 42 | } |
| 43 | return true; |
| 44 | } |
| 45 | |
| 46 | InstanceProcessor::InstanceProcessor(BatchInfo batchInfo, GrBuffer* paramsBuffer) |
| 47 | : fBatchInfo(batchInfo) { |
| 48 | this->initClassID<InstanceProcessor>(); |
| 49 | |
| 50 | this->addVertexAttrib(Attribute("shapeCoords", kVec2f_GrVertexAttribType, kHigh_GrSLPrecision)); |
| 51 | this->addVertexAttrib(Attribute("vertexAttrs", kInt_GrVertexAttribType)); |
| 52 | this->addVertexAttrib(Attribute("instanceInfo", kUint_GrVertexAttribType)); |
| 53 | this->addVertexAttrib(Attribute("shapeMatrixX", kVec3f_GrVertexAttribType, |
| 54 | kHigh_GrSLPrecision)); |
| 55 | this->addVertexAttrib(Attribute("shapeMatrixY", kVec3f_GrVertexAttribType, |
| 56 | kHigh_GrSLPrecision)); |
| 57 | this->addVertexAttrib(Attribute("color", kVec4f_GrVertexAttribType, kLow_GrSLPrecision)); |
| 58 | this->addVertexAttrib(Attribute("localRect", kVec4f_GrVertexAttribType, kHigh_GrSLPrecision)); |
| 59 | |
| 60 | GR_STATIC_ASSERT(0 == (int)Attrib::kShapeCoords); |
| 61 | GR_STATIC_ASSERT(1 == (int)Attrib::kVertexAttrs); |
| 62 | GR_STATIC_ASSERT(2 == (int)Attrib::kInstanceInfo); |
| 63 | GR_STATIC_ASSERT(3 == (int)Attrib::kShapeMatrixX); |
| 64 | GR_STATIC_ASSERT(4 == (int)Attrib::kShapeMatrixY); |
| 65 | GR_STATIC_ASSERT(5 == (int)Attrib::kColor); |
| 66 | GR_STATIC_ASSERT(6 == (int)Attrib::kLocalRect); |
| 67 | GR_STATIC_ASSERT(7 == kNumAttribs); |
| 68 | |
| 69 | if (fBatchInfo.fHasParams) { |
| 70 | SkASSERT(paramsBuffer); |
| 71 | fParamsAccess.reset(kRGBA_float_GrPixelConfig, paramsBuffer, kVertex_GrShaderFlag); |
| 72 | this->addBufferAccess(&fParamsAccess); |
| 73 | } |
| 74 | |
| 75 | if (fBatchInfo.fAntialiasMode >= AntialiasMode::kMSAA) { |
| 76 | if (!fBatchInfo.isSimpleRects() || |
| 77 | AntialiasMode::kMixedSamples == fBatchInfo.fAntialiasMode) { |
| 78 | this->setWillUseSampleLocations(); |
| 79 | } |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | class GLSLInstanceProcessor : public GrGLSLGeometryProcessor { |
| 84 | public: |
| 85 | void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override; |
| 86 | |
| 87 | private: |
| 88 | void setData(const GrGLSLProgramDataManager&, const GrPrimitiveProcessor&) override {} |
| 89 | |
| 90 | class VertexInputs; |
| 91 | class Backend; |
| 92 | class BackendNonAA; |
| 93 | class BackendCoverage; |
| 94 | class BackendMultisample; |
| 95 | |
| 96 | typedef GrGLSLGeometryProcessor INHERITED; |
| 97 | }; |
| 98 | |
| 99 | GrGLSLPrimitiveProcessor* InstanceProcessor::createGLSLInstance(const GrGLSLCaps&) const { |
| 100 | return new GLSLInstanceProcessor(); |
| 101 | } |
| 102 | |
| 103 | class GLSLInstanceProcessor::VertexInputs { |
| 104 | public: |
| 105 | VertexInputs(const InstanceProcessor& instProc, GrGLSLVertexBuilder* vertexBuilder) |
| 106 | : fInstProc(instProc), |
| 107 | fVertexBuilder(vertexBuilder) { |
| 108 | } |
| 109 | |
| 110 | void initParams(const SamplerHandle paramsBuffer) { |
| 111 | fParamsBuffer = paramsBuffer; |
| 112 | fVertexBuilder->definef("PARAMS_IDX_MASK", "0x%xu", kParamsIdx_InfoMask); |
| 113 | fVertexBuilder->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 114 | fVertexBuilder->codeAppendf("int paramsIdx = int(%s & PARAMS_IDX_MASK);", |
| 115 | this->attr(Attrib::kInstanceInfo)); |
| 116 | } |
| 117 | |
| 118 | const char* attr(Attrib attr) const { return fInstProc.getAttrib((int)attr).fName; } |
| 119 | |
| 120 | void fetchNextParam(GrSLType type = kVec4f_GrSLType) const { |
| 121 | SkASSERT(fParamsBuffer.isValid()); |
| 122 | if (type != kVec4f_GrSLType) { |
| 123 | fVertexBuilder->codeAppendf("%s(", GrGLSLTypeString(type)); |
| 124 | } |
| 125 | fVertexBuilder->appendTexelFetch(fParamsBuffer, "paramsIdx++"); |
| 126 | if (type != kVec4f_GrSLType) { |
| 127 | fVertexBuilder->codeAppend(")"); |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | void skipParams(unsigned n) const { |
| 132 | SkASSERT(fParamsBuffer.isValid()); |
| 133 | fVertexBuilder->codeAppendf("paramsIdx += %u;", n); |
| 134 | } |
| 135 | |
| 136 | private: |
| 137 | const InstanceProcessor& fInstProc; |
| 138 | GrGLSLVertexBuilder* fVertexBuilder; |
| 139 | SamplerHandle fParamsBuffer; |
| 140 | }; |
| 141 | |
| 142 | class GLSLInstanceProcessor::Backend { |
| 143 | public: |
| 144 | static Backend* SK_WARN_UNUSED_RESULT Create(const GrGLSLProgramBuilder*, BatchInfo, |
| 145 | const VertexInputs&); |
| 146 | virtual ~Backend() {} |
| 147 | |
| 148 | void init(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*); |
| 149 | virtual void setupRect(GrGLSLVertexBuilder*) = 0; |
| 150 | virtual void setupOval(GrGLSLVertexBuilder*) = 0; |
| 151 | void setupRRect(GrGLSLVertexBuilder*); |
| 152 | |
| 153 | void initInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*); |
| 154 | virtual void setupInnerRect(GrGLSLVertexBuilder*) = 0; |
| 155 | virtual void setupInnerOval(GrGLSLVertexBuilder*) = 0; |
| 156 | void setupInnerRRect(GrGLSLVertexBuilder*); |
| 157 | |
| 158 | const char* outShapeCoords() { |
| 159 | return fModifiedShapeCoords ? fModifiedShapeCoords : fInputs.attr(Attrib::kShapeCoords); |
| 160 | } |
| 161 | |
| 162 | void emitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char* outCoverage, |
| 163 | const char* outColor); |
| 164 | |
| 165 | protected: |
| 166 | Backend(BatchInfo batchInfo, const VertexInputs& inputs) |
| 167 | : fBatchInfo(batchInfo), |
| 168 | fInputs(inputs), |
| 169 | fModifiesCoverage(false), |
| 170 | fModifiesColor(false), |
| 171 | fNeedsNeighborRadii(false), |
| 172 | fColor(kVec4f_GrSLType), |
| 173 | fTriangleIsArc(kInt_GrSLType), |
| 174 | fArcCoords(kVec2f_GrSLType), |
| 175 | fInnerShapeCoords(kVec2f_GrSLType), |
| 176 | fInnerRRect(kVec4f_GrSLType), |
| 177 | fModifiedShapeCoords(nullptr) { |
| 178 | if (fBatchInfo.fShapeTypes & kRRect_ShapesMask) { |
| 179 | fModifiedShapeCoords = "adjustedShapeCoords"; |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | virtual void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) = 0; |
| 184 | virtual void adjustRRectVertices(GrGLSLVertexBuilder*); |
| 185 | virtual void onSetupRRect(GrGLSLVertexBuilder*) {} |
| 186 | |
| 187 | virtual void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) = 0; |
| 188 | virtual void onSetupInnerRRect(GrGLSLVertexBuilder*) = 0; |
| 189 | |
| 190 | virtual void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, |
| 191 | const char* outCoverage, const char* outColor) = 0; |
| 192 | |
| 193 | void setupSimpleRadii(GrGLSLVertexBuilder*); |
| 194 | void setupNinePatchRadii(GrGLSLVertexBuilder*); |
| 195 | void setupComplexRadii(GrGLSLVertexBuilder*); |
| 196 | |
| 197 | const BatchInfo fBatchInfo; |
| 198 | const VertexInputs& fInputs; |
| 199 | bool fModifiesCoverage; |
| 200 | bool fModifiesColor; |
| 201 | bool fNeedsNeighborRadii; |
| 202 | GrGLSLVertToFrag fColor; |
| 203 | GrGLSLVertToFrag fTriangleIsArc; |
| 204 | GrGLSLVertToFrag fArcCoords; |
| 205 | GrGLSLVertToFrag fInnerShapeCoords; |
| 206 | GrGLSLVertToFrag fInnerRRect; |
| 207 | const char* fModifiedShapeCoords; |
| 208 | }; |
| 209 | |
| 210 | void GLSLInstanceProcessor::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { |
| 211 | const InstanceProcessor& ip = args.fGP.cast<InstanceProcessor>(); |
| 212 | GrGLSLUniformHandler* uniHandler = args.fUniformHandler; |
| 213 | GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| 214 | GrGLSLVertexBuilder* v = args.fVertBuilder; |
| 215 | GrGLSLPPFragmentBuilder* f = args.fFragBuilder; |
| 216 | |
| 217 | varyingHandler->emitAttributes(ip); |
| 218 | |
| 219 | VertexInputs inputs(ip, v); |
| 220 | if (ip.batchInfo().fHasParams) { |
| 221 | SkASSERT(1 == ip.numBuffers()); |
| 222 | inputs.initParams(args.fBufferSamplers[0]); |
| 223 | } |
| 224 | |
| 225 | if (!ip.batchInfo().fHasPerspective) { |
| 226 | v->codeAppendf("mat2x3 shapeMatrix = mat2x3(%s, %s);", |
| 227 | inputs.attr(Attrib::kShapeMatrixX), inputs.attr(Attrib::kShapeMatrixY)); |
| 228 | } else { |
| 229 | v->definef("PERSPECTIVE_FLAG", "0x%xu", kPerspective_InfoFlag); |
| 230 | v->codeAppendf("mat3 shapeMatrix = mat3(%s, %s, vec3(0, 0, 1));", |
| 231 | inputs.attr(Attrib::kShapeMatrixX), inputs.attr(Attrib::kShapeMatrixY)); |
| 232 | v->codeAppendf("if (0u != (%s & PERSPECTIVE_FLAG)) {", |
| 233 | inputs.attr(Attrib::kInstanceInfo)); |
| 234 | v->codeAppend ( "shapeMatrix[2] = "); |
| 235 | inputs.fetchNextParam(kVec3f_GrSLType); |
| 236 | v->codeAppend ( ";"); |
| 237 | v->codeAppend ("}"); |
| 238 | } |
| 239 | |
| 240 | int usedShapeTypes = 0; |
| 241 | |
| 242 | bool hasSingleShapeType = SkIsPow2(ip.batchInfo().fShapeTypes); |
| 243 | if (!hasSingleShapeType) { |
| 244 | usedShapeTypes |= ip.batchInfo().fShapeTypes; |
| 245 | v->define("SHAPE_TYPE_BIT", kShapeType_InfoBit); |
| 246 | v->codeAppendf("uint shapeType = %s >> SHAPE_TYPE_BIT;", |
| 247 | inputs.attr(Attrib::kInstanceInfo)); |
| 248 | } |
| 249 | |
| 250 | SkAutoTDelete<Backend> backend(Backend::Create(v->getProgramBuilder(), ip.batchInfo(), inputs)); |
| 251 | backend->init(varyingHandler, v); |
| 252 | |
| 253 | if (hasSingleShapeType) { |
| 254 | if (kRect_ShapeFlag == ip.batchInfo().fShapeTypes) { |
| 255 | backend->setupRect(v); |
| 256 | } else if (kOval_ShapeFlag == ip.batchInfo().fShapeTypes) { |
| 257 | backend->setupOval(v); |
| 258 | } else { |
| 259 | backend->setupRRect(v); |
| 260 | } |
| 261 | } else { |
| 262 | v->codeAppend ("switch (shapeType) {"); |
| 263 | if (ip.batchInfo().fShapeTypes & kRect_ShapeFlag) { |
| 264 | v->codeAppend ("case RECT_SHAPE_TYPE: {"); |
| 265 | backend->setupRect(v); |
| 266 | v->codeAppend ("} break;"); |
| 267 | } |
| 268 | if (ip.batchInfo().fShapeTypes & kOval_ShapeFlag) { |
| 269 | v->codeAppend ("case OVAL_SHAPE_TYPE: {"); |
| 270 | backend->setupOval(v); |
| 271 | v->codeAppend ("} break;"); |
| 272 | } |
| 273 | if (ip.batchInfo().fShapeTypes & kRRect_ShapesMask) { |
| 274 | v->codeAppend ("default: {"); |
| 275 | backend->setupRRect(v); |
| 276 | v->codeAppend ("} break;"); |
| 277 | } |
| 278 | v->codeAppend ("}"); |
| 279 | } |
| 280 | |
| 281 | if (ip.batchInfo().fInnerShapeTypes) { |
| 282 | bool hasSingleInnerShapeType = SkIsPow2(ip.batchInfo().fInnerShapeTypes); |
| 283 | if (!hasSingleInnerShapeType) { |
| 284 | usedShapeTypes |= ip.batchInfo().fInnerShapeTypes; |
| 285 | v->definef("INNER_SHAPE_TYPE_MASK", "0x%xu", kInnerShapeType_InfoMask); |
| 286 | v->define("INNER_SHAPE_TYPE_BIT", kInnerShapeType_InfoBit); |
| 287 | v->codeAppendf("uint innerShapeType = ((%s & INNER_SHAPE_TYPE_MASK) >> " |
| 288 | "INNER_SHAPE_TYPE_BIT);", |
| 289 | inputs.attr(Attrib::kInstanceInfo)); |
| 290 | } |
| 291 | // Here we take advantage of the fact that outerRect == localRect in recordDRRect. |
| 292 | v->codeAppendf("vec4 outer = %s;", inputs.attr(Attrib::kLocalRect)); |
| 293 | v->codeAppend ("vec4 inner = "); |
| 294 | inputs.fetchNextParam(); |
| 295 | v->codeAppend (";"); |
| 296 | // outer2Inner is a transform from shape coords to inner shape coords: |
| 297 | // e.g. innerShapeCoords = shapeCoords * outer2Inner.xy + outer2Inner.zw |
| 298 | v->codeAppend ("vec4 outer2Inner = vec4(outer.zw - outer.xy, " |
| 299 | "outer.xy + outer.zw - inner.xy - inner.zw) / " |
| 300 | "(inner.zw - inner.xy).xyxy;"); |
| 301 | v->codeAppendf("vec2 innerShapeCoords = %s * outer2Inner.xy + outer2Inner.zw;", |
| 302 | backend->outShapeCoords()); |
| 303 | |
| 304 | backend->initInnerShape(varyingHandler, v); |
| 305 | |
| 306 | if (hasSingleInnerShapeType) { |
| 307 | if (kRect_ShapeFlag == ip.batchInfo().fInnerShapeTypes) { |
| 308 | backend->setupInnerRect(v); |
| 309 | } else if (kOval_ShapeFlag == ip.batchInfo().fInnerShapeTypes) { |
| 310 | backend->setupInnerOval(v); |
| 311 | } else { |
| 312 | backend->setupInnerRRect(v); |
| 313 | } |
| 314 | } else { |
| 315 | v->codeAppend("switch (innerShapeType) {"); |
| 316 | if (ip.batchInfo().fInnerShapeTypes & kRect_ShapeFlag) { |
| 317 | v->codeAppend("case RECT_SHAPE_TYPE: {"); |
| 318 | backend->setupInnerRect(v); |
| 319 | v->codeAppend("} break;"); |
| 320 | } |
| 321 | if (ip.batchInfo().fInnerShapeTypes & kOval_ShapeFlag) { |
| 322 | v->codeAppend("case OVAL_SHAPE_TYPE: {"); |
| 323 | backend->setupInnerOval(v); |
| 324 | v->codeAppend("} break;"); |
| 325 | } |
| 326 | if (ip.batchInfo().fInnerShapeTypes & kRRect_ShapesMask) { |
| 327 | v->codeAppend("default: {"); |
| 328 | backend->setupInnerRRect(v); |
| 329 | v->codeAppend("} break;"); |
| 330 | } |
| 331 | v->codeAppend("}"); |
| 332 | } |
| 333 | } |
| 334 | |
| 335 | if (usedShapeTypes & kRect_ShapeFlag) { |
| 336 | v->definef("RECT_SHAPE_TYPE", "%du", (int)ShapeType::kRect); |
| 337 | } |
| 338 | if (usedShapeTypes & kOval_ShapeFlag) { |
| 339 | v->definef("OVAL_SHAPE_TYPE", "%du", (int)ShapeType::kOval); |
| 340 | } |
| 341 | |
| 342 | backend->emitCode(v, f, args.fOutputCoverage, args.fOutputColor); |
| 343 | |
| 344 | const char* localCoords = nullptr; |
| 345 | if (ip.batchInfo().fUsesLocalCoords) { |
| 346 | localCoords = "localCoords"; |
| 347 | v->codeAppendf("vec2 t = 0.5 * (%s + vec2(1));", backend->outShapeCoords()); |
| 348 | v->codeAppendf("vec2 localCoords = (1.0 - t) * %s.xy + t * %s.zw;", |
| 349 | inputs.attr(Attrib::kLocalRect), inputs.attr(Attrib::kLocalRect)); |
| 350 | } |
| 351 | if (ip.batchInfo().fHasLocalMatrix && ip.batchInfo().fHasParams) { |
| 352 | v->definef("LOCAL_MATRIX_FLAG", "0x%xu", kLocalMatrix_InfoFlag); |
| 353 | v->codeAppendf("if (0u != (%s & LOCAL_MATRIX_FLAG)) {", |
| 354 | inputs.attr(Attrib::kInstanceInfo)); |
| 355 | if (!ip.batchInfo().fUsesLocalCoords) { |
| 356 | inputs.skipParams(2); |
| 357 | } else { |
| 358 | v->codeAppendf( "mat2x3 localMatrix;"); |
| 359 | v->codeAppend ( "localMatrix[0] = "); |
| 360 | inputs.fetchNextParam(kVec3f_GrSLType); |
| 361 | v->codeAppend ( ";"); |
| 362 | v->codeAppend ( "localMatrix[1] = "); |
| 363 | inputs.fetchNextParam(kVec3f_GrSLType); |
| 364 | v->codeAppend ( ";"); |
| 365 | v->codeAppend ( "localCoords = (vec3(localCoords, 1) * localMatrix).xy;"); |
| 366 | } |
| 367 | v->codeAppend("}"); |
| 368 | } |
| 369 | |
| 370 | GrSLType positionType = ip.batchInfo().fHasPerspective ? kVec3f_GrSLType : kVec2f_GrSLType; |
| 371 | v->codeAppendf("%s deviceCoords = vec3(%s, 1) * shapeMatrix;", |
| 372 | GrGLSLTypeString(positionType), backend->outShapeCoords()); |
| 373 | gpArgs->fPositionVar.set(positionType, "deviceCoords"); |
| 374 | |
| 375 | this->emitTransforms(v, varyingHandler, uniHandler, gpArgs->fPositionVar, localCoords, |
| 376 | args.fTransformsIn, args.fTransformsOut); |
| 377 | } |
| 378 | |
| 379 | //////////////////////////////////////////////////////////////////////////////////////////////////// |
| 380 | |
| 381 | void GLSLInstanceProcessor::Backend::init(GrGLSLVaryingHandler* varyingHandler, |
| 382 | GrGLSLVertexBuilder* v) { |
| 383 | if (fModifiedShapeCoords) { |
| 384 | v->codeAppendf("vec2 %s = %s;", fModifiedShapeCoords, fInputs.attr(Attrib::kShapeCoords)); |
| 385 | } |
| 386 | |
| 387 | this->onInit(varyingHandler, v); |
| 388 | |
| 389 | if (!fColor.vsOut()) { |
| 390 | varyingHandler->addFlatVarying("color", &fColor, kLow_GrSLPrecision); |
| 391 | v->codeAppendf("%s = %s;", fColor.vsOut(), fInputs.attr(Attrib::kColor)); |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | void GLSLInstanceProcessor::Backend::setupRRect(GrGLSLVertexBuilder* v) { |
| 396 | v->codeAppendf("uvec2 corner = uvec2(%s & 1, (%s >> 1) & 1);", |
| 397 | fInputs.attr(Attrib::kVertexAttrs), fInputs.attr(Attrib::kVertexAttrs)); |
| 398 | v->codeAppend ("vec2 cornerSign = vec2(corner) * 2.0 - 1.0;"); |
| 399 | v->codeAppendf("vec2 radii%s;", fNeedsNeighborRadii ? ", neighborRadii" : ""); |
| 400 | v->codeAppend ("mat2 p = "); |
| 401 | fInputs.fetchNextParam(kMat22f_GrSLType); |
| 402 | v->codeAppend (";"); |
| 403 | uint8_t types = fBatchInfo.fShapeTypes & kRRect_ShapesMask; |
| 404 | if (0 == (types & (types - 1))) { |
| 405 | if (kSimpleRRect_ShapeFlag == types) { |
| 406 | this->setupSimpleRadii(v); |
| 407 | } else if (kNinePatch_ShapeFlag == types) { |
| 408 | this->setupNinePatchRadii(v); |
| 409 | } else if (kComplexRRect_ShapeFlag == types) { |
| 410 | this->setupComplexRadii(v); |
| 411 | } |
| 412 | } else { |
| 413 | v->codeAppend("switch (shapeType) {"); |
| 414 | if (types & kSimpleRRect_ShapeFlag) { |
| 415 | v->definef("SIMPLE_R_RECT_SHAPE_TYPE", "%du", (int)ShapeType::kSimpleRRect); |
| 416 | v->codeAppend ("case SIMPLE_R_RECT_SHAPE_TYPE: {"); |
| 417 | this->setupSimpleRadii(v); |
| 418 | v->codeAppend ("} break;"); |
| 419 | } |
| 420 | if (types & kNinePatch_ShapeFlag) { |
| 421 | v->definef("NINE_PATCH_SHAPE_TYPE", "%du", (int)ShapeType::kNinePatch); |
| 422 | v->codeAppend ("case NINE_PATCH_SHAPE_TYPE: {"); |
| 423 | this->setupNinePatchRadii(v); |
| 424 | v->codeAppend ("} break;"); |
| 425 | } |
| 426 | if (types & kComplexRRect_ShapeFlag) { |
| 427 | v->codeAppend ("default: {"); |
| 428 | this->setupComplexRadii(v); |
| 429 | v->codeAppend ("} break;"); |
| 430 | } |
| 431 | v->codeAppend("}"); |
| 432 | } |
| 433 | |
| 434 | this->adjustRRectVertices(v); |
| 435 | |
| 436 | if (fArcCoords.vsOut()) { |
| 437 | v->codeAppendf("%s = (cornerSign * %s + radii - vec2(1)) / radii;", |
| 438 | fArcCoords.vsOut(), fModifiedShapeCoords); |
| 439 | } |
| 440 | if (fTriangleIsArc.vsOut()) { |
| 441 | v->codeAppendf("%s = int(all(equal(vec2(1), abs(%s))));", |
| 442 | fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kShapeCoords)); |
| 443 | } |
| 444 | |
| 445 | this->onSetupRRect(v); |
| 446 | } |
| 447 | |
| 448 | void GLSLInstanceProcessor::Backend::setupSimpleRadii(GrGLSLVertexBuilder* v) { |
| 449 | if (fNeedsNeighborRadii) { |
| 450 | v->codeAppend ("neighborRadii = "); |
| 451 | } |
| 452 | v->codeAppend("radii = p[0] * 2.0 / p[1];"); |
| 453 | } |
| 454 | |
| 455 | void GLSLInstanceProcessor::Backend::setupNinePatchRadii(GrGLSLVertexBuilder* v) { |
| 456 | v->codeAppend("radii = vec2(p[0][corner.x], p[1][corner.y]);"); |
| 457 | if (fNeedsNeighborRadii) { |
| 458 | v->codeAppend("neighborRadii = vec2(p[0][1u - corner.x], p[1][1u - corner.y]);"); |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | void GLSLInstanceProcessor::Backend::setupComplexRadii(GrGLSLVertexBuilder* v) { |
| 463 | /** |
| 464 | * The x and y radii of each arc are stored in separate vectors, |
| 465 | * in the following order: |
| 466 | * |
| 467 | * __x1 _ _ _ x3__ |
| 468 | * |
| 469 | * y1 | | y2 |
| 470 | * |
| 471 | * | | |
| 472 | * |
| 473 | * y3 |__ _ _ _ __| y4 |
| 474 | * x2 x4 |
| 475 | * |
| 476 | */ |
| 477 | v->codeAppend("mat2 p2 = "); |
| 478 | fInputs.fetchNextParam(kMat22f_GrSLType); |
| 479 | v->codeAppend(";"); |
| 480 | v->codeAppend("radii = vec2(p[corner.x][corner.y], p2[corner.y][corner.x]);"); |
| 481 | if (fNeedsNeighborRadii) { |
| 482 | v->codeAppend("neighborRadii = vec2(p[1u - corner.x][corner.y], " |
| 483 | "p2[1u - corner.y][corner.x]);"); |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | void GLSLInstanceProcessor::Backend::adjustRRectVertices(GrGLSLVertexBuilder* v) { |
| 488 | // Resize the 4 triangles that arcs are drawn into so they match their corresponding radii. |
| 489 | // 0.5 is a special value that indicates the edge of an arc triangle. |
| 490 | v->codeAppendf("if (abs(%s.x) == 0.5)" |
| 491 | "%s.x = cornerSign.x * (1.0 - radii.x);", |
| 492 | fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords); |
| 493 | v->codeAppendf("if (abs(%s.y) == 0.5) " |
| 494 | "%s.y = cornerSign.y * (1.0 - radii.y);", |
| 495 | fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords); |
| 496 | } |
| 497 | |
| 498 | void GLSLInstanceProcessor::Backend::initInnerShape(GrGLSLVaryingHandler* varyingHandler, |
| 499 | GrGLSLVertexBuilder* v) { |
| 500 | SkASSERT(!(fBatchInfo.fInnerShapeTypes & (kNinePatch_ShapeFlag | kComplexRRect_ShapeFlag))); |
| 501 | |
| 502 | this->onInitInnerShape(varyingHandler, v); |
| 503 | |
| 504 | if (fInnerShapeCoords.vsOut()) { |
| 505 | v->codeAppendf("%s = innerShapeCoords;", fInnerShapeCoords.vsOut()); |
| 506 | } |
| 507 | } |
| 508 | |
| 509 | void GLSLInstanceProcessor::Backend::setupInnerRRect(GrGLSLVertexBuilder* v) { |
| 510 | v->codeAppend("mat2 innerP = "); |
| 511 | fInputs.fetchNextParam(kMat22f_GrSLType); |
| 512 | v->codeAppend(";"); |
| 513 | v->codeAppend("vec2 innerRadii = innerP[0] * 2.0 / innerP[1];"); |
| 514 | this->onSetupInnerRRect(v); |
| 515 | } |
| 516 | |
| 517 | void GLSLInstanceProcessor::Backend::emitCode(GrGLSLVertexBuilder* v, GrGLSLPPFragmentBuilder* f, |
| 518 | const char* outCoverage, const char* outColor) { |
| 519 | this->onEmitCode(v, f, fModifiesCoverage ? outCoverage : nullptr, |
| 520 | fModifiesColor ? outColor : nullptr); |
| 521 | if (!fModifiesCoverage) { |
| 522 | // Even though the subclass doesn't use coverage, we are expected to assign some value. |
| 523 | f->codeAppendf("%s = vec4(1);", outCoverage); |
| 524 | } |
| 525 | if (!fModifiesColor) { |
| 526 | // The subclass didn't assign a value to the output color. |
| 527 | f->codeAppendf("%s = %s;", outColor, fColor.fsIn()); |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | //////////////////////////////////////////////////////////////////////////////////////////////////// |
| 532 | |
| 533 | class GLSLInstanceProcessor::BackendNonAA : public Backend { |
| 534 | public: |
| 535 | BackendNonAA(BatchInfo batchInfo, const VertexInputs& inputs) |
| 536 | : INHERITED(batchInfo, inputs) { |
| 537 | if (fBatchInfo.fCannotDiscard && !fBatchInfo.isSimpleRects()) { |
| 538 | fModifiesColor = !fBatchInfo.fCannotTweakAlphaForCoverage; |
| 539 | fModifiesCoverage = !fModifiesColor; |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | private: |
| 544 | void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| 545 | void setupRect(GrGLSLVertexBuilder*) override; |
| 546 | void setupOval(GrGLSLVertexBuilder*) override; |
| 547 | |
| 548 | void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| 549 | void setupInnerRect(GrGLSLVertexBuilder*) override; |
| 550 | void setupInnerOval(GrGLSLVertexBuilder*) override; |
| 551 | void onSetupInnerRRect(GrGLSLVertexBuilder*) override; |
| 552 | |
| 553 | void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*, |
| 554 | const char*) override; |
| 555 | |
| 556 | typedef Backend INHERITED; |
| 557 | }; |
| 558 | |
| 559 | void GLSLInstanceProcessor::BackendNonAA::onInit(GrGLSLVaryingHandler* varyingHandler, |
| 560 | GrGLSLVertexBuilder*) { |
| 561 | if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { |
| 562 | varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kHigh_GrSLPrecision); |
| 563 | varyingHandler->addVarying("arcCoords", &fArcCoords, kMedium_GrSLPrecision); |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | void GLSLInstanceProcessor::BackendNonAA::setupRect(GrGLSLVertexBuilder* v) { |
| 568 | if (fTriangleIsArc.vsOut()) { |
| 569 | v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); |
| 570 | } |
| 571 | } |
| 572 | |
| 573 | void GLSLInstanceProcessor::BackendNonAA::setupOval(GrGLSLVertexBuilder* v) { |
| 574 | SkASSERT(fArcCoords.vsOut()); |
| 575 | SkASSERT(fTriangleIsArc.vsOut()); |
| 576 | v->codeAppendf("%s = %s;", fArcCoords.vsOut(), this->outShapeCoords()); |
| 577 | v->codeAppendf("%s = %s & 1;", fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs)); |
| 578 | } |
| 579 | |
| 580 | void GLSLInstanceProcessor::BackendNonAA::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler, |
| 581 | GrGLSLVertexBuilder*) { |
| 582 | varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kMedium_GrSLPrecision); |
| 583 | if (kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes && |
| 584 | kOval_ShapeFlag != fBatchInfo.fInnerShapeTypes) { |
| 585 | varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kMedium_GrSLPrecision); |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | void GLSLInstanceProcessor::BackendNonAA::setupInnerRect(GrGLSLVertexBuilder* v) { |
| 590 | if (fInnerRRect.vsOut()) { |
| 591 | v->codeAppendf("%s = vec4(1);", fInnerRRect.vsOut()); |
| 592 | } |
| 593 | } |
| 594 | |
| 595 | void GLSLInstanceProcessor::BackendNonAA::setupInnerOval(GrGLSLVertexBuilder* v) { |
| 596 | if (fInnerRRect.vsOut()) { |
| 597 | v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut()); |
| 598 | } |
| 599 | } |
| 600 | |
| 601 | void GLSLInstanceProcessor::BackendNonAA::onSetupInnerRRect(GrGLSLVertexBuilder* v) { |
| 602 | v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect.vsOut()); |
| 603 | } |
| 604 | |
| 605 | void GLSLInstanceProcessor::BackendNonAA::onEmitCode(GrGLSLVertexBuilder*, |
| 606 | GrGLSLPPFragmentBuilder* f, |
| 607 | const char* outCoverage, |
| 608 | const char* outColor) { |
| 609 | const char* dropFragment = nullptr; |
| 610 | if (!fBatchInfo.fCannotDiscard) { |
| 611 | dropFragment = "discard"; |
| 612 | } else if (fModifiesCoverage) { |
| 613 | f->appendPrecisionModifier(kLow_GrSLPrecision); |
| 614 | f->codeAppend ("float covered = 1.0;"); |
| 615 | dropFragment = "covered = 0.0"; |
| 616 | } else if (fModifiesColor) { |
| 617 | f->appendPrecisionModifier(kLow_GrSLPrecision); |
| 618 | f->codeAppendf("vec4 color = %s;", fColor.fsIn()); |
| 619 | dropFragment = "color = vec4(0)"; |
| 620 | } |
| 621 | if (fTriangleIsArc.fsIn()) { |
| 622 | SkASSERT(dropFragment); |
| 623 | f->codeAppendf("if (%s != 0 && dot(%s, %s) > 1.0) %s;", |
| 624 | fTriangleIsArc.fsIn(), fArcCoords.fsIn(), fArcCoords.fsIn(), dropFragment); |
| 625 | } |
| 626 | if (fBatchInfo.fInnerShapeTypes) { |
| 627 | SkASSERT(dropFragment); |
| 628 | f->codeAppendf("// Inner shape.\n"); |
| 629 | if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
| 630 | f->codeAppendf("if (all(lessThanEqual(abs(%s), vec2(1)))) %s;", |
| 631 | fInnerShapeCoords.fsIn(), dropFragment); |
| 632 | } else if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
| 633 | f->codeAppendf("if ((dot(%s, %s) <= 1.0)) %s;", |
| 634 | fInnerShapeCoords.fsIn(), fInnerShapeCoords.fsIn(), dropFragment); |
| 635 | } else { |
| 636 | f->codeAppendf("if (all(lessThan(abs(%s), vec2(1)))) {", fInnerShapeCoords.fsIn()); |
| 637 | f->codeAppendf( "vec2 distanceToArcEdge = abs(%s) - %s.xy;", |
| 638 | fInnerShapeCoords.fsIn(), fInnerRRect.fsIn()); |
| 639 | f->codeAppend ( "if (any(lessThan(distanceToArcEdge, vec2(0)))) {"); |
| 640 | f->codeAppendf( "%s;", dropFragment); |
| 641 | f->codeAppend ( "} else {"); |
| 642 | f->codeAppendf( "vec2 rrectCoords = distanceToArcEdge * %s.zw;", |
| 643 | fInnerRRect.fsIn()); |
| 644 | f->codeAppend ( "if (dot(rrectCoords, rrectCoords) <= 1.0) {"); |
| 645 | f->codeAppendf( "%s;", dropFragment); |
| 646 | f->codeAppend ( "}"); |
| 647 | f->codeAppend ( "}"); |
| 648 | f->codeAppend ("}"); |
| 649 | } |
| 650 | } |
| 651 | if (fModifiesCoverage) { |
| 652 | f->codeAppendf("%s = vec4(covered);", outCoverage); |
| 653 | } else if (fModifiesColor) { |
| 654 | f->codeAppendf("%s = color;", outColor); |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | //////////////////////////////////////////////////////////////////////////////////////////////////// |
| 659 | |
| 660 | class GLSLInstanceProcessor::BackendCoverage : public Backend { |
| 661 | public: |
| 662 | BackendCoverage(BatchInfo batchInfo, const VertexInputs& inputs) |
| 663 | : INHERITED(batchInfo, inputs), |
| 664 | fColorTimesRectCoverage(kVec4f_GrSLType), |
| 665 | fRectCoverage(kFloat_GrSLType), |
| 666 | fEllipseCoords(kVec2f_GrSLType), |
| 667 | fEllipseName(kVec2f_GrSLType), |
| 668 | fBloatedRadius(kFloat_GrSLType), |
| 669 | fDistanceToInnerEdge(kVec2f_GrSLType), |
| 670 | fInnerShapeBloatedHalfSize(kVec2f_GrSLType), |
| 671 | fInnerEllipseCoords(kVec2f_GrSLType), |
| 672 | fInnerEllipseName(kVec2f_GrSLType) { |
| 673 | fShapeIsCircle = !fBatchInfo.fNonSquare && !(fBatchInfo.fShapeTypes & kRRect_ShapesMask); |
| 674 | fTweakAlphaForCoverage = !fBatchInfo.fCannotTweakAlphaForCoverage && |
| 675 | !fBatchInfo.fInnerShapeTypes; |
| 676 | fModifiesCoverage = !fTweakAlphaForCoverage; |
| 677 | fModifiesColor = fTweakAlphaForCoverage; |
| 678 | fModifiedShapeCoords = "bloatedShapeCoords"; |
| 679 | } |
| 680 | |
| 681 | private: |
| 682 | void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| 683 | void setupRect(GrGLSLVertexBuilder*) override; |
| 684 | void setupOval(GrGLSLVertexBuilder*) override; |
| 685 | void adjustRRectVertices(GrGLSLVertexBuilder*) override; |
| 686 | void onSetupRRect(GrGLSLVertexBuilder*) override; |
| 687 | |
| 688 | void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| 689 | void setupInnerRect(GrGLSLVertexBuilder*) override; |
| 690 | void setupInnerOval(GrGLSLVertexBuilder*) override; |
| 691 | void onSetupInnerRRect(GrGLSLVertexBuilder*) override; |
| 692 | |
| 693 | void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char* outCoverage, |
| 694 | const char* outColor) override; |
| 695 | |
| 696 | void emitRect(GrGLSLPPFragmentBuilder*, const char* outCoverage, const char* outColor); |
| 697 | void emitCircle(GrGLSLPPFragmentBuilder*, const char* outCoverage); |
| 698 | void emitArc(GrGLSLPPFragmentBuilder* f, const char* ellipseCoords, const char* ellipseName, |
| 699 | bool ellipseCoordsNeedClamp, bool ellipseCoordsMayBeNegative, |
| 700 | const char* outCoverage); |
| 701 | void emitInnerRect(GrGLSLPPFragmentBuilder*, const char* outCoverage); |
| 702 | |
| 703 | GrGLSLVertToFrag fColorTimesRectCoverage; |
| 704 | GrGLSLVertToFrag fRectCoverage; |
| 705 | GrGLSLVertToFrag fEllipseCoords; |
| 706 | GrGLSLVertToFrag fEllipseName; |
| 707 | GrGLSLVertToFrag fBloatedRadius; |
| 708 | GrGLSLVertToFrag fDistanceToInnerEdge; |
| 709 | GrGLSLVertToFrag fInnerShapeBloatedHalfSize; |
| 710 | GrGLSLVertToFrag fInnerEllipseCoords; |
| 711 | GrGLSLVertToFrag fInnerEllipseName; |
| 712 | bool fShapeIsCircle; |
| 713 | bool fTweakAlphaForCoverage; |
| 714 | |
| 715 | typedef Backend INHERITED; |
| 716 | }; |
| 717 | |
| 718 | void GLSLInstanceProcessor::BackendCoverage::onInit(GrGLSLVaryingHandler* varyingHandler, |
| 719 | GrGLSLVertexBuilder* v) { |
| 720 | v->codeAppend ("mat2 shapeTransposeMatrix = transpose(mat2(shapeMatrix));"); |
| 721 | v->codeAppend ("vec2 shapeHalfSize = vec2(length(shapeTransposeMatrix[0]), " |
| 722 | "length(shapeTransposeMatrix[1]));"); |
| 723 | v->codeAppend ("vec2 bloat = 0.5 / shapeHalfSize;"); |
| 724 | v->codeAppendf("bloatedShapeCoords = %s * (1.0 + bloat);", fInputs.attr(Attrib::kShapeCoords)); |
| 725 | |
| 726 | if (kOval_ShapeFlag != fBatchInfo.fShapeTypes) { |
| 727 | if (fTweakAlphaForCoverage) { |
| 728 | varyingHandler->addVarying("colorTimesRectCoverage", &fColorTimesRectCoverage, |
| 729 | kLow_GrSLPrecision); |
| 730 | if (kRect_ShapeFlag == fBatchInfo.fShapeTypes) { |
| 731 | fColor = fColorTimesRectCoverage; |
| 732 | } |
| 733 | } else { |
| 734 | varyingHandler->addVarying("rectCoverage", &fRectCoverage, kLow_GrSLPrecision); |
| 735 | } |
| 736 | v->codeAppend("float rectCoverage = 0.0;"); |
| 737 | } |
| 738 | if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { |
| 739 | varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kHigh_GrSLPrecision); |
| 740 | if (!fShapeIsCircle) { |
| 741 | varyingHandler->addVarying("ellipseCoords", &fEllipseCoords, kHigh_GrSLPrecision); |
| 742 | varyingHandler->addFlatVarying("ellipseName", &fEllipseName, kHigh_GrSLPrecision); |
| 743 | } else { |
| 744 | varyingHandler->addVarying("circleCoords", &fEllipseCoords, kMedium_GrSLPrecision); |
| 745 | varyingHandler->addFlatVarying("bloatedRadius", &fBloatedRadius, kMedium_GrSLPrecision); |
| 746 | } |
| 747 | } |
| 748 | } |
| 749 | |
| 750 | void GLSLInstanceProcessor::BackendCoverage::setupRect(GrGLSLVertexBuilder* v) { |
| 751 | // Make the border one pixel wide. Inner vs outer is indicated by coordAttrs. |
| 752 | v->codeAppendf("vec2 rectBloat = (%s != 0) ? bloat : -bloat;", |
| 753 | fInputs.attr(Attrib::kVertexAttrs)); |
| 754 | // Here we use the absolute value, because when the rect is thinner than a pixel, this makes it |
| 755 | // mark the spot where pixel center is within half a pixel of the *opposite* edge. This, |
| 756 | // combined with the "maxCoverage" logic below gives us mathematically correct coverage even for |
| 757 | // subpixel rectangles. |
| 758 | v->codeAppendf("bloatedShapeCoords = %s * abs(vec2(1.0 + rectBloat));", |
| 759 | fInputs.attr(Attrib::kShapeCoords)); |
| 760 | |
| 761 | // Determine coverage at the vertex. Coverage naturally ramps from 0 to 1 unless the rect is |
| 762 | // narrower than a pixel. |
| 763 | v->codeAppend ("float maxCoverage = 4.0 * min(0.5, shapeHalfSize.x) *" |
| 764 | "min(0.5, shapeHalfSize.y);"); |
| 765 | v->codeAppendf("rectCoverage = (%s != 0) ? 0.0 : maxCoverage;", |
| 766 | fInputs.attr(Attrib::kVertexAttrs)); |
| 767 | |
| 768 | if (fTriangleIsArc.vsOut()) { |
| 769 | v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | void GLSLInstanceProcessor::BackendCoverage::setupOval(GrGLSLVertexBuilder* v) { |
| 774 | // Offset the inner and outer octagons by one pixel. Inner vs outer is indicated by coordAttrs. |
| 775 | v->codeAppendf("vec2 ovalBloat = (%s != 0) ? bloat : -bloat;", |
| 776 | fInputs.attr(Attrib::kVertexAttrs)); |
| 777 | v->codeAppendf("bloatedShapeCoords = %s * max(vec2(1.0 + ovalBloat), vec2(0));", |
| 778 | fInputs.attr(Attrib::kShapeCoords)); |
| 779 | v->codeAppendf("%s = bloatedShapeCoords * shapeHalfSize;", fEllipseCoords.vsOut()); |
| 780 | if (fEllipseName.vsOut()) { |
| 781 | v->codeAppendf("%s = 1.0 / (shapeHalfSize * shapeHalfSize);", fEllipseName.vsOut()); |
| 782 | } |
| 783 | if (fBloatedRadius.vsOut()) { |
| 784 | SkASSERT(fShapeIsCircle); |
| 785 | v->codeAppendf("%s = shapeHalfSize.x + 0.5;", fBloatedRadius.vsOut()); |
| 786 | } |
| 787 | if (fTriangleIsArc.vsOut()) { |
| 788 | v->codeAppendf("%s = int(%s != 0);", |
| 789 | fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs)); |
| 790 | } |
| 791 | if (fColorTimesRectCoverage.vsOut() || fRectCoverage.vsOut()) { |
| 792 | v->codeAppendf("rectCoverage = 1.0;"); |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | void GLSLInstanceProcessor::BackendCoverage::adjustRRectVertices(GrGLSLVertexBuilder* v) { |
| 797 | // We try to let the AA borders line up with the arc edges on their particular side, but we |
| 798 | // can't allow them to get closer than one half pixel to the edge or they might overlap with |
| 799 | // their neighboring border. |
| 800 | v->codeAppend("vec2 innerEdge = max(1.0 - bloat, vec2(0));"); |
| 801 | v->codeAppend ("vec2 borderEdge = cornerSign * clamp(1.0 - radii, -innerEdge, innerEdge);"); |
| 802 | // 0.5 is a special value that indicates this vertex is an arc edge. |
| 803 | v->codeAppendf("if (abs(%s.x) == 0.5)" |
| 804 | "bloatedShapeCoords.x = borderEdge.x;", fInputs.attr(Attrib::kShapeCoords)); |
| 805 | v->codeAppendf("if (abs(%s.y) == 0.5)" |
| 806 | "bloatedShapeCoords.y = borderEdge.y;", fInputs.attr(Attrib::kShapeCoords)); |
| 807 | |
| 808 | // Adjust the interior border vertices to make the border one pixel wide. 0.75 is a special |
| 809 | // value to indicate these points. |
| 810 | v->codeAppendf("if (abs(%s.x) == 0.75) " |
| 811 | "bloatedShapeCoords.x = cornerSign.x * innerEdge.x;", |
| 812 | fInputs.attr(Attrib::kShapeCoords)); |
| 813 | v->codeAppendf("if (abs(%s.y) == 0.75) " |
| 814 | "bloatedShapeCoords.y = cornerSign.y * innerEdge.y;", |
| 815 | fInputs.attr(Attrib::kShapeCoords)); |
| 816 | } |
| 817 | |
| 818 | void GLSLInstanceProcessor::BackendCoverage::onSetupRRect(GrGLSLVertexBuilder* v) { |
| 819 | // The geometry is laid out in such a way that rectCoverage will be 0 and 1 on the vertices, but |
| 820 | // we still need to recompute this value because when the rrect gets thinner than one pixel, the |
| 821 | // interior edge of the border will necessarily clamp, and we need to match the AA behavior of |
| 822 | // the arc segments (i.e. distance from bloated edge only; ignoring the fact that the pixel |
| 823 | // actully has less coverage because it's not completely inside the opposite edge.) |
| 824 | v->codeAppend("vec2 d = shapeHalfSize + 0.5 - abs(bloatedShapeCoords) * shapeHalfSize;"); |
| 825 | v->codeAppend("rectCoverage = min(d.x, d.y);"); |
| 826 | |
| 827 | SkASSERT(!fShapeIsCircle); |
| 828 | // The AA border does not get closer than one half pixel to the edge of the rect, so to get a |
| 829 | // smooth transition from flat edge to arc, we don't allow the radii to be smaller than one half |
| 830 | // pixel. (We don't worry about the transition on the opposite side when a radius is so large |
| 831 | // that the border clamped on that side.) |
| 832 | v->codeAppendf("vec2 clampedRadii = max(radii, bloat);"); |
| 833 | v->codeAppendf("%s = (cornerSign * bloatedShapeCoords + clampedRadii - vec2(1)) * " |
| 834 | "shapeHalfSize;", fEllipseCoords.vsOut()); |
| 835 | v->codeAppendf("%s = 1.0 / (clampedRadii * clampedRadii * shapeHalfSize * shapeHalfSize);", |
| 836 | fEllipseName.vsOut()); |
| 837 | } |
| 838 | |
| 839 | void GLSLInstanceProcessor::BackendCoverage::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler, |
| 840 | GrGLSLVertexBuilder* v) { |
| 841 | v->codeAppend("vec2 innerShapeHalfSize = shapeHalfSize / outer2Inner.xy;"); |
| 842 | |
| 843 | if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
| 844 | varyingHandler->addVarying("innerEllipseCoords", &fInnerEllipseCoords, |
| 845 | kMedium_GrSLPrecision); |
| 846 | varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseName, |
| 847 | kMedium_GrSLPrecision); |
| 848 | } else { |
| 849 | varyingHandler->addVarying("distanceToInnerEdge", &fDistanceToInnerEdge, |
| 850 | kMedium_GrSLPrecision); |
| 851 | varyingHandler->addFlatVarying("innerShapeBloatedHalfSize", &fInnerShapeBloatedHalfSize, |
| 852 | kMedium_GrSLPrecision); |
| 853 | if (kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes) { |
| 854 | varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kHigh_GrSLPrecision); |
| 855 | varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseName, |
| 856 | kMedium_GrSLPrecision); |
| 857 | varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kHigh_GrSLPrecision); |
| 858 | } |
| 859 | } |
| 860 | } |
| 861 | |
| 862 | void GLSLInstanceProcessor::BackendCoverage::setupInnerRect(GrGLSLVertexBuilder* v) { |
| 863 | if (fInnerRRect.vsOut()) { |
| 864 | // The fragment shader will generalize every inner shape as a round rect. Since this one |
| 865 | // is a rect, we simply emit bogus parameters for the round rect (effectively negative |
| 866 | // radii) that ensure the fragment shader always takes the "emitRect" codepath. |
| 867 | v->codeAppendf("%s.xy = abs(outer2Inner.xy) * (1.0 + bloat) + abs(outer2Inner.zw);", |
| 868 | fInnerRRect.vsOut()); |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | void GLSLInstanceProcessor::BackendCoverage::setupInnerOval(GrGLSLVertexBuilder* v) { |
| 873 | v->codeAppendf("%s = 1.0 / (innerShapeHalfSize * innerShapeHalfSize);", |
| 874 | fInnerEllipseName.vsOut()); |
| 875 | if (fInnerEllipseCoords.vsOut()) { |
| 876 | v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;", fInnerEllipseCoords.vsOut()); |
| 877 | } |
| 878 | if (fInnerRRect.vsOut()) { |
| 879 | v->codeAppendf("%s = vec4(0, 0, innerShapeHalfSize);", fInnerRRect.vsOut()); |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | void GLSLInstanceProcessor::BackendCoverage::onSetupInnerRRect(GrGLSLVertexBuilder* v) { |
| 884 | // The distance to ellipse formula doesn't work well when the radii are less than half a pixel. |
| 885 | v->codeAppend ("innerRadii = max(innerRadii, bloat);"); |
| 886 | v->codeAppendf("%s = 1.0 / (innerRadii * innerRadii * innerShapeHalfSize * " |
| 887 | "innerShapeHalfSize);", |
| 888 | fInnerEllipseName.vsOut()); |
| 889 | v->codeAppendf("%s = vec4(1.0 - innerRadii, innerShapeHalfSize);", fInnerRRect.vsOut()); |
| 890 | } |
| 891 | |
| 892 | void GLSLInstanceProcessor::BackendCoverage::onEmitCode(GrGLSLVertexBuilder* v, |
| 893 | GrGLSLPPFragmentBuilder* f, |
| 894 | const char* outCoverage, |
| 895 | const char* outColor) { |
| 896 | if (fColorTimesRectCoverage.vsOut()) { |
| 897 | SkASSERT(!fRectCoverage.vsOut()); |
| 898 | v->codeAppendf("%s = %s * rectCoverage;", |
| 899 | fColorTimesRectCoverage.vsOut(), fInputs.attr(Attrib::kColor)); |
| 900 | } |
| 901 | if (fRectCoverage.vsOut()) { |
| 902 | SkASSERT(!fColorTimesRectCoverage.vsOut()); |
| 903 | v->codeAppendf("%s = rectCoverage;", fRectCoverage.vsOut()); |
| 904 | } |
| 905 | |
| 906 | SkString coverage("float coverage"); |
| 907 | if (f->getProgramBuilder()->glslCaps()->usesPrecisionModifiers()) { |
| 908 | coverage.prependf("lowp "); |
| 909 | } |
| 910 | if (fBatchInfo.fInnerShapeTypes || (!fTweakAlphaForCoverage && fTriangleIsArc.fsIn())) { |
| 911 | f->codeAppendf("%s;", coverage.c_str()); |
| 912 | coverage = "coverage"; |
| 913 | } |
| 914 | if (fTriangleIsArc.fsIn()) { |
| 915 | f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn()); |
| 916 | this->emitRect(f, coverage.c_str(), outColor); |
| 917 | f->codeAppend ("} else {"); |
| 918 | if (fShapeIsCircle) { |
| 919 | this->emitCircle(f, coverage.c_str()); |
| 920 | } else { |
| 921 | bool ellipseCoordsMayBeNegative = SkToBool(fBatchInfo.fShapeTypes & kOval_ShapeFlag); |
| 922 | this->emitArc(f, fEllipseCoords.fsIn(), fEllipseName.fsIn(), |
| 923 | true /*ellipseCoordsNeedClamp*/, ellipseCoordsMayBeNegative, |
| 924 | coverage.c_str()); |
| 925 | } |
| 926 | if (fTweakAlphaForCoverage) { |
| 927 | f->codeAppendf("%s = %s * coverage;", outColor, fColor.fsIn()); |
| 928 | } |
| 929 | f->codeAppend ("}"); |
| 930 | } else { |
| 931 | this->emitRect(f, coverage.c_str(), outColor); |
| 932 | } |
| 933 | |
| 934 | if (fBatchInfo.fInnerShapeTypes) { |
| 935 | f->codeAppendf("// Inner shape.\n"); |
| 936 | SkString innerCoverageDecl("float innerCoverage"); |
| 937 | if (f->getProgramBuilder()->glslCaps()->usesPrecisionModifiers()) { |
| 938 | innerCoverageDecl.prependf("lowp "); |
| 939 | } |
| 940 | if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
| 941 | this->emitArc(f, fInnerEllipseCoords.fsIn(), fInnerEllipseName.fsIn(), |
| 942 | true /*ellipseCoordsNeedClamp*/, true /*ellipseCoordsMayBeNegative*/, |
| 943 | innerCoverageDecl.c_str()); |
| 944 | } else { |
| 945 | v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;", |
| 946 | fDistanceToInnerEdge.vsOut()); |
| 947 | v->codeAppendf("%s = innerShapeHalfSize + 0.5;", fInnerShapeBloatedHalfSize.vsOut()); |
| 948 | |
| 949 | if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
| 950 | this->emitInnerRect(f, innerCoverageDecl.c_str()); |
| 951 | } else { |
| 952 | f->codeAppendf("%s = 0.0;", innerCoverageDecl.c_str()); |
| 953 | f->codeAppendf("vec2 distanceToArcEdge = abs(%s) - %s.xy;", |
| 954 | fInnerShapeCoords.fsIn(), fInnerRRect.fsIn()); |
| 955 | f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(1e-5)))) {"); |
| 956 | this->emitInnerRect(f, "innerCoverage"); |
| 957 | f->codeAppend ("} else {"); |
| 958 | f->codeAppendf( "vec2 ellipseCoords = distanceToArcEdge * %s.zw;", |
| 959 | fInnerRRect.fsIn()); |
| 960 | this->emitArc(f, "ellipseCoords", fInnerEllipseName.fsIn(), |
| 961 | false /*ellipseCoordsNeedClamp*/, |
| 962 | false /*ellipseCoordsMayBeNegative*/, "innerCoverage"); |
| 963 | f->codeAppend ("}"); |
| 964 | } |
| 965 | } |
| 966 | f->codeAppendf("%s = vec4(max(coverage - innerCoverage, 0.0));", outCoverage); |
| 967 | } else if (!fTweakAlphaForCoverage) { |
| 968 | f->codeAppendf("%s = vec4(coverage);", outCoverage); |
| 969 | } |
| 970 | } |
| 971 | |
| 972 | void GLSLInstanceProcessor::BackendCoverage::emitRect(GrGLSLPPFragmentBuilder* f, |
| 973 | const char* outCoverage, |
| 974 | const char* outColor) { |
| 975 | if (fColorTimesRectCoverage.fsIn()) { |
| 976 | f->codeAppendf("%s = %s;", outColor, fColorTimesRectCoverage.fsIn()); |
| 977 | } else if (fTweakAlphaForCoverage) { |
| 978 | // We are drawing just ovals. The interior rect always has 100% coverage. |
| 979 | f->codeAppendf("%s = %s;", outColor, fColor.fsIn()); |
| 980 | } else if (fRectCoverage.fsIn()) { |
| 981 | f->codeAppendf("%s = %s;", outCoverage, fRectCoverage.fsIn()); |
| 982 | } else { |
| 983 | f->codeAppendf("%s = 1.0;", outCoverage); |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | void GLSLInstanceProcessor::BackendCoverage::emitCircle(GrGLSLPPFragmentBuilder* f, |
| 988 | const char* outCoverage) { |
| 989 | // TODO: circleCoords = max(circleCoords, 0) if we decide to do this optimization on rrects. |
| 990 | SkASSERT(!(kRRect_ShapesMask & fBatchInfo.fShapeTypes)); |
| 991 | f->codeAppendf("float distanceToEdge = %s - length(%s);", |
| 992 | fBloatedRadius.fsIn(), fEllipseCoords.fsIn()); |
| 993 | f->codeAppendf("%s = clamp(distanceToEdge, 0.0, 1.0);", outCoverage); |
| 994 | } |
| 995 | |
| 996 | void GLSLInstanceProcessor::BackendCoverage::emitArc(GrGLSLPPFragmentBuilder* f, |
| 997 | const char* ellipseCoords, |
| 998 | const char* ellipseName, |
| 999 | bool ellipseCoordsNeedClamp, |
| 1000 | bool ellipseCoordsMayBeNegative, |
| 1001 | const char* outCoverage) { |
| 1002 | SkASSERT(!ellipseCoordsMayBeNegative || ellipseCoordsNeedClamp); |
| 1003 | if (ellipseCoordsNeedClamp) { |
| 1004 | // This serves two purposes: |
| 1005 | // - To restrict the arcs of rounded rects to their positive quadrants. |
| 1006 | // - To avoid inversesqrt(0) in the ellipse formula. |
| 1007 | if (ellipseCoordsMayBeNegative) { |
| 1008 | f->codeAppendf("vec2 ellipseClampedCoords = max(abs(%s), vec2(1e-4));", ellipseCoords); |
| 1009 | } else { |
| 1010 | f->codeAppendf("vec2 ellipseClampedCoords = max(%s, vec2(1e-4));", ellipseCoords); |
| 1011 | } |
| 1012 | ellipseCoords = "ellipseClampedCoords"; |
| 1013 | } |
| 1014 | // ellipseCoords are in pixel space and ellipseName is 1 / rx^2, 1 / ry^2. |
| 1015 | f->codeAppendf("vec2 Z = %s * %s;", ellipseCoords, ellipseName); |
| 1016 | // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1. |
| 1017 | f->codeAppendf("float implicit = dot(Z, %s) - 1.0;", ellipseCoords); |
| 1018 | // gradDot is the squared length of the gradient of the implicit. |
| 1019 | f->codeAppendf("float gradDot = 4.0 * dot(Z, Z);"); |
| 1020 | f->appendPrecisionModifier(kLow_GrSLPrecision); |
| 1021 | f->codeAppend ("float approxDist = implicit * inversesqrt(gradDot);"); |
| 1022 | f->codeAppendf("%s = clamp(0.5 - approxDist, 0.0, 1.0);", outCoverage); |
| 1023 | } |
| 1024 | |
| 1025 | void GLSLInstanceProcessor::BackendCoverage::emitInnerRect(GrGLSLPPFragmentBuilder* f, |
| 1026 | const char* outCoverage) { |
| 1027 | f->appendPrecisionModifier(kLow_GrSLPrecision); |
| 1028 | f->codeAppendf("vec2 c = %s - abs(%s);", |
| 1029 | fInnerShapeBloatedHalfSize.fsIn(), fDistanceToInnerEdge.fsIn()); |
| 1030 | f->codeAppendf("%s = clamp(min(c.x, c.y), 0.0, 1.0);", outCoverage); |
| 1031 | } |
| 1032 | |
| 1033 | //////////////////////////////////////////////////////////////////////////////////////////////////// |
| 1034 | |
| 1035 | class GLSLInstanceProcessor::BackendMultisample : public Backend { |
| 1036 | public: |
| 1037 | BackendMultisample(BatchInfo batchInfo, const VertexInputs& inputs, int effectiveSampleCnt) |
| 1038 | : INHERITED(batchInfo, inputs), |
| 1039 | fEffectiveSampleCnt(effectiveSampleCnt), |
| 1040 | fShapeCoords(kVec2f_GrSLType), |
| 1041 | fShapeInverseMatrix(kMat22f_GrSLType), |
| 1042 | fFragShapeHalfSpan(kVec2f_GrSLType), |
| 1043 | fArcTest(kVec2f_GrSLType), |
| 1044 | fArcInverseMatrix(kMat22f_GrSLType), |
| 1045 | fFragArcHalfSpan(kVec2f_GrSLType), |
| 1046 | fEarlyAccept(kInt_GrSLType), |
| 1047 | fInnerShapeInverseMatrix(kMat22f_GrSLType), |
| 1048 | fFragInnerShapeHalfSpan(kVec2f_GrSLType) { |
| 1049 | fRectTrianglesMaySplit = fBatchInfo.fHasPerspective; |
| 1050 | fNeedsNeighborRadii = this->isMixedSampled() && !fBatchInfo.fHasPerspective; |
| 1051 | } |
| 1052 | |
| 1053 | private: |
| 1054 | bool isMixedSampled() const { return AntialiasMode::kMixedSamples == fBatchInfo.fAntialiasMode; } |
| 1055 | |
| 1056 | void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| 1057 | void setupRect(GrGLSLVertexBuilder*) override; |
| 1058 | void setupOval(GrGLSLVertexBuilder*) override; |
| 1059 | void adjustRRectVertices(GrGLSLVertexBuilder*) override; |
| 1060 | void onSetupRRect(GrGLSLVertexBuilder*) override; |
| 1061 | |
| 1062 | void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| 1063 | void setupInnerRect(GrGLSLVertexBuilder*) override; |
| 1064 | void setupInnerOval(GrGLSLVertexBuilder*) override; |
| 1065 | void onSetupInnerRRect(GrGLSLVertexBuilder*) override; |
| 1066 | |
| 1067 | void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*, |
| 1068 | const char*) override; |
| 1069 | |
| 1070 | struct EmitShapeCoords { |
| 1071 | const GrGLSLVarying* fVarying; |
| 1072 | const char* fInverseMatrix; |
| 1073 | const char* fFragHalfSpan; |
| 1074 | }; |
| 1075 | |
| 1076 | struct EmitShapeOpts { |
| 1077 | bool fIsTightGeometry; |
| 1078 | bool fResolveMixedSamples; |
| 1079 | bool fInvertCoverage; |
| 1080 | }; |
| 1081 | |
| 1082 | void emitRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const EmitShapeOpts&); |
| 1083 | void emitArc(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, bool coordsMayBeNegative, |
| 1084 | bool clampCoords, const EmitShapeOpts&); |
| 1085 | void emitSimpleRRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const char* rrect, |
| 1086 | const EmitShapeOpts&); |
| 1087 | void interpolateAtSample(GrGLSLPPFragmentBuilder*, const GrGLSLVarying&, const char* sampleIdx, |
| 1088 | const char* interpolationMatrix); |
| 1089 | void acceptOrRejectWholeFragment(GrGLSLPPFragmentBuilder*, bool inside, const EmitShapeOpts&); |
| 1090 | void acceptCoverageMask(GrGLSLPPFragmentBuilder*, const char* shapeMask, const EmitShapeOpts&, |
| 1091 | bool maybeSharedEdge = true); |
| 1092 | |
| 1093 | int fEffectiveSampleCnt; |
| 1094 | bool fRectTrianglesMaySplit; |
| 1095 | GrGLSLVertToFrag fShapeCoords; |
| 1096 | GrGLSLVertToFrag fShapeInverseMatrix; |
| 1097 | GrGLSLVertToFrag fFragShapeHalfSpan; |
| 1098 | GrGLSLVertToFrag fArcTest; |
| 1099 | GrGLSLVertToFrag fArcInverseMatrix; |
| 1100 | GrGLSLVertToFrag fFragArcHalfSpan; |
| 1101 | GrGLSLVertToFrag fEarlyAccept; |
| 1102 | GrGLSLVertToFrag fInnerShapeInverseMatrix; |
| 1103 | GrGLSLVertToFrag fFragInnerShapeHalfSpan; |
| 1104 | SkString fSquareFun; |
| 1105 | |
| 1106 | typedef Backend INHERITED; |
| 1107 | }; |
| 1108 | |
| 1109 | void GLSLInstanceProcessor::BackendMultisample::onInit(GrGLSLVaryingHandler* varyingHandler, |
| 1110 | GrGLSLVertexBuilder* v) { |
| 1111 | if (!this->isMixedSampled()) { |
| 1112 | if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { |
| 1113 | varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, |
| 1114 | kHigh_GrSLPrecision); |
| 1115 | varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPrecision); |
| 1116 | if (!fBatchInfo.fHasPerspective) { |
| 1117 | varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseMatrix, |
| 1118 | kHigh_GrSLPrecision); |
| 1119 | varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfSpan, |
| 1120 | kHigh_GrSLPrecision); |
| 1121 | } |
| 1122 | } else if (!fBatchInfo.fInnerShapeTypes) { |
| 1123 | return; |
| 1124 | } |
| 1125 | } else { |
| 1126 | varyingHandler->addVarying("shapeCoords", &fShapeCoords, kHigh_GrSLPrecision); |
| 1127 | if (!fBatchInfo.fHasPerspective) { |
| 1128 | varyingHandler->addFlatVarying("shapeInverseMatrix", &fShapeInverseMatrix, |
| 1129 | kHigh_GrSLPrecision); |
| 1130 | varyingHandler->addFlatVarying("fragShapeHalfSpan", &fFragShapeHalfSpan, |
| 1131 | kHigh_GrSLPrecision); |
| 1132 | } |
| 1133 | if (fBatchInfo.fShapeTypes & kRRect_ShapesMask) { |
| 1134 | varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPrecision); |
| 1135 | varyingHandler->addVarying("arcTest", &fArcTest, kHigh_GrSLPrecision); |
| 1136 | if (!fBatchInfo.fHasPerspective) { |
| 1137 | varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseMatrix, |
| 1138 | kHigh_GrSLPrecision); |
| 1139 | varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfSpan, |
| 1140 | kHigh_GrSLPrecision); |
| 1141 | } |
| 1142 | } else if (fBatchInfo.fShapeTypes & kOval_ShapeFlag) { |
| 1143 | fArcCoords = fShapeCoords; |
| 1144 | fArcInverseMatrix = fShapeInverseMatrix; |
| 1145 | fFragArcHalfSpan = fFragShapeHalfSpan; |
| 1146 | if (fBatchInfo.fShapeTypes & kRect_ShapeFlag) { |
| 1147 | varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, |
| 1148 | kHigh_GrSLPrecision); |
| 1149 | } |
| 1150 | } |
| 1151 | if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { |
| 1152 | v->definef("SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1); |
| 1153 | varyingHandler->addFlatVarying("earlyAccept", &fEarlyAccept, kHigh_GrSLPrecision); |
| 1154 | } |
| 1155 | } |
| 1156 | if (!fBatchInfo.fHasPerspective) { |
| 1157 | v->codeAppend("mat2 shapeInverseMatrix = inverse(mat2(shapeMatrix));"); |
| 1158 | v->codeAppend("vec2 fragShapeSpan = abs(vec4(shapeInverseMatrix).xz) + " |
| 1159 | "abs(vec4(shapeInverseMatrix).yw);"); |
| 1160 | } |
| 1161 | } |
| 1162 | |
| 1163 | void GLSLInstanceProcessor::BackendMultisample::setupRect(GrGLSLVertexBuilder* v) { |
| 1164 | if (fShapeCoords.vsOut()) { |
| 1165 | v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords()); |
| 1166 | } |
| 1167 | if (fShapeInverseMatrix.vsOut()) { |
| 1168 | v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut()); |
| 1169 | } |
| 1170 | if (fFragShapeHalfSpan.vsOut()) { |
| 1171 | v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut()); |
| 1172 | } |
| 1173 | if (fArcTest.vsOut()) { |
| 1174 | // Pick a value that is not > 0. |
| 1175 | v->codeAppendf("%s = vec2(0);", fArcTest.vsOut()); |
| 1176 | } |
| 1177 | if (fTriangleIsArc.vsOut()) { |
| 1178 | v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); |
| 1179 | } |
| 1180 | if (fEarlyAccept.vsOut()) { |
| 1181 | v->codeAppendf("%s = SAMPLE_MASK_ALL;", fEarlyAccept.vsOut()); |
| 1182 | } |
| 1183 | } |
| 1184 | |
| 1185 | void GLSLInstanceProcessor::BackendMultisample::setupOval(GrGLSLVertexBuilder* v) { |
| 1186 | v->codeAppendf("%s = abs(%s);", fArcCoords.vsOut(), this->outShapeCoords()); |
| 1187 | if (fArcInverseMatrix.vsOut()) { |
| 1188 | v->codeAppendf("vec2 s = sign(%s);", this->outShapeCoords()); |
| 1189 | v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0 , s.y);", |
| 1190 | fArcInverseMatrix.vsOut()); |
| 1191 | } |
| 1192 | if (fFragArcHalfSpan.vsOut()) { |
| 1193 | v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragArcHalfSpan.vsOut()); |
| 1194 | } |
| 1195 | if (fArcTest.vsOut()) { |
| 1196 | // Pick a value that is > 0. |
| 1197 | v->codeAppendf("%s = vec2(1);", fArcTest.vsOut()); |
| 1198 | } |
| 1199 | if (fTriangleIsArc.vsOut()) { |
| 1200 | if (!this->isMixedSampled()) { |
| 1201 | v->codeAppendf("%s = %s & 1;", |
| 1202 | fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs)); |
| 1203 | } else { |
| 1204 | v->codeAppendf("%s = 1;", fTriangleIsArc.vsOut()); |
| 1205 | } |
| 1206 | } |
| 1207 | if (fEarlyAccept.vsOut()) { |
| 1208 | v->codeAppendf("%s = ~%s & SAMPLE_MASK_ALL;", |
| 1209 | fEarlyAccept.vsOut(), fInputs.attr(Attrib::kVertexAttrs)); |
| 1210 | } |
| 1211 | } |
| 1212 | |
| 1213 | void GLSLInstanceProcessor::BackendMultisample::adjustRRectVertices(GrGLSLVertexBuilder* v) { |
| 1214 | if (!this->isMixedSampled()) { |
| 1215 | INHERITED::adjustRRectVertices(v); |
| 1216 | return; |
| 1217 | } |
| 1218 | |
| 1219 | if (!fBatchInfo.fHasPerspective) { |
| 1220 | // For the mixed samples algorithm it's best to bloat the corner triangles a bit so that |
| 1221 | // more of the pixels that cross into the arc region are completely inside the shared edges. |
| 1222 | // We also snap to a regular rect if the radii shrink smaller than a pixel. |
| 1223 | v->codeAppend ("vec2 midpt = 0.5 * (neighborRadii - radii);"); |
| 1224 | v->codeAppend ("vec2 cornerSize = any(lessThan(radii, fragShapeSpan)) ? " |
| 1225 | "vec2(0) : min(radii + 0.5 * fragShapeSpan, 1.0 - midpt);"); |
| 1226 | } else { |
| 1227 | // TODO: We could still bloat the corner triangle in the perspective case; we would just |
| 1228 | // need to find the screen-space derivative of shape coords at this particular point. |
| 1229 | v->codeAppend ("vec2 cornerSize = any(lessThan(radii, vec2(1e-3))) ? vec2(0) : radii;"); |
| 1230 | } |
| 1231 | |
| 1232 | v->codeAppendf("if (abs(%s.x) == 0.5)" |
| 1233 | "%s.x = cornerSign.x * (1.0 - cornerSize.x);", |
| 1234 | fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords); |
| 1235 | v->codeAppendf("if (abs(%s.y) == 0.5)" |
| 1236 | "%s.y = cornerSign.y * (1.0 - cornerSize.y);", |
| 1237 | fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords); |
| 1238 | } |
| 1239 | |
| 1240 | void GLSLInstanceProcessor::BackendMultisample::onSetupRRect(GrGLSLVertexBuilder* v) { |
| 1241 | if (fShapeCoords.vsOut()) { |
| 1242 | v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords()); |
| 1243 | } |
| 1244 | if (fShapeInverseMatrix.vsOut()) { |
| 1245 | v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut()); |
| 1246 | } |
| 1247 | if (fFragShapeHalfSpan.vsOut()) { |
| 1248 | v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut()); |
| 1249 | } |
| 1250 | if (fArcInverseMatrix.vsOut()) { |
| 1251 | v->codeAppend ("vec2 s = cornerSign / radii;"); |
| 1252 | v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0, s.y);", |
| 1253 | fArcInverseMatrix.vsOut()); |
| 1254 | } |
| 1255 | if (fFragArcHalfSpan.vsOut()) { |
| 1256 | v->codeAppendf("%s = 0.5 * (abs(vec4(%s).xz) + abs(vec4(%s).yw));", |
| 1257 | fFragArcHalfSpan.vsOut(), fArcInverseMatrix.vsOut(), |
| 1258 | fArcInverseMatrix.vsOut()); |
| 1259 | } |
| 1260 | if (fArcTest.vsOut()) { |
| 1261 | // The interior triangles are laid out as a fan. fArcTest is both distances from shared |
| 1262 | // edges of a fan triangle to a point within that triangle. fArcTest is used to check if a |
| 1263 | // fragment is too close to either shared edge, in which case we point sample the shape as a |
| 1264 | // rect at that point in order to guarantee the mixed samples discard logic works correctly. |
| 1265 | v->codeAppendf("%s = (cornerSize == vec2(0)) ? vec2(0) : " |
| 1266 | "cornerSign * %s * mat2(1, cornerSize.x - 1.0, cornerSize.y - 1.0, 1);", |
| 1267 | fArcTest.vsOut(), fModifiedShapeCoords); |
| 1268 | if (!fBatchInfo.fHasPerspective) { |
| 1269 | // Shift the point at which distances to edges are measured from the center of the pixel |
| 1270 | // to the corner. This way the sign of fArcTest will quickly tell us whether a pixel |
| 1271 | // is completely inside the shared edge. Perspective mode will accomplish this same task |
| 1272 | // by finding the derivatives in the fragment shader. |
| 1273 | v->codeAppendf("%s -= 0.5 * (fragShapeSpan.yx * abs(radii - 1.0) + fragShapeSpan);", |
| 1274 | fArcTest.vsOut()); |
| 1275 | } |
| 1276 | } |
| 1277 | if (fEarlyAccept.vsOut()) { |
| 1278 | SkASSERT(this->isMixedSampled()); |
| 1279 | v->codeAppendf("%s = all(equal(vec2(1), abs(%s))) ? 0 : SAMPLE_MASK_ALL;", |
| 1280 | fEarlyAccept.vsOut(), fInputs.attr(Attrib::kShapeCoords)); |
| 1281 | } |
| 1282 | } |
| 1283 | |
| 1284 | void |
| 1285 | GLSLInstanceProcessor::BackendMultisample::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler, |
| 1286 | GrGLSLVertexBuilder* v) { |
| 1287 | varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kHigh_GrSLPrecision); |
| 1288 | if (kOval_ShapeFlag != fBatchInfo.fInnerShapeTypes && |
| 1289 | kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes) { |
| 1290 | varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kHigh_GrSLPrecision); |
| 1291 | } |
| 1292 | if (!fBatchInfo.fHasPerspective) { |
| 1293 | varyingHandler->addFlatVarying("innerShapeInverseMatrix", &fInnerShapeInverseMatrix, |
| 1294 | kHigh_GrSLPrecision); |
| 1295 | v->codeAppendf("%s = shapeInverseMatrix * mat2(outer2Inner.x, 0, 0, outer2Inner.y);", |
| 1296 | fInnerShapeInverseMatrix.vsOut()); |
| 1297 | varyingHandler->addFlatVarying("fragInnerShapeHalfSpan", &fFragInnerShapeHalfSpan, |
| 1298 | kHigh_GrSLPrecision); |
| 1299 | v->codeAppendf("%s = 0.5 * fragShapeSpan * outer2Inner.xy;", |
| 1300 | fFragInnerShapeHalfSpan.vsOut()); |
| 1301 | } |
| 1302 | } |
| 1303 | |
| 1304 | void GLSLInstanceProcessor::BackendMultisample::setupInnerRect(GrGLSLVertexBuilder* v) { |
| 1305 | if (fInnerRRect.vsOut()) { |
| 1306 | // The fragment shader will generalize every inner shape as a round rect. Since this one |
| 1307 | // is a rect, we simply emit bogus parameters for the round rect (negative radii) that |
| 1308 | // ensure the fragment shader always takes the "sample as rect" codepath. |
| 1309 | v->codeAppendf("%s = vec4(2.0 * (inner.zw - inner.xy) / (outer.zw - outer.xy), vec2(0));", |
| 1310 | fInnerRRect.vsOut()); |
| 1311 | } |
| 1312 | } |
| 1313 | |
| 1314 | void GLSLInstanceProcessor::BackendMultisample::setupInnerOval(GrGLSLVertexBuilder* v) { |
| 1315 | if (fInnerRRect.vsOut()) { |
| 1316 | v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut()); |
| 1317 | } |
| 1318 | } |
| 1319 | |
| 1320 | void GLSLInstanceProcessor::BackendMultisample::onSetupInnerRRect(GrGLSLVertexBuilder* v) { |
| 1321 | // Avoid numeric instability by not allowing the inner radii to get smaller than 1/10th pixel. |
| 1322 | if (fFragInnerShapeHalfSpan.vsOut()) { |
| 1323 | v->codeAppendf("innerRadii = max(innerRadii, 2e-1 * %s);", fFragInnerShapeHalfSpan.vsOut()); |
| 1324 | } else { |
| 1325 | v->codeAppend ("innerRadii = max(innerRadii, vec2(1e-4));"); |
| 1326 | } |
| 1327 | v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect.vsOut()); |
| 1328 | } |
| 1329 | |
| 1330 | void GLSLInstanceProcessor::BackendMultisample::onEmitCode(GrGLSLVertexBuilder*, |
| 1331 | GrGLSLPPFragmentBuilder* f, |
| 1332 | const char*, const char*) { |
| 1333 | f->define("SAMPLE_COUNT", fEffectiveSampleCnt); |
| 1334 | if (this->isMixedSampled()) { |
| 1335 | f->definef("SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1); |
| 1336 | f->definef("SAMPLE_MASK_MSB", "0x%x", 1 << (fEffectiveSampleCnt - 1)); |
| 1337 | } |
| 1338 | |
| 1339 | if (kRect_ShapeFlag != (fBatchInfo.fShapeTypes | fBatchInfo.fInnerShapeTypes)) { |
| 1340 | GrGLSLShaderVar x("x", kVec2f_GrSLType, GrGLSLShaderVar::kNonArray, kHigh_GrSLPrecision); |
| 1341 | f->emitFunction(kFloat_GrSLType, "square", 1, &x, "return dot(x, x);", &fSquareFun); |
| 1342 | } |
| 1343 | |
| 1344 | EmitShapeCoords shapeCoords; |
| 1345 | shapeCoords.fVarying = &fShapeCoords; |
| 1346 | shapeCoords.fInverseMatrix = fShapeInverseMatrix.fsIn(); |
| 1347 | shapeCoords.fFragHalfSpan = fFragShapeHalfSpan.fsIn(); |
| 1348 | |
| 1349 | EmitShapeCoords arcCoords; |
| 1350 | arcCoords.fVarying = &fArcCoords; |
| 1351 | arcCoords.fInverseMatrix = fArcInverseMatrix.fsIn(); |
| 1352 | arcCoords.fFragHalfSpan = fFragArcHalfSpan.fsIn(); |
| 1353 | bool clampArcCoords = this->isMixedSampled() && (fBatchInfo.fShapeTypes & kRRect_ShapesMask); |
| 1354 | |
| 1355 | EmitShapeOpts opts; |
| 1356 | opts.fIsTightGeometry = true; |
| 1357 | opts.fResolveMixedSamples = this->isMixedSampled(); |
| 1358 | opts.fInvertCoverage = false; |
| 1359 | |
| 1360 | if (fBatchInfo.fHasPerspective && fBatchInfo.fInnerShapeTypes) { |
| 1361 | // This determines if the fragment should consider the inner shape in its sample mask. |
| 1362 | // We take the derivative early in case discards may occur before we get to the inner shape. |
| 1363 | f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1364 | f->codeAppendf("vec2 fragInnerShapeApproxHalfSpan = 0.5 * fwidth(%s);", |
| 1365 | fInnerShapeCoords.fsIn()); |
| 1366 | } |
| 1367 | |
| 1368 | if (!this->isMixedSampled()) { |
| 1369 | SkASSERT(!fArcTest.fsIn()); |
| 1370 | if (fTriangleIsArc.fsIn()) { |
| 1371 | f->codeAppendf("if (%s != 0) {", fTriangleIsArc.fsIn()); |
| 1372 | this->emitArc(f, arcCoords, false, clampArcCoords, opts); |
| 1373 | |
| 1374 | f->codeAppend ("}"); |
| 1375 | } |
| 1376 | } else { |
| 1377 | const char* arcTest = fArcTest.fsIn(); |
| 1378 | SkASSERT(arcTest); |
| 1379 | if (fBatchInfo.fHasPerspective) { |
| 1380 | // The non-perspective version accounts for fwith() in the vertex shader. |
| 1381 | // We make sure to take the derivative here, before a neighbor pixel may early accept. |
| 1382 | f->enableFeature(GrGLSLPPFragmentBuilder::kStandardDerivatives_GLSLFeature); |
| 1383 | f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1384 | f->codeAppendf("vec2 arcTest = %s - 0.5 * fwidth(%s);", |
| 1385 | fArcTest.fsIn(), fArcTest.fsIn()); |
| 1386 | arcTest = "arcTest"; |
| 1387 | } |
| 1388 | const char* earlyAccept = fEarlyAccept.fsIn() ? fEarlyAccept.fsIn() : "SAMPLE_MASK_ALL"; |
| 1389 | f->codeAppendf("if (gl_SampleMaskIn[0] == %s) {", earlyAccept); |
| 1390 | f->overrideSampleCoverage(earlyAccept); |
| 1391 | f->codeAppend ("} else {"); |
| 1392 | if (arcTest) { |
| 1393 | // At this point, if the sample mask is all set it means we are inside an arc triangle. |
| 1394 | f->codeAppendf("if (gl_SampleMaskIn[0] == SAMPLE_MASK_ALL || " |
| 1395 | "all(greaterThan(%s, vec2(0)))) {", arcTest); |
| 1396 | this->emitArc(f, arcCoords, false, clampArcCoords, opts); |
| 1397 | f->codeAppend ("} else {"); |
| 1398 | this->emitRect(f, shapeCoords, opts); |
| 1399 | f->codeAppend ("}"); |
| 1400 | } else if (fTriangleIsArc.fsIn()) { |
| 1401 | f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn()); |
| 1402 | this->emitRect(f, shapeCoords, opts); |
| 1403 | f->codeAppend ("} else {"); |
| 1404 | this->emitArc(f, arcCoords, false, clampArcCoords, opts); |
| 1405 | f->codeAppend ("}"); |
| 1406 | } else if (fBatchInfo.fShapeTypes == kOval_ShapeFlag) { |
| 1407 | this->emitArc(f, arcCoords, false, clampArcCoords, opts); |
| 1408 | } else { |
| 1409 | SkASSERT(fBatchInfo.fShapeTypes == kRect_ShapeFlag); |
| 1410 | this->emitRect(f, shapeCoords, opts); |
| 1411 | } |
| 1412 | f->codeAppend ("}"); |
| 1413 | } |
| 1414 | |
| 1415 | if (fBatchInfo.fInnerShapeTypes) { |
| 1416 | f->codeAppendf("// Inner shape.\n"); |
| 1417 | |
| 1418 | EmitShapeCoords innerShapeCoords; |
| 1419 | innerShapeCoords.fVarying = &fInnerShapeCoords; |
| 1420 | if (!fBatchInfo.fHasPerspective) { |
| 1421 | innerShapeCoords.fInverseMatrix = fInnerShapeInverseMatrix.fsIn(); |
| 1422 | innerShapeCoords.fFragHalfSpan = fFragInnerShapeHalfSpan.fsIn(); |
| 1423 | } |
| 1424 | |
| 1425 | EmitShapeOpts innerOpts; |
| 1426 | innerOpts.fIsTightGeometry = false; |
| 1427 | innerOpts.fResolveMixedSamples = false; // Mixed samples are resolved in the outer shape. |
| 1428 | innerOpts.fInvertCoverage = true; |
| 1429 | |
| 1430 | if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
| 1431 | this->emitArc(f, innerShapeCoords, true, false, innerOpts); |
| 1432 | } else { |
| 1433 | f->codeAppendf("if (all(lessThan(abs(%s), 1.0 + %s))) {", fInnerShapeCoords.fsIn(), |
| 1434 | !fBatchInfo.fHasPerspective ? innerShapeCoords.fFragHalfSpan |
| 1435 | : "fragInnerShapeApproxHalfSpan"); // Above. |
| 1436 | if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
| 1437 | this->emitRect(f, innerShapeCoords, innerOpts); |
| 1438 | } else { |
| 1439 | this->emitSimpleRRect(f, innerShapeCoords, fInnerRRect.fsIn(), innerOpts); |
| 1440 | } |
| 1441 | f->codeAppend ("}"); |
| 1442 | } |
| 1443 | } |
| 1444 | } |
| 1445 | |
| 1446 | void GLSLInstanceProcessor::BackendMultisample::emitRect(GrGLSLPPFragmentBuilder* f, |
| 1447 | const EmitShapeCoords& coords, |
| 1448 | const EmitShapeOpts& opts) { |
| 1449 | // Full MSAA doesn't need to do anything to draw a rect. |
| 1450 | SkASSERT(!opts.fIsTightGeometry || opts.fResolveMixedSamples); |
| 1451 | if (coords.fFragHalfSpan) { |
| 1452 | f->codeAppendf("if (all(lessThanEqual(abs(%s), 1.0 - %s))) {", |
| 1453 | coords.fVarying->fsIn(), coords.fFragHalfSpan); |
| 1454 | // The entire pixel is inside the rect. |
| 1455 | this->acceptOrRejectWholeFragment(f, true, opts); |
| 1456 | f->codeAppend ("} else "); |
| 1457 | if (opts.fIsTightGeometry && !fRectTrianglesMaySplit) { |
| 1458 | f->codeAppendf("if (any(lessThan(abs(%s), 1.0 - %s))) {", |
| 1459 | coords.fVarying->fsIn(), coords.fFragHalfSpan); |
| 1460 | // The pixel falls on an edge of the rectangle and is known to not be on a shared edge. |
| 1461 | this->acceptCoverageMask(f, "gl_SampleMaskIn[0]", opts, false); |
| 1462 | f->codeAppend ("} else"); |
| 1463 | } |
| 1464 | f->codeAppend ("{"); |
| 1465 | } |
| 1466 | f->codeAppend ("int rectMask = 0;"); |
| 1467 | f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {"); |
| 1468 | f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1469 | f->codeAppend ( "vec2 pt = "); |
| 1470 | this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix); |
| 1471 | f->codeAppend ( ";"); |
| 1472 | f->codeAppend ( "if (all(lessThan(abs(pt), vec2(1)))) rectMask |= (1 << i);"); |
| 1473 | f->codeAppend ("}"); |
| 1474 | this->acceptCoverageMask(f, "rectMask", opts); |
| 1475 | if (coords.fFragHalfSpan) { |
| 1476 | f->codeAppend ("}"); |
| 1477 | } |
| 1478 | } |
| 1479 | |
| 1480 | void GLSLInstanceProcessor::BackendMultisample::emitArc(GrGLSLPPFragmentBuilder* f, |
| 1481 | const EmitShapeCoords& coords, |
| 1482 | bool coordsMayBeNegative, bool clampCoords, |
| 1483 | const EmitShapeOpts& opts) { |
| 1484 | if (coords.fFragHalfSpan) { |
| 1485 | SkString absArcCoords; |
| 1486 | absArcCoords.printf(coordsMayBeNegative ? "abs(%s)" : "%s", coords.fVarying->fsIn()); |
| 1487 | if (clampCoords) { |
| 1488 | f->codeAppendf("if (%s(max(%s + %s, vec2(0))) < 1.0) {", |
| 1489 | fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan); |
| 1490 | } else { |
| 1491 | f->codeAppendf("if (%s(%s + %s) < 1.0) {", |
| 1492 | fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan); |
| 1493 | } |
| 1494 | // The entire pixel is inside the arc. |
| 1495 | this->acceptOrRejectWholeFragment(f, true, opts); |
| 1496 | f->codeAppendf("} else if (%s(max(%s - %s, vec2(0))) >= 1.0) {", |
| 1497 | fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan); |
| 1498 | // The entire pixel is outside the arc. |
| 1499 | this->acceptOrRejectWholeFragment(f, false, opts); |
| 1500 | f->codeAppend ("} else {"); |
| 1501 | } |
| 1502 | f->codeAppend ( "int arcMask = 0;"); |
| 1503 | f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {"); |
| 1504 | f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1505 | f->codeAppend ( "vec2 pt = "); |
| 1506 | this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix); |
| 1507 | f->codeAppend ( ";"); |
| 1508 | if (clampCoords) { |
| 1509 | SkASSERT(!coordsMayBeNegative); |
| 1510 | f->codeAppend ( "pt = max(pt, vec2(0));"); |
| 1511 | } |
| 1512 | f->codeAppendf( "if (%s(pt) < 1.0) arcMask |= (1 << i);", fSquareFun.c_str()); |
| 1513 | f->codeAppend ( "}"); |
| 1514 | this->acceptCoverageMask(f, "arcMask", opts); |
| 1515 | if (coords.fFragHalfSpan) { |
| 1516 | f->codeAppend ("}"); |
| 1517 | } |
| 1518 | } |
| 1519 | |
| 1520 | void GLSLInstanceProcessor::BackendMultisample::emitSimpleRRect(GrGLSLPPFragmentBuilder* f, |
| 1521 | const EmitShapeCoords& coords, |
| 1522 | const char* rrect, |
| 1523 | const EmitShapeOpts& opts) { |
| 1524 | f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1525 | f->codeAppendf("vec2 distanceToArcEdge = abs(%s) - %s.xy;", coords.fVarying->fsIn(), rrect); |
| 1526 | f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(0)))) {"); |
| 1527 | this->emitRect(f, coords, opts); |
| 1528 | f->codeAppend ("} else {"); |
| 1529 | if (coords.fInverseMatrix && coords.fFragHalfSpan) { |
| 1530 | f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1531 | f->codeAppendf("vec2 rrectCoords = distanceToArcEdge * %s.zw;", rrect); |
| 1532 | f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1533 | f->codeAppendf("vec2 fragRRectHalfSpan = %s * %s.zw;", coords.fFragHalfSpan, rrect); |
| 1534 | f->codeAppendf("if (%s(rrectCoords + fragRRectHalfSpan) <= 1.0) {", fSquareFun.c_str()); |
| 1535 | // The entire pixel is inside the round rect. |
| 1536 | this->acceptOrRejectWholeFragment(f, true, opts); |
| 1537 | f->codeAppendf("} else if (%s(max(rrectCoords - fragRRectHalfSpan, vec2(0))) >= 1.0) {", |
| 1538 | fSquareFun.c_str()); |
| 1539 | // The entire pixel is outside the round rect. |
| 1540 | this->acceptOrRejectWholeFragment(f, false, opts); |
| 1541 | f->codeAppend ("} else {"); |
| 1542 | f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1543 | f->codeAppendf( "vec2 s = %s.zw * sign(%s);", rrect, coords.fVarying->fsIn()); |
| 1544 | f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1545 | f->codeAppendf( "mat2 innerRRectInverseMatrix = %s * mat2(s.x, 0, 0, s.y);", |
| 1546 | coords.fInverseMatrix); |
| 1547 | f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1548 | f->codeAppend ( "int rrectMask = 0;"); |
| 1549 | f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {"); |
| 1550 | f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1551 | f->codeAppend ( "vec2 pt = rrectCoords + "); |
| 1552 | f->appendOffsetToSample("i", GrGLSLFPFragmentBuilder::kSkiaDevice_Coordinates); |
| 1553 | f->codeAppend ( "* innerRRectInverseMatrix;"); |
| 1554 | f->codeAppendf( "if (%s(max(pt, vec2(0))) < 1.0) rrectMask |= (1 << i);", |
| 1555 | fSquareFun.c_str()); |
| 1556 | f->codeAppend ( "}"); |
| 1557 | this->acceptCoverageMask(f, "rrectMask", opts); |
| 1558 | f->codeAppend ("}"); |
| 1559 | } else { |
| 1560 | f->codeAppend ("int rrectMask = 0;"); |
| 1561 | f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {"); |
| 1562 | f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1563 | f->codeAppend ( "vec2 shapePt = "); |
| 1564 | this->interpolateAtSample(f, *coords.fVarying, "i", nullptr); |
| 1565 | f->codeAppend ( ";"); |
| 1566 | f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1567 | f->codeAppendf( "vec2 rrectPt = max(abs(shapePt) - %s.xy, vec2(0)) * %s.zw;", |
| 1568 | rrect, rrect); |
| 1569 | f->codeAppendf( "if (%s(rrectPt) < 1.0) rrectMask |= (1 << i);", fSquareFun.c_str()); |
| 1570 | f->codeAppend ("}"); |
| 1571 | this->acceptCoverageMask(f, "rrectMask", opts); |
| 1572 | } |
| 1573 | f->codeAppend ("}"); |
| 1574 | } |
| 1575 | |
| 1576 | void GLSLInstanceProcessor::BackendMultisample::interpolateAtSample(GrGLSLPPFragmentBuilder* f, |
| 1577 | const GrGLSLVarying& varying, |
| 1578 | const char* sampleIdx, |
| 1579 | const char* interpolationMatrix) { |
| 1580 | if (interpolationMatrix) { |
| 1581 | f->codeAppendf("(%s + ", varying.fsIn()); |
| 1582 | f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kSkiaDevice_Coordinates); |
| 1583 | f->codeAppendf(" * %s)", interpolationMatrix); |
| 1584 | } else { |
| 1585 | SkAssertResult( |
| 1586 | f->enableFeature(GrGLSLFragmentBuilder::kMultisampleInterpolation_GLSLFeature)); |
| 1587 | f->codeAppendf("interpolateAtOffset(%s, ", varying.fsIn()); |
| 1588 | f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kGLSLWindow_Coordinates); |
| 1589 | f->codeAppend(")"); |
| 1590 | } |
| 1591 | } |
| 1592 | |
| 1593 | void |
| 1594 | GLSLInstanceProcessor::BackendMultisample::acceptOrRejectWholeFragment(GrGLSLPPFragmentBuilder* f, |
| 1595 | bool inside, |
| 1596 | const EmitShapeOpts& opts) { |
| 1597 | if (inside != opts.fInvertCoverage) { // Accept the entire fragment. |
| 1598 | if (opts.fResolveMixedSamples) { |
| 1599 | // This is a mixed sampled fragment in the interior of the shape. Reassign 100% coverage |
| 1600 | // to one fragment, and drop all other fragments that may fall on this same pixel. Since |
| 1601 | // our geometry is water tight and non-overlapping, we can take advantage of the |
| 1602 | // properties that (1) the incoming sample masks will be disjoint across fragments that |
| 1603 | // fall on a common pixel, and (2) since the entire fragment is inside the shape, each |
| 1604 | // sample's corresponding bit will be set in the incoming sample mask of exactly one |
| 1605 | // fragment. |
| 1606 | f->codeAppend("if ((gl_SampleMaskIn[0] & SAMPLE_MASK_MSB) == 0) {"); |
| 1607 | // Drop this fragment. |
| 1608 | if (!fBatchInfo.fCannotDiscard) { |
| 1609 | f->codeAppend("discard;"); |
| 1610 | } else { |
| 1611 | f->overrideSampleCoverage("0"); |
| 1612 | } |
| 1613 | f->codeAppend("} else {"); |
| 1614 | // Override the lone surviving fragment to full coverage. |
| 1615 | f->overrideSampleCoverage("-1"); |
| 1616 | f->codeAppend("}"); |
| 1617 | } |
| 1618 | } else { // Reject the entire fragment. |
| 1619 | if (!fBatchInfo.fCannotDiscard) { |
| 1620 | f->codeAppend("discard;"); |
| 1621 | } else if (opts.fResolveMixedSamples) { |
| 1622 | f->overrideSampleCoverage("0"); |
| 1623 | } else { |
| 1624 | f->maskSampleCoverage("0"); |
| 1625 | } |
| 1626 | } |
| 1627 | } |
| 1628 | |
| 1629 | void GLSLInstanceProcessor::BackendMultisample::acceptCoverageMask(GrGLSLPPFragmentBuilder* f, |
| 1630 | const char* shapeMask, |
| 1631 | const EmitShapeOpts& opts, |
| 1632 | bool maybeSharedEdge) { |
| 1633 | if (opts.fResolveMixedSamples) { |
| 1634 | if (maybeSharedEdge) { |
| 1635 | // This is a mixed sampled fragment, potentially on the outer edge of the shape, with |
| 1636 | // only partial shape coverage. Override the coverage of one fragment to "shapeMask", |
| 1637 | // and drop all other fragments that may fall on this same pixel. Since our geometry is |
| 1638 | // water tight, non-overlapping, and completely contains the shape, this means that each |
| 1639 | // "on" bit from shapeMask is guaranteed to be set in the incoming sample mask of one, |
| 1640 | // and only one, fragment that falls on this same pixel. |
| 1641 | SkASSERT(!opts.fInvertCoverage); |
| 1642 | f->codeAppendf("if ((gl_SampleMaskIn[0] & (1 << findMSB(%s))) == 0) {", shapeMask); |
| 1643 | // Drop this fragment. |
| 1644 | if (!fBatchInfo.fCannotDiscard) { |
| 1645 | f->codeAppend ("discard;"); |
| 1646 | } else { |
| 1647 | f->overrideSampleCoverage("0"); |
| 1648 | } |
| 1649 | f->codeAppend ("} else {"); |
| 1650 | // Override the coverage of the lone surviving fragment to "shapeMask". |
| 1651 | f->overrideSampleCoverage(shapeMask); |
| 1652 | f->codeAppend ("}"); |
| 1653 | } else { |
| 1654 | f->overrideSampleCoverage(shapeMask); |
| 1655 | } |
| 1656 | } else { |
| 1657 | f->maskSampleCoverage(shapeMask, opts.fInvertCoverage); |
| 1658 | } |
| 1659 | } |
| 1660 | |
| 1661 | //////////////////////////////////////////////////////////////////////////////////////////////////// |
| 1662 | |
| 1663 | GLSLInstanceProcessor::Backend* |
| 1664 | GLSLInstanceProcessor::Backend::Create(const GrGLSLProgramBuilder* p, BatchInfo batchInfo, |
| 1665 | const VertexInputs& inputs) { |
| 1666 | switch (batchInfo.fAntialiasMode) { |
| 1667 | default: |
| 1668 | SkFAIL("Unexpected antialias mode."); |
| 1669 | case AntialiasMode::kNone: |
| 1670 | return new BackendNonAA(batchInfo, inputs); |
| 1671 | case AntialiasMode::kCoverage: |
| 1672 | return new BackendCoverage(batchInfo, inputs); |
| 1673 | case AntialiasMode::kMSAA: |
| 1674 | case AntialiasMode::kMixedSamples: { |
| 1675 | const GrPipeline& pipeline = p->pipeline(); |
| 1676 | const GrRenderTargetPriv& rtp = pipeline.getRenderTarget()->renderTargetPriv(); |
| 1677 | const GrGpu::MultisampleSpecs& specs = rtp.getMultisampleSpecs(pipeline.getStencil()); |
| 1678 | return new BackendMultisample(batchInfo, inputs, specs.fEffectiveSampleCnt); |
| 1679 | } |
| 1680 | } |
| 1681 | } |
| 1682 | |
| 1683 | //////////////////////////////////////////////////////////////////////////////////////////////////// |
| 1684 | |
| 1685 | const ShapeVertex kVertexData[] = { |
| 1686 | // Rectangle. |
| 1687 | {+1, +1, ~0}, /*0*/ |
| 1688 | {-1, +1, ~0}, /*1*/ |
| 1689 | {-1, -1, ~0}, /*2*/ |
| 1690 | {+1, -1, ~0}, /*3*/ |
| 1691 | // The next 4 are for the bordered version. |
| 1692 | {+1, +1, 0}, /*4*/ |
| 1693 | {-1, +1, 0}, /*5*/ |
| 1694 | {-1, -1, 0}, /*6*/ |
| 1695 | {+1, -1, 0}, /*7*/ |
| 1696 | |
| 1697 | // Octagon that inscribes the unit circle, cut by an interior unit octagon. |
| 1698 | {+1.000000f, 0.000000f, 0}, /* 8*/ |
| 1699 | {+1.000000f, +0.414214f, ~0}, /* 9*/ |
| 1700 | {+0.707106f, +0.707106f, 0}, /*10*/ |
| 1701 | {+0.414214f, +1.000000f, ~0}, /*11*/ |
| 1702 | { 0.000000f, +1.000000f, 0}, /*12*/ |
| 1703 | {-0.414214f, +1.000000f, ~0}, /*13*/ |
| 1704 | {-0.707106f, +0.707106f, 0}, /*14*/ |
| 1705 | {-1.000000f, +0.414214f, ~0}, /*15*/ |
| 1706 | {-1.000000f, 0.000000f, 0}, /*16*/ |
| 1707 | {-1.000000f, -0.414214f, ~0}, /*17*/ |
| 1708 | {-0.707106f, -0.707106f, 0}, /*18*/ |
| 1709 | {-0.414214f, -1.000000f, ~0}, /*19*/ |
| 1710 | { 0.000000f, -1.000000f, 0}, /*20*/ |
| 1711 | {+0.414214f, -1.000000f, ~0}, /*21*/ |
| 1712 | {+0.707106f, -0.707106f, 0}, /*22*/ |
| 1713 | {+1.000000f, -0.414214f, ~0}, /*23*/ |
| 1714 | // This vertex is for the fanned versions. |
| 1715 | { 0.000000f, 0.000000f, ~0}, /*24*/ |
| 1716 | |
| 1717 | // Rectangle with disjoint corner segments. |
| 1718 | {+1.0, +0.5, 0x3}, /*25*/ |
| 1719 | {+1.0, +1.0, 0x3}, /*26*/ |
| 1720 | {+0.5, +1.0, 0x3}, /*27*/ |
| 1721 | {-0.5, +1.0, 0x2}, /*28*/ |
| 1722 | {-1.0, +1.0, 0x2}, /*29*/ |
| 1723 | {-1.0, +0.5, 0x2}, /*30*/ |
| 1724 | {-1.0, -0.5, 0x0}, /*31*/ |
| 1725 | {-1.0, -1.0, 0x0}, /*32*/ |
| 1726 | {-0.5, -1.0, 0x0}, /*33*/ |
| 1727 | {+0.5, -1.0, 0x1}, /*34*/ |
| 1728 | {+1.0, -1.0, 0x1}, /*35*/ |
| 1729 | {+1.0, -0.5, 0x1}, /*36*/ |
| 1730 | // The next 4 are for the fanned version. |
| 1731 | { 0.0, 0.0, 0x3}, /*37*/ |
| 1732 | { 0.0, 0.0, 0x2}, /*38*/ |
| 1733 | { 0.0, 0.0, 0x0}, /*39*/ |
| 1734 | { 0.0, 0.0, 0x1}, /*40*/ |
| 1735 | // The next 8 are for the bordered version. |
| 1736 | {+0.75, +0.50, 0x3}, /*41*/ |
| 1737 | {+0.50, +0.75, 0x3}, /*42*/ |
| 1738 | {-0.50, +0.75, 0x2}, /*43*/ |
| 1739 | {-0.75, +0.50, 0x2}, /*44*/ |
| 1740 | {-0.75, -0.50, 0x0}, /*45*/ |
| 1741 | {-0.50, -0.75, 0x0}, /*46*/ |
| 1742 | {+0.50, -0.75, 0x1}, /*47*/ |
| 1743 | {+0.75, -0.50, 0x1}, /*48*/ |
| 1744 | |
| 1745 | // 16-gon that inscribes the unit circle, cut by an interior unit 16-gon. |
| 1746 | {+1.000000f, +0.000000f, 0}, /*49*/ |
| 1747 | {+1.000000f, +0.198913f, ~0}, /*50*/ |
| 1748 | {+0.923879f, +0.382683f, 0}, /*51*/ |
| 1749 | {+0.847760f, +0.566455f, ~0}, /*52*/ |
| 1750 | {+0.707106f, +0.707106f, 0}, /*53*/ |
| 1751 | {+0.566455f, +0.847760f, ~0}, /*54*/ |
| 1752 | {+0.382683f, +0.923879f, 0}, /*55*/ |
| 1753 | {+0.198913f, +1.000000f, ~0}, /*56*/ |
| 1754 | {+0.000000f, +1.000000f, 0}, /*57*/ |
| 1755 | {-0.198913f, +1.000000f, ~0}, /*58*/ |
| 1756 | {-0.382683f, +0.923879f, 0}, /*59*/ |
| 1757 | {-0.566455f, +0.847760f, ~0}, /*60*/ |
| 1758 | {-0.707106f, +0.707106f, 0}, /*61*/ |
| 1759 | {-0.847760f, +0.566455f, ~0}, /*62*/ |
| 1760 | {-0.923879f, +0.382683f, 0}, /*63*/ |
| 1761 | {-1.000000f, +0.198913f, ~0}, /*64*/ |
| 1762 | {-1.000000f, +0.000000f, 0}, /*65*/ |
| 1763 | {-1.000000f, -0.198913f, ~0}, /*66*/ |
| 1764 | {-0.923879f, -0.382683f, 0}, /*67*/ |
| 1765 | {-0.847760f, -0.566455f, ~0}, /*68*/ |
| 1766 | {-0.707106f, -0.707106f, 0}, /*69*/ |
| 1767 | {-0.566455f, -0.847760f, ~0}, /*70*/ |
| 1768 | {-0.382683f, -0.923879f, 0}, /*71*/ |
| 1769 | {-0.198913f, -1.000000f, ~0}, /*72*/ |
| 1770 | {-0.000000f, -1.000000f, 0}, /*73*/ |
| 1771 | {+0.198913f, -1.000000f, ~0}, /*74*/ |
| 1772 | {+0.382683f, -0.923879f, 0}, /*75*/ |
| 1773 | {+0.566455f, -0.847760f, ~0}, /*76*/ |
| 1774 | {+0.707106f, -0.707106f, 0}, /*77*/ |
| 1775 | {+0.847760f, -0.566455f, ~0}, /*78*/ |
| 1776 | {+0.923879f, -0.382683f, 0}, /*79*/ |
| 1777 | {+1.000000f, -0.198913f, ~0}, /*80*/ |
| 1778 | }; |
| 1779 | |
| 1780 | const uint8_t kIndexData[] = { |
| 1781 | // Rectangle. |
| 1782 | 0, 1, 2, |
| 1783 | 0, 2, 3, |
| 1784 | |
| 1785 | // Rectangle with a border. |
| 1786 | 0, 1, 5, |
| 1787 | 5, 4, 0, |
| 1788 | 1, 2, 6, |
| 1789 | 6, 5, 1, |
| 1790 | 2, 3, 7, |
| 1791 | 7, 6, 2, |
| 1792 | 3, 0, 4, |
| 1793 | 4, 7, 3, |
| 1794 | 4, 5, 6, |
| 1795 | 6, 7, 4, |
| 1796 | |
| 1797 | // Octagon that inscribes the unit circle, cut by an interior unit octagon. |
| 1798 | 10, 8, 9, |
| 1799 | 12, 10, 11, |
| 1800 | 14, 12, 13, |
| 1801 | 16, 14, 15, |
| 1802 | 18, 16, 17, |
| 1803 | 20, 18, 19, |
| 1804 | 22, 20, 21, |
| 1805 | 8, 22, 23, |
| 1806 | 8, 10, 12, |
| 1807 | 12, 14, 16, |
| 1808 | 16, 18, 20, |
| 1809 | 20, 22, 8, |
| 1810 | 8, 12, 16, |
| 1811 | 16, 20, 8, |
| 1812 | |
| 1813 | // Same octagons, but with the interior arranged as a fan. Used by mixed samples. |
| 1814 | 10, 8, 9, |
| 1815 | 12, 10, 11, |
| 1816 | 14, 12, 13, |
| 1817 | 16, 14, 15, |
| 1818 | 18, 16, 17, |
| 1819 | 20, 18, 19, |
| 1820 | 22, 20, 21, |
| 1821 | 8, 22, 23, |
| 1822 | 24, 8, 10, |
| 1823 | 12, 24, 10, |
| 1824 | 24, 12, 14, |
| 1825 | 16, 24, 14, |
| 1826 | 24, 16, 18, |
| 1827 | 20, 24, 18, |
| 1828 | 24, 20, 22, |
| 1829 | 8, 24, 22, |
| 1830 | |
| 1831 | // Same octagons, but with the inner and outer disjoint. Used by coverage AA. |
| 1832 | 8, 22, 23, |
| 1833 | 9, 8, 23, |
| 1834 | 10, 8, 9, |
| 1835 | 11, 10, 9, |
| 1836 | 12, 10, 11, |
| 1837 | 13, 12, 11, |
| 1838 | 14, 12, 13, |
| 1839 | 15, 14, 13, |
| 1840 | 16, 14, 15, |
| 1841 | 17, 16, 15, |
| 1842 | 18, 16, 17, |
| 1843 | 19, 18, 17, |
| 1844 | 20, 18, 19, |
| 1845 | 21, 20, 19, |
| 1846 | 22, 20, 21, |
| 1847 | 23, 22, 21, |
| 1848 | 22, 8, 10, |
| 1849 | 10, 12, 14, |
| 1850 | 14, 16, 18, |
| 1851 | 18, 20, 22, |
| 1852 | 22, 10, 14, |
| 1853 | 14, 18, 22, |
| 1854 | |
| 1855 | // Rectangle with disjoint corner segments. |
| 1856 | 27, 25, 26, |
| 1857 | 30, 28, 29, |
| 1858 | 33, 31, 32, |
| 1859 | 36, 34, 35, |
| 1860 | 25, 27, 28, |
| 1861 | 28, 30, 31, |
| 1862 | 31, 33, 34, |
| 1863 | 34, 36, 25, |
| 1864 | 25, 28, 31, |
| 1865 | 31, 34, 25, |
| 1866 | |
| 1867 | // Same rectangle with disjoint corners, but with the interior arranged as a fan. Used by |
| 1868 | // mixed samples. |
| 1869 | 27, 25, 26, |
| 1870 | 30, 28, 29, |
| 1871 | 33, 31, 32, |
| 1872 | 36, 34, 35, |
| 1873 | 27, 37, 25, |
| 1874 | 28, 37, 27, |
| 1875 | 30, 38, 28, |
| 1876 | 31, 38, 30, |
| 1877 | 33, 39, 31, |
| 1878 | 34, 39, 33, |
| 1879 | 36, 40, 34, |
| 1880 | 25, 40, 36, |
| 1881 | |
| 1882 | // Same rectangle with disjoint corners, with a border as well. Used by coverage AA. |
| 1883 | 41, 25, 26, |
| 1884 | 42, 41, 26, |
| 1885 | 27, 42, 26, |
| 1886 | 43, 28, 29, |
| 1887 | 44, 43, 29, |
| 1888 | 30, 44, 29, |
| 1889 | 45, 31, 32, |
| 1890 | 46, 45, 32, |
| 1891 | 33, 46, 32, |
| 1892 | 47, 34, 35, |
| 1893 | 48, 47, 35, |
| 1894 | 36, 48, 35, |
| 1895 | 27, 28, 42, |
| 1896 | 42, 28, 43, |
| 1897 | 30, 31, 44, |
| 1898 | 44, 31, 45, |
| 1899 | 33, 34, 46, |
| 1900 | 46, 34, 47, |
| 1901 | 36, 25, 48, |
| 1902 | 48, 25, 41, |
| 1903 | 41, 42, 43, |
| 1904 | 43, 44, 45, |
| 1905 | 45, 46, 47, |
| 1906 | 47, 48, 41, |
| 1907 | 41, 43, 45, |
| 1908 | 45, 47, 41, |
| 1909 | |
| 1910 | // Same as the disjoint octagons, but with 16-gons instead. Used by coverage AA when the oval is |
| 1911 | // sufficiently large. |
| 1912 | 49, 79, 80, |
| 1913 | 50, 49, 80, |
| 1914 | 51, 49, 50, |
| 1915 | 52, 51, 50, |
| 1916 | 53, 51, 52, |
| 1917 | 54, 53, 52, |
| 1918 | 55, 53, 54, |
| 1919 | 56, 55, 54, |
| 1920 | 57, 55, 56, |
| 1921 | 58, 57, 56, |
| 1922 | 59, 57, 58, |
| 1923 | 60, 59, 58, |
| 1924 | 61, 59, 60, |
| 1925 | 62, 61, 60, |
| 1926 | 63, 61, 62, |
| 1927 | 64, 63, 62, |
| 1928 | 65, 63, 64, |
| 1929 | 66, 65, 64, |
| 1930 | 67, 65, 66, |
| 1931 | 68, 67, 66, |
| 1932 | 69, 67, 68, |
| 1933 | 70, 69, 68, |
| 1934 | 71, 69, 70, |
| 1935 | 72, 71, 70, |
| 1936 | 73, 71, 72, |
| 1937 | 74, 73, 72, |
| 1938 | 75, 73, 74, |
| 1939 | 76, 75, 74, |
| 1940 | 77, 75, 76, |
| 1941 | 78, 77, 76, |
| 1942 | 79, 77, 78, |
| 1943 | 80, 79, 78, |
| 1944 | 49, 51, 53, |
| 1945 | 53, 55, 57, |
| 1946 | 57, 59, 61, |
| 1947 | 61, 63, 65, |
| 1948 | 65, 67, 69, |
| 1949 | 69, 71, 73, |
| 1950 | 73, 75, 77, |
| 1951 | 77, 79, 49, |
| 1952 | 49, 53, 57, |
| 1953 | 57, 61, 65, |
| 1954 | 65, 69, 73, |
| 1955 | 73, 77, 49, |
| 1956 | 49, 57, 65, |
| 1957 | 65, 73, 49, |
| 1958 | }; |
| 1959 | |
| 1960 | enum { |
| 1961 | kRect_FirstIndex = 0, |
| 1962 | kRect_TriCount = 2, |
| 1963 | |
| 1964 | kFramedRect_FirstIndex = 6, |
| 1965 | kFramedRect_TriCount = 10, |
| 1966 | |
| 1967 | kOctagons_FirstIndex = 36, |
| 1968 | kOctagons_TriCount = 14, |
| 1969 | |
| 1970 | kOctagonsFanned_FirstIndex = 78, |
| 1971 | kOctagonsFanned_TriCount = 16, |
| 1972 | |
| 1973 | kDisjointOctagons_FirstIndex = 126, |
| 1974 | kDisjointOctagons_TriCount = 22, |
| 1975 | |
| 1976 | kCorneredRect_FirstIndex = 192, |
| 1977 | kCorneredRect_TriCount = 10, |
| 1978 | |
| 1979 | kCorneredRectFanned_FirstIndex = 222, |
| 1980 | kCorneredRectFanned_TriCount = 12, |
| 1981 | |
| 1982 | kCorneredFramedRect_FirstIndex = 258, |
| 1983 | kCorneredFramedRect_TriCount = 26, |
| 1984 | |
| 1985 | kDisjoint16Gons_FirstIndex = 336, |
| 1986 | kDisjoint16Gons_TriCount = 46, |
| 1987 | }; |
| 1988 | |
| 1989 | static const GrUniqueKey::Domain kShapeBufferDomain = GrUniqueKey::GenerateDomain(); |
| 1990 | |
| 1991 | template<GrBufferType Type> static const GrUniqueKey& get_shape_buffer_key() { |
| 1992 | static GrUniqueKey* kKey; |
| 1993 | if (!kKey) { |
| 1994 | kKey = new GrUniqueKey; |
| 1995 | GrUniqueKey::Builder builder(kKey, kShapeBufferDomain, 1); |
| 1996 | builder[0] = Type; |
| 1997 | } |
| 1998 | return *kKey; |
| 1999 | } |
| 2000 | |
| 2001 | const GrBuffer* InstanceProcessor::FindOrCreateVertexBuffer(GrGpu* gpu) { |
| 2002 | GrResourceCache* cache = gpu->getContext()->getResourceCache(); |
| 2003 | const GrUniqueKey& key = get_shape_buffer_key<kVertex_GrBufferType>(); |
| 2004 | if (GrGpuResource* cached = cache->findAndRefUniqueResource(key)) { |
| 2005 | return static_cast<GrBuffer*>(cached); |
| 2006 | } |
| 2007 | if (GrBuffer* buffer = gpu->createBuffer(sizeof(kVertexData), kVertex_GrBufferType, |
| 2008 | kStatic_GrAccessPattern, kVertexData)) { |
| 2009 | buffer->resourcePriv().setUniqueKey(key); |
| 2010 | return buffer; |
| 2011 | } |
| 2012 | return nullptr; |
| 2013 | } |
| 2014 | |
| 2015 | const GrBuffer* InstanceProcessor::FindOrCreateIndex8Buffer(GrGpu* gpu) { |
| 2016 | GrResourceCache* cache = gpu->getContext()->getResourceCache(); |
| 2017 | const GrUniqueKey& key = get_shape_buffer_key<kIndex_GrBufferType>(); |
| 2018 | if (GrGpuResource* cached = cache->findAndRefUniqueResource(key)) { |
| 2019 | return static_cast<GrBuffer*>(cached); |
| 2020 | } |
| 2021 | if (GrBuffer* buffer = gpu->createBuffer(sizeof(kIndexData), kIndex_GrBufferType, |
| 2022 | kStatic_GrAccessPattern, kIndexData)) { |
| 2023 | buffer->resourcePriv().setUniqueKey(key); |
| 2024 | return buffer; |
| 2025 | } |
| 2026 | return nullptr; |
| 2027 | } |
| 2028 | |
| 2029 | IndexRange InstanceProcessor::GetIndexRangeForRect(AntialiasMode aa) { |
| 2030 | static constexpr IndexRange kRectRanges[kNumAntialiasModes] = { |
| 2031 | {kRect_FirstIndex, 3 * kRect_TriCount}, // kNone |
| 2032 | {kFramedRect_FirstIndex, 3 * kFramedRect_TriCount}, // kCoverage |
| 2033 | {kRect_FirstIndex, 3 * kRect_TriCount}, // kMSAA |
| 2034 | {kRect_FirstIndex, 3 * kRect_TriCount} // kMixedSamples |
| 2035 | }; |
| 2036 | |
| 2037 | SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples); |
| 2038 | return kRectRanges[(int)aa]; |
| 2039 | |
| 2040 | GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone); |
| 2041 | GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage); |
| 2042 | GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA); |
| 2043 | GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples); |
| 2044 | } |
| 2045 | |
| 2046 | IndexRange InstanceProcessor::GetIndexRangeForOval(AntialiasMode aa, const SkRect& devBounds) { |
| 2047 | if (AntialiasMode::kCoverage == aa && devBounds.height() * devBounds.width() >= 256 * 256) { |
| 2048 | // This threshold was chosen quasi-scientifically on Tegra X1. |
| 2049 | return {kDisjoint16Gons_FirstIndex, 3 * kDisjoint16Gons_TriCount}; |
| 2050 | } |
| 2051 | |
| 2052 | static constexpr IndexRange kOvalRanges[kNumAntialiasModes] = { |
| 2053 | {kOctagons_FirstIndex, 3 * kOctagons_TriCount}, // kNone |
| 2054 | {kDisjointOctagons_FirstIndex, 3 * kDisjointOctagons_TriCount}, // kCoverage |
| 2055 | {kOctagons_FirstIndex, 3 * kOctagons_TriCount}, // kMSAA |
| 2056 | {kOctagonsFanned_FirstIndex, 3 * kOctagonsFanned_TriCount} // kMixedSamples |
| 2057 | }; |
| 2058 | |
| 2059 | SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples); |
| 2060 | return kOvalRanges[(int)aa]; |
| 2061 | |
| 2062 | GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone); |
| 2063 | GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage); |
| 2064 | GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA); |
| 2065 | GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples); |
| 2066 | } |
| 2067 | |
| 2068 | IndexRange InstanceProcessor::GetIndexRangeForRRect(AntialiasMode aa) { |
| 2069 | static constexpr IndexRange kRRectRanges[kNumAntialiasModes] = { |
| 2070 | {kCorneredRect_FirstIndex, 3 * kCorneredRect_TriCount}, // kNone |
| 2071 | {kCorneredFramedRect_FirstIndex, 3 * kCorneredFramedRect_TriCount}, // kCoverage |
| 2072 | {kCorneredRect_FirstIndex, 3 * kCorneredRect_TriCount}, // kMSAA |
| 2073 | {kCorneredRectFanned_FirstIndex, 3 * kCorneredRectFanned_TriCount} // kMixedSamples |
| 2074 | }; |
| 2075 | |
| 2076 | SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples); |
| 2077 | return kRRectRanges[(int)aa]; |
| 2078 | |
| 2079 | GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone); |
| 2080 | GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage); |
| 2081 | GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA); |
| 2082 | GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples); |
| 2083 | } |
| 2084 | |
| 2085 | const char* InstanceProcessor::GetNameOfIndexRange(IndexRange range) { |
| 2086 | switch (range.fStart) { |
| 2087 | case kRect_FirstIndex: return "basic_rect"; |
| 2088 | case kFramedRect_FirstIndex: return "coverage_rect"; |
| 2089 | |
| 2090 | case kOctagons_FirstIndex: return "basic_oval"; |
| 2091 | case kDisjointOctagons_FirstIndex: return "coverage_oval"; |
| 2092 | case kOctagonsFanned_FirstIndex: return "mixed_samples_oval"; |
| 2093 | |
| 2094 | case kCorneredRect_FirstIndex: return "basic_round_rect"; |
| 2095 | case kCorneredFramedRect_FirstIndex: return "coverage_round_rect"; |
| 2096 | case kCorneredRectFanned_FirstIndex: return "mixed_samples_round_rect"; |
| 2097 | |
| 2098 | default: return "unknown"; |
| 2099 | } |
| 2100 | } |
| 2101 | |
| 2102 | } |