Chris Dalton | b832ce6 | 2020-01-06 19:49:37 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2019 Google LLC. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/gpu/tessellate/GrTessellatePathOp.h" |
| 9 | |
Chris Dalton | d081dce | 2020-01-23 12:09:04 -0700 | [diff] [blame] | 10 | #include "src/gpu/GrEagerVertexAllocator.h" |
Chris Dalton | b832ce6 | 2020-01-06 19:49:37 -0700 | [diff] [blame] | 11 | #include "src/gpu/GrGpu.h" |
| 12 | #include "src/gpu/GrOpFlushState.h" |
Chris Dalton | 4328e92 | 2020-01-29 13:16:14 -0700 | [diff] [blame^] | 13 | #include "src/gpu/GrTessellator.h" |
| 14 | #include "src/gpu/tessellate/GrFillPathShader.h" |
Chris Dalton | 40a1cee | 2020-01-16 01:29:37 -0700 | [diff] [blame] | 15 | #include "src/gpu/tessellate/GrPathParser.h" |
Chris Dalton | f9aea7f | 2020-01-21 11:19:26 -0700 | [diff] [blame] | 16 | #include "src/gpu/tessellate/GrStencilPathShader.h" |
Chris Dalton | b832ce6 | 2020-01-06 19:49:37 -0700 | [diff] [blame] | 17 | |
| 18 | GrTessellatePathOp::FixedFunctionFlags GrTessellatePathOp::fixedFunctionFlags() const { |
| 19 | auto flags = FixedFunctionFlags::kUsesStencil; |
| 20 | if (GrAAType::kNone != fAAType) { |
| 21 | flags |= FixedFunctionFlags::kUsesHWAA; |
| 22 | } |
| 23 | return flags; |
| 24 | } |
| 25 | |
| 26 | void GrTessellatePathOp::onPrepare(GrOpFlushState* state) { |
Chris Dalton | d081dce | 2020-01-23 12:09:04 -0700 | [diff] [blame] | 27 | GrEagerDynamicVertexAllocator pathVertexAllocator(state, &fPathVertexBuffer, &fBasePathVertex); |
| 28 | GrEagerDynamicVertexAllocator cubicInstanceAllocator(state, &fCubicInstanceBuffer, |
| 29 | &fBaseCubicInstance); |
| 30 | |
Chris Dalton | 4328e92 | 2020-01-29 13:16:14 -0700 | [diff] [blame^] | 31 | // First check if the path is large and/or simple enough that we can actually tessellate the |
| 32 | // inner polygon(s) on the CPU. This is our fastest approach. It allows us to stencil only the |
| 33 | // curves, and then draw the internal polygons directly to the final render target, thus filling |
| 34 | // in the majority of pixels in a single render pass. |
| 35 | SkScalar scales[2]; |
| 36 | SkAssertResult(fViewMatrix.getMinMaxScales(scales)); // Will fail if perspective. |
| 37 | const SkRect& bounds = fPath.getBounds(); |
| 38 | int numVerbs = fPath.countVerbs(); |
| 39 | if (numVerbs <= 0) { |
| 40 | return; |
| 41 | } |
| 42 | float gpuFragmentWork = bounds.height() * scales[0] * bounds.width() * scales[1]; |
| 43 | float cpuTessellationWork = (float)numVerbs * SkNextLog2(numVerbs); // N log N. |
| 44 | if (cpuTessellationWork * 500 + (256 * 256) < gpuFragmentWork) { // Don't try below 256x256. |
| 45 | bool pathIsLinear; |
| 46 | // PathToTriangles(..kSimpleInnerPolygon..) will fail if the inner polygon is not simple. |
| 47 | if ((fPathVertexCount = GrTessellator::PathToTriangles( |
| 48 | fPath, 0, SkRect::MakeEmpty(), &pathVertexAllocator, |
| 49 | GrTessellator::Mode::kSimpleInnerPolygons, &pathIsLinear))) { |
| 50 | if (((Flags::kStencilOnly | Flags::kWireframe) & fFlags) || |
| 51 | GrAAType::kCoverage == fAAType || |
| 52 | (state->appliedClip() && state->appliedClip()->hasStencilClip())) { |
| 53 | // If we have certain flags, mixed samples, or a stencil clip then we unfortunately |
| 54 | // can't fill the inner polygon directly. Create a stencil shader here to ensure we |
| 55 | // still stencil the entire path. |
| 56 | fStencilPathShader = state->allocator()->make<GrStencilTriangleShader>(fViewMatrix); |
| 57 | } |
| 58 | if (!(Flags::kStencilOnly & fFlags)) { |
| 59 | fFillPathShader = state->allocator()->make<GrFillTriangleShader>( |
| 60 | fViewMatrix, fColor); |
| 61 | } |
| 62 | if (!pathIsLinear) { |
| 63 | fCubicInstanceCount = GrPathParser::EmitCubicInstances( |
| 64 | fPath, &cubicInstanceAllocator); |
| 65 | SkASSERT(fCubicInstanceCount); |
| 66 | } |
| 67 | return; |
| 68 | } |
| 69 | } |
| 70 | |
| 71 | // Next see if we can split up inner polygon triangles and curves, and triangulate the inner |
Chris Dalton | f9aea7f | 2020-01-21 11:19:26 -0700 | [diff] [blame] | 72 | // polygon(s) more efficiently. This causes greater CPU overhead due to the extra shaders and |
| 73 | // draw calls, but the better triangulation can reduce the rasterizer load by a great deal on |
| 74 | // complex paths. |
Chris Dalton | 4328e92 | 2020-01-29 13:16:14 -0700 | [diff] [blame^] | 75 | // NOTE: Raster-edge work is 1-dimensional, so we sum height and width instead of multiplying. |
| 76 | float rasterEdgeWork = (bounds.height() + bounds.width()) * scales[1] * fPath.countVerbs(); |
Chris Dalton | f9aea7f | 2020-01-21 11:19:26 -0700 | [diff] [blame] | 77 | if (rasterEdgeWork > 1000 * 1000) { |
Chris Dalton | 4328e92 | 2020-01-29 13:16:14 -0700 | [diff] [blame^] | 78 | if ((fPathVertexCount = |
| 79 | GrPathParser::EmitInnerPolygonTriangles(fPath, &pathVertexAllocator))) { |
| 80 | fStencilPathShader = state->allocator()->make<GrStencilTriangleShader>(fViewMatrix); |
| 81 | } |
Chris Dalton | d081dce | 2020-01-23 12:09:04 -0700 | [diff] [blame] | 82 | fCubicInstanceCount = GrPathParser::EmitCubicInstances(fPath, &cubicInstanceAllocator); |
Chris Dalton | f9aea7f | 2020-01-21 11:19:26 -0700 | [diff] [blame] | 83 | return; |
| 84 | } |
| 85 | |
| 86 | // Fastest CPU approach: emit one cubic wedge per verb, fanning out from the center. |
Chris Dalton | 4328e92 | 2020-01-29 13:16:14 -0700 | [diff] [blame^] | 87 | |
| 88 | if ((fPathVertexCount = GrPathParser::EmitCenterWedgePatches(fPath, &pathVertexAllocator))) { |
| 89 | fStencilPathShader = state->allocator()->make<GrStencilWedgeShader>(fViewMatrix); |
| 90 | } |
Chris Dalton | b832ce6 | 2020-01-06 19:49:37 -0700 | [diff] [blame] | 91 | } |
| 92 | |
| 93 | void GrTessellatePathOp::onExecute(GrOpFlushState* state, const SkRect& chainBounds) { |
Chris Dalton | b832ce6 | 2020-01-06 19:49:37 -0700 | [diff] [blame] | 94 | GrAppliedClip clip = state->detachAppliedClip(); |
| 95 | GrPipeline::FixedDynamicState fixedDynamicState; |
| 96 | if (clip.scissorState().enabled()) { |
| 97 | fixedDynamicState.fScissorRect = clip.scissorState().rect(); |
| 98 | } |
| 99 | |
| 100 | this->drawStencilPass(state, clip.hardClip(), &fixedDynamicState); |
Chris Dalton | f9aea7f | 2020-01-21 11:19:26 -0700 | [diff] [blame] | 101 | |
Chris Dalton | b832ce6 | 2020-01-06 19:49:37 -0700 | [diff] [blame] | 102 | if (!(Flags::kStencilOnly & fFlags)) { |
| 103 | this->drawCoverPass(state, std::move(clip), &fixedDynamicState); |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | void GrTessellatePathOp::drawStencilPass(GrOpFlushState* state, const GrAppliedHardClip& hardClip, |
| 108 | const GrPipeline::FixedDynamicState* fixedDynamicState) { |
| 109 | // Increments clockwise triangles and decrements counterclockwise. Used for "winding" fill. |
| 110 | constexpr static GrUserStencilSettings kIncrDecrStencil( |
| 111 | GrUserStencilSettings::StaticInitSeparate< |
| 112 | 0x0000, 0x0000, |
| 113 | GrUserStencilTest::kAlwaysIfInClip, GrUserStencilTest::kAlwaysIfInClip, |
| 114 | 0xffff, 0xffff, |
| 115 | GrUserStencilOp::kIncWrap, GrUserStencilOp::kDecWrap, |
| 116 | GrUserStencilOp::kKeep, GrUserStencilOp::kKeep, |
| 117 | 0xffff, 0xffff>()); |
| 118 | |
| 119 | // Inverts the bottom stencil bit. Used for "even/odd" fill. |
| 120 | constexpr static GrUserStencilSettings kInvertStencil( |
| 121 | GrUserStencilSettings::StaticInit< |
| 122 | 0x0000, |
| 123 | GrUserStencilTest::kAlwaysIfInClip, |
| 124 | 0xffff, |
| 125 | GrUserStencilOp::kInvert, |
| 126 | GrUserStencilOp::kKeep, |
| 127 | 0x0001>()); |
| 128 | |
| 129 | GrPipeline::InitArgs initArgs; |
| 130 | if (GrAAType::kNone != fAAType) { |
| 131 | initArgs.fInputFlags |= GrPipeline::InputFlags::kHWAntialias; |
| 132 | } |
| 133 | if (state->caps().wireframeSupport() && (Flags::kWireframe & fFlags)) { |
| 134 | initArgs.fInputFlags |= GrPipeline::InputFlags::kWireframe; |
| 135 | } |
| 136 | SkASSERT(SkPathFillType::kWinding == fPath.getFillType() || |
| 137 | SkPathFillType::kEvenOdd == fPath.getFillType()); |
| 138 | initArgs.fUserStencil = (SkPathFillType::kWinding == fPath.getFillType()) ? |
| 139 | &kIncrDecrStencil : &kInvertStencil; |
| 140 | initArgs.fCaps = &state->caps(); |
| 141 | |
| 142 | GrPipeline pipeline(initArgs, GrDisableColorXPFactory::MakeXferProcessor(), hardClip); |
Chris Dalton | b832ce6 | 2020-01-06 19:49:37 -0700 | [diff] [blame] | 143 | |
Chris Dalton | 4328e92 | 2020-01-29 13:16:14 -0700 | [diff] [blame^] | 144 | if (fStencilPathShader) { |
| 145 | SkASSERT(fPathVertexBuffer); |
| 146 | fStencilPathShader->issueDraw(state, &pipeline, fixedDynamicState, fPathVertexBuffer, |
| 147 | fPathVertexCount, fBasePathVertex, this->bounds()); |
Chris Dalton | f9aea7f | 2020-01-21 11:19:26 -0700 | [diff] [blame] | 148 | } |
| 149 | |
| 150 | if (fCubicInstanceBuffer) { |
Chris Dalton | 4328e92 | 2020-01-29 13:16:14 -0700 | [diff] [blame^] | 151 | // Here we treat the cubic instance buffer as tessellation patches to stencil the curves. |
Chris Dalton | f9aea7f | 2020-01-21 11:19:26 -0700 | [diff] [blame] | 152 | GrMesh mesh(GrPrimitiveType::kPatches, 4); |
| 153 | mesh.setNonIndexedNonInstanced(fCubicInstanceCount * 4); |
| 154 | mesh.setVertexData(fCubicInstanceBuffer, fBaseCubicInstance * 4); |
Chris Dalton | 4328e92 | 2020-01-29 13:16:14 -0700 | [diff] [blame^] | 155 | GrStencilCubicShader(fViewMatrix).issueDraw( |
| 156 | state, &pipeline, fixedDynamicState, mesh, this->bounds()); |
Chris Dalton | f9aea7f | 2020-01-21 11:19:26 -0700 | [diff] [blame] | 157 | } |
Chris Dalton | b832ce6 | 2020-01-06 19:49:37 -0700 | [diff] [blame] | 158 | |
| 159 | // http://skbug.com/9739 |
| 160 | if (state->caps().requiresManualFBBarrierAfterTessellatedStencilDraw()) { |
| 161 | state->gpu()->insertManualFramebufferBarrier(); |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | void GrTessellatePathOp::drawCoverPass(GrOpFlushState* state, GrAppliedClip&& clip, |
| 166 | const GrPipeline::FixedDynamicState* fixedDynamicState) { |
| 167 | // Allows non-zero stencil values to pass and write a color, and resets the stencil value back |
| 168 | // to zero; discards immediately on stencil values of zero. |
| 169 | // NOTE: It's ok to not check the clip here because the previous stencil pass only wrote to |
| 170 | // samples already inside the clip. |
| 171 | constexpr static GrUserStencilSettings kTestAndResetStencil( |
| 172 | GrUserStencilSettings::StaticInit< |
| 173 | 0x0000, |
| 174 | GrUserStencilTest::kNotEqual, |
| 175 | 0xffff, |
| 176 | GrUserStencilOp::kZero, |
| 177 | GrUserStencilOp::kKeep, |
| 178 | 0xffff>()); |
| 179 | |
| 180 | GrPipeline::InitArgs initArgs; |
| 181 | if (GrAAType::kNone != fAAType) { |
| 182 | initArgs.fInputFlags |= GrPipeline::InputFlags::kHWAntialias; |
| 183 | if (1 == state->proxy()->numSamples()) { |
| 184 | SkASSERT(GrAAType::kCoverage == fAAType); |
| 185 | // We are mixed sampled. Use conservative raster to make the sample coverage mask 100% |
| 186 | // at every fragment. This way we will still get a double hit on shared edges, but |
| 187 | // whichever side comes first will cover every sample and will clear the stencil. The |
| 188 | // other side will then be discarded and not cause a double blend. |
| 189 | initArgs.fInputFlags |= GrPipeline::InputFlags::kConservativeRaster; |
| 190 | } |
| 191 | } |
Chris Dalton | b832ce6 | 2020-01-06 19:49:37 -0700 | [diff] [blame] | 192 | initArgs.fCaps = &state->caps(); |
| 193 | initArgs.fDstProxyView = state->drawOpArgs().dstProxyView(); |
| 194 | initArgs.fOutputSwizzle = state->drawOpArgs().outputSwizzle(); |
| 195 | |
| 196 | GrPipeline pipeline(initArgs, std::move(fProcessors), std::move(clip)); |
Chris Dalton | b832ce6 | 2020-01-06 19:49:37 -0700 | [diff] [blame] | 197 | |
Chris Dalton | 4328e92 | 2020-01-29 13:16:14 -0700 | [diff] [blame^] | 198 | if (fFillPathShader) { |
| 199 | SkASSERT(fPathVertexBuffer); |
Chris Dalton | b832ce6 | 2020-01-06 19:49:37 -0700 | [diff] [blame] | 200 | |
Chris Dalton | 4328e92 | 2020-01-29 13:16:14 -0700 | [diff] [blame^] | 201 | // These are a twist on the standard red book stencil settings that allow us to draw the |
| 202 | // inner polygon directly to the final render target. At this point, the curves are already |
| 203 | // stencilled in. So if the stencil value is zero, then it means the path at our sample is |
| 204 | // not affected by any curves and we fill the path in directly. If the stencil value is |
| 205 | // nonzero, then we don't fill and instead continue the standard red book stencil process. |
| 206 | // |
| 207 | // NOTE: These settings are currently incompatible with a stencil clip. |
| 208 | constexpr static GrUserStencilSettings kFillOrIncrDecrStencil( |
| 209 | GrUserStencilSettings::StaticInitSeparate< |
| 210 | 0x0000, 0x0000, |
| 211 | GrUserStencilTest::kEqual, GrUserStencilTest::kEqual, |
| 212 | 0xffff, 0xffff, |
| 213 | GrUserStencilOp::kKeep, GrUserStencilOp::kKeep, |
| 214 | GrUserStencilOp::kIncWrap, GrUserStencilOp::kDecWrap, |
| 215 | 0xffff, 0xffff>()); |
| 216 | |
| 217 | constexpr static GrUserStencilSettings kFillOrInvertStencil( |
| 218 | GrUserStencilSettings::StaticInit< |
| 219 | 0x0000, |
| 220 | GrUserStencilTest::kEqual, |
| 221 | 0xffff, |
| 222 | GrUserStencilOp::kKeep, |
| 223 | GrUserStencilOp::kZero, |
| 224 | 0xffff>()); |
| 225 | |
| 226 | if (fStencilPathShader) { |
| 227 | // The path was already stencilled. Here we just need to do a cover pass. |
| 228 | pipeline.setUserStencil(&kTestAndResetStencil); |
| 229 | } else if (!fCubicInstanceBuffer) { |
| 230 | // There are no curves, so we can just ignore stencil and fill the path directly. |
| 231 | pipeline.setUserStencil(&GrUserStencilSettings::kUnused); |
| 232 | } else if (SkPathFillType::kWinding == fPath.getFillType()) { |
| 233 | // Fill in the path pixels not touched by curves, incr/decr stencil otherwise. |
| 234 | SkASSERT(!pipeline.hasStencilClip()); |
| 235 | pipeline.setUserStencil(&kFillOrIncrDecrStencil); |
| 236 | } else { |
| 237 | // Fill in the path pixels not touched by curves, invert stencil otherwise. |
| 238 | SkASSERT(!pipeline.hasStencilClip()); |
| 239 | pipeline.setUserStencil(&kFillOrInvertStencil); |
| 240 | } |
| 241 | fFillPathShader->issueDraw(state, &pipeline, fixedDynamicState, fPathVertexBuffer, |
| 242 | fPathVertexCount, fBasePathVertex, this->bounds()); |
| 243 | |
| 244 | if (fCubicInstanceBuffer) { |
| 245 | // At this point, every pixel is filled in except the ones touched by curves. Issue a |
| 246 | // final cover pass over the curves by drawing their convex hulls. This will fill in any |
| 247 | // remaining samples and reset the stencil buffer. |
| 248 | GrMesh mesh(GrPrimitiveType::kTriangleStrip); |
| 249 | mesh.setInstanced(fCubicInstanceBuffer, fCubicInstanceCount, fBaseCubicInstance, 4); |
| 250 | pipeline.setUserStencil(&kTestAndResetStencil); |
| 251 | GrFillCubicHullShader(fViewMatrix, fColor).issueDraw( |
| 252 | state, &pipeline, fixedDynamicState, mesh, this->bounds()); |
| 253 | } |
| 254 | } else { |
| 255 | // There is not a fill shader for the path. Just draw a bounding box. |
| 256 | GrMesh mesh(GrPrimitiveType::kTriangleStrip); |
| 257 | mesh.setNonIndexedNonInstanced(4); |
| 258 | pipeline.setUserStencil(&kTestAndResetStencil); |
| 259 | GrFillBoundingBoxShader(fViewMatrix, fColor, fPath.getBounds()).issueDraw( |
| 260 | state, &pipeline, fixedDynamicState, mesh, this->bounds()); |
| 261 | } |
Chris Dalton | b832ce6 | 2020-01-06 19:49:37 -0700 | [diff] [blame] | 262 | } |