blob: 1d7c9a09eaa9250e74aca2f37a3369d46b384297 [file] [log] [blame]
Michael Ludwiga195d102020-09-15 14:51:52 -04001/*
2 * Copyright 2020 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "src/gpu/GrClipStack.h"
9
10#include "include/core/SkMatrix.h"
11#include "src/core/SkRRectPriv.h"
12#include "src/core/SkRectPriv.h"
13#include "src/core/SkTaskGroup.h"
14#include "src/gpu/GrClip.h"
15#include "src/gpu/GrContextPriv.h"
16#include "src/gpu/GrDeferredProxyUploader.h"
17#include "src/gpu/GrProxyProvider.h"
18#include "src/gpu/GrRecordingContextPriv.h"
19#include "src/gpu/GrRenderTargetContextPriv.h"
20#include "src/gpu/GrSWMaskHelper.h"
21#include "src/gpu/GrStencilMaskHelper.h"
22#include "src/gpu/ccpr/GrCoverageCountingPathRenderer.h"
23#include "src/gpu/effects/GrBlendFragmentProcessor.h"
24#include "src/gpu/effects/GrConvexPolyEffect.h"
25#include "src/gpu/effects/GrRRectEffect.h"
26#include "src/gpu/effects/GrTextureEffect.h"
27#include "src/gpu/effects/generated/GrAARectEffect.h"
28#include "src/gpu/effects/generated/GrDeviceSpaceEffect.h"
29#include "src/gpu/geometry/GrQuadUtils.h"
30
31namespace {
32
33// This captures which of the two elements in (A op B) would be required when they are combined,
34// where op is intersect or difference.
35enum class ClipGeometry {
36 kEmpty,
37 kAOnly,
38 kBOnly,
39 kBoth
40};
41
42// A and B can be Element, SaveRecord, or Draw. Supported combinations are, order not mattering,
43// (Element, Element), (Element, SaveRecord), (Element, Draw), and (SaveRecord, Draw).
44template<typename A, typename B>
45static ClipGeometry get_clip_geometry(const A& a, const B& b) {
46 // NOTE: SkIRect::Intersects() returns false when two rectangles touch at an edge (so the result
47 // is empty). This behavior is desired for the following clip effect policies.
48 if (a.op() == SkClipOp::kIntersect) {
49 if (b.op() == SkClipOp::kIntersect) {
50 // Intersect (A) + Intersect (B)
51 if (!SkIRect::Intersects(a.outerBounds(), b.outerBounds())) {
52 // Regions with non-zero coverage are disjoint, so intersection = empty
53 return ClipGeometry::kEmpty;
54 } else if (b.contains(a)) {
55 // B's full coverage region contains entirety of A, so intersection = A
56 return ClipGeometry::kAOnly;
57 } else if (a.contains(b)) {
58 // A's full coverage region contains entirety of B, so intersection = B
59 return ClipGeometry::kBOnly;
60 } else {
61 // The shapes intersect in some non-trivial manner
62 return ClipGeometry::kBoth;
63 }
64 } else {
65 SkASSERT(b.op() == SkClipOp::kDifference);
66 // Intersect (A) + Difference (B)
67 if (!SkIRect::Intersects(a.outerBounds(), b.outerBounds())) {
68 // A only intersects B's full coverage region, so intersection = A
69 return ClipGeometry::kAOnly;
70 } else if (b.contains(a)) {
71 // B's zero coverage region completely contains A, so intersection = empty
72 return ClipGeometry::kEmpty;
73 } else {
74 // Intersection cannot be simplified. Note that the combination of a intersect
75 // and difference op in this order cannot produce kBOnly
76 return ClipGeometry::kBoth;
77 }
78 }
79 } else {
80 SkASSERT(a.op() == SkClipOp::kDifference);
81 if (b.op() == SkClipOp::kIntersect) {
82 // Difference (A) + Intersect (B) - the mirror of Intersect(A) + Difference(B),
83 // but combining is commutative so this is equivalent barring naming.
84 if (!SkIRect::Intersects(b.outerBounds(), a.outerBounds())) {
85 // B only intersects A's full coverage region, so intersection = B
86 return ClipGeometry::kBOnly;
87 } else if (a.contains(b)) {
88 // A's zero coverage region completely contains B, so intersection = empty
89 return ClipGeometry::kEmpty;
90 } else {
91 // Cannot be simplified
92 return ClipGeometry::kBoth;
93 }
94 } else {
95 SkASSERT(b.op() == SkClipOp::kDifference);
96 // Difference (A) + Difference (B)
97 if (a.contains(b)) {
98 // A's zero coverage region contains B, so B doesn't remove any extra
99 // coverage from their intersection.
100 return ClipGeometry::kAOnly;
101 } else if (b.contains(a)) {
102 // Mirror of the above case, intersection = B instead
103 return ClipGeometry::kBOnly;
104 } else {
105 // Intersection of the two differences cannot be simplified. Note that for
106 // this op combination it is not possible to produce kEmpty.
107 return ClipGeometry::kBoth;
108 }
109 }
110 }
111}
112
113// a.contains(b) where a's local space is defined by 'aToDevice', and b's possibly separate local
114// space is defined by 'bToDevice'. 'a' and 'b' geometry are provided in their local spaces.
115// Automatically takes into account if the anti-aliasing policies differ. When the policies match,
116// we assume that coverage AA or GPU's non-AA rasterization will apply to A and B equivalently, so
117// we can compare the original shapes. When the modes are mixed, we outset B in device space first.
118static bool shape_contains_rect(
119 const GrShape& a, const SkMatrix& aToDevice, const SkMatrix& deviceToA,
120 const SkRect& b, const SkMatrix& bToDevice, bool mixedAAMode) {
121 if (!a.convex()) {
122 return false;
123 }
124
125 if (!mixedAAMode && aToDevice == bToDevice) {
126 // A and B are in the same coordinate space, so don't bother mapping
127 return a.conservativeContains(b);
Michael Ludwig84a008f2020-09-18 15:30:55 -0400128 } else if (bToDevice.isIdentity() && aToDevice.isScaleTranslate()) {
129 // Optimize the common case of draws (B, with identity matrix) and axis-aligned shapes,
130 // instead of checking the four corners separately.
131 SkRect bInA = b;
132 if (mixedAAMode) {
133 bInA.outset(0.5f, 0.5f);
134 }
135 SkAssertResult(deviceToA.mapRect(&bInA));
136 return a.conservativeContains(bInA);
Michael Ludwiga195d102020-09-15 14:51:52 -0400137 }
138
139 // Test each corner for contains; since a is convex, if all 4 corners of b's bounds are
140 // contained, then the entirety of b is within a.
141 GrQuad deviceQuad = GrQuad::MakeFromRect(b, bToDevice);
142 if (any(deviceQuad.w4f() < SkPathPriv::kW0PlaneDistance)) {
143 // Something in B actually projects behind the W = 0 plane and would be clipped to infinity,
144 // so it's extremely unlikely that A can contain B.
145 return false;
146 }
147 if (mixedAAMode) {
148 // Outset it so its edges are 1/2px out, giving us a buffer to avoid cases where a non-AA
149 // clip or draw would snap outside an aa element.
150 GrQuadUtils::Outset({0.5f, 0.5f, 0.5f, 0.5f}, &deviceQuad);
151 }
152
153 for (int i = 0; i < 4; ++i) {
154 SkPoint cornerInA = deviceQuad.point(i);
155 deviceToA.mapPoints(&cornerInA, 1);
156 if (!a.conservativeContains(cornerInA)) {
157 return false;
158 }
159 }
160
161 return true;
162}
163
164static SkIRect subtract(const SkIRect& a, const SkIRect& b, bool exact) {
165 SkIRect diff;
166 if (SkRectPriv::Subtract(a, b, &diff) || !exact) {
167 // Either A-B is exactly the rectangle stored in diff, or we don't need an exact answer
168 // and can settle for the subrect of A excluded from B (which is also 'diff')
169 return diff;
170 } else {
171 // For our purposes, we want the original A when A-B cannot be exactly represented
172 return a;
173 }
174}
175
176static GrClipEdgeType get_clip_edge_type(SkClipOp op, GrAA aa) {
177 if (op == SkClipOp::kIntersect) {
178 return aa == GrAA::kYes ? GrClipEdgeType::kFillAA : GrClipEdgeType::kFillBW;
179 } else {
180 return aa == GrAA::kYes ? GrClipEdgeType::kInverseFillAA : GrClipEdgeType::kInverseFillBW;
181 }
182}
183
184static uint32_t kInvalidGenID = 0;
185static uint32_t kEmptyGenID = 1;
186static uint32_t kWideOpenGenID = 2;
187
188static uint32_t next_gen_id() {
189 // 0-2 are reserved for invalid, empty & wide-open
190 static const uint32_t kFirstUnreservedGenID = 3;
191 static std::atomic<uint32_t> nextID{kFirstUnreservedGenID};
192
193 uint32_t id;
194 do {
195 id = nextID++;
196 } while (id < kFirstUnreservedGenID);
197 return id;
198}
199
200// Functions for rendering / applying clip shapes in various ways
201// The general strategy is:
202// - Represent the clip element as an analytic FP that tests sk_FragCoord vs. its device shape
203// - Render the clip element to the stencil, if stencil is allowed and supports the AA, and the
204// size of the element indicates stenciling will be worth it, vs. making a mask.
205// - Try to put the individual element into a clip atlas, which is then sampled during the draw
206// - Render the element into a SW mask and upload it. If possible, the SW rasterization happens
207// in parallel.
208static constexpr GrSurfaceOrigin kMaskOrigin = kTopLeft_GrSurfaceOrigin;
209
210static GrFPResult analytic_clip_fp(const GrClipStack::Element& e,
211 const GrShaderCaps& caps,
212 std::unique_ptr<GrFragmentProcessor> fp) {
213 // All analytic clip shape FPs need to be in device space
214 GrClipEdgeType edgeType = get_clip_edge_type(e.fOp, e.fAA);
215 if (e.fLocalToDevice.isIdentity()) {
216 if (e.fShape.isRect()) {
217 return GrFPSuccess(GrAARectEffect::Make(std::move(fp), edgeType, e.fShape.rect()));
218 } else if (e.fShape.isRRect()) {
219 return GrRRectEffect::Make(std::move(fp), edgeType, e.fShape.rrect(), caps);
220 }
221 }
222
223 // A convex hull can be transformed into device space (this will handle rect shapes with a
224 // non-identity transform).
225 if (e.fShape.segmentMask() == SkPath::kLine_SegmentMask && e.fShape.convex()) {
226 SkPath devicePath;
227 e.fShape.asPath(&devicePath);
228 devicePath.transform(e.fLocalToDevice);
229 return GrConvexPolyEffect::Make(std::move(fp), edgeType, devicePath);
230 }
231
232 return GrFPFailure(std::move(fp));
233}
234
235// TODO: Currently this only works with CCPR because CCPR owns and manages the clip atlas. The
236// high-level concept should be generalized to support any path renderer going into a shared atlas.
237static std::unique_ptr<GrFragmentProcessor> clip_atlas_fp(GrCoverageCountingPathRenderer* ccpr,
238 uint32_t opsTaskID,
239 const SkIRect& bounds,
240 const GrClipStack::Element& e,
241 SkPath* devicePath,
242 const GrCaps& caps,
243 std::unique_ptr<GrFragmentProcessor> fp) {
244 // TODO: Currently the atlas manages device-space paths, so we have to transform by the ctm.
245 // In the future, the atlas manager should see the local path and the ctm so that it can
246 // cache across integer-only translations (internally, it already does this, just not exposed).
247 if (devicePath->isEmpty()) {
248 e.fShape.asPath(devicePath);
249 devicePath->transform(e.fLocalToDevice);
250 SkASSERT(!devicePath->isEmpty());
251 }
252
253 SkASSERT(!devicePath->isInverseFillType());
254 if (e.fOp == SkClipOp::kIntersect) {
255 return ccpr->makeClipProcessor(std::move(fp), opsTaskID, *devicePath, bounds, caps);
256 } else {
257 // Use kDstOut to convert the non-inverted mask alpha into (1-alpha), so the atlas only
258 // ever renders non-inverse filled paths.
259 // - When the input FP is null, this turns into "(1-sample(ccpr, 1).a) * input"
260 // - When not null, it works out to
261 // (1-sample(ccpr, input.rgb1).a) * sample(fp, input.rgb1) * input.a
262 // - Since clips only care about the alpha channel, these are both equivalent to the
263 // desired product of (1-ccpr) * fp * input.a.
264 return GrBlendFragmentProcessor::Make(
265 ccpr->makeClipProcessor(nullptr, opsTaskID, *devicePath, bounds, caps), // src
266 std::move(fp), // dst
267 SkBlendMode::kDstOut);
268 }
269}
270
271static void draw_to_sw_mask(GrSWMaskHelper* helper, const GrClipStack::Element& e, bool clearMask) {
272 // If the first element to draw is an intersect, we clear to 0 and will draw it directly with
273 // coverage 1 (subsequent intersect elements will be inverse-filled and draw 0 outside).
274 // If the first element to draw is a difference, we clear to 1, and in all cases we draw the
275 // difference element directly with coverage 0.
276 if (clearMask) {
277 helper->clear(e.fOp == SkClipOp::kIntersect ? 0x00 : 0xFF);
278 }
279
280 uint8_t alpha;
281 bool invert;
282 if (e.fOp == SkClipOp::kIntersect) {
283 // Intersect modifies pixels outside of its geometry. If this isn't the first op, we
284 // draw the inverse-filled shape with 0 coverage to erase everything outside the element
285 // But if we are the first element, we can draw directly with coverage 1 since we
286 // cleared to 0.
287 if (clearMask) {
288 alpha = 0xFF;
289 invert = false;
290 } else {
291 alpha = 0x00;
292 invert = true;
293 }
294 } else {
295 // For difference ops, can always just subtract the shape directly by drawing 0 coverage
296 SkASSERT(e.fOp == SkClipOp::kDifference);
297 alpha = 0x00;
298 invert = false;
299 }
300
301 // Draw the shape; based on how we've initialized the buffer and chosen alpha+invert,
302 // every element is drawn with the kReplace_Op
303 if (invert) {
304 // Must invert the path
305 SkASSERT(!e.fShape.inverted());
306 // TODO: this is an extra copy effectively, just so we can toggle inversion; would be
307 // better perhaps to just call a drawPath() since we know it'll use path rendering w/
308 // the inverse fill type.
309 GrShape inverted(e.fShape);
310 inverted.setInverted(true);
311 helper->drawShape(inverted, e.fLocalToDevice, SkRegion::kReplace_Op, e.fAA, alpha);
312 } else {
313 helper->drawShape(e.fShape, e.fLocalToDevice, SkRegion::kReplace_Op, e.fAA, alpha);
314 }
315}
316
317static GrSurfaceProxyView render_sw_mask(GrRecordingContext* context, const SkIRect& bounds,
318 const GrClipStack::Element** elements, int count) {
319 SkASSERT(count > 0);
320
321 SkTaskGroup* taskGroup = nullptr;
322 if (auto direct = context->asDirectContext()) {
323 taskGroup = direct->priv().getTaskGroup();
324 }
325
326 if (taskGroup) {
327 const GrCaps* caps = context->priv().caps();
328 GrProxyProvider* proxyProvider = context->priv().proxyProvider();
329
330 // Create our texture proxy
331 GrBackendFormat format = caps->getDefaultBackendFormat(GrColorType::kAlpha_8,
332 GrRenderable::kNo);
333
334 GrSwizzle swizzle = context->priv().caps()->getReadSwizzle(format, GrColorType::kAlpha_8);
335 auto proxy = proxyProvider->createProxy(format, bounds.size(), GrRenderable::kNo, 1,
336 GrMipMapped::kNo, SkBackingFit::kApprox,
337 SkBudgeted::kYes, GrProtected::kNo);
338
339 // Since this will be rendered on another thread, make a copy of the elements in case
340 // the clip stack is modified on the main thread
341 using Uploader = GrTDeferredProxyUploader<SkTArray<GrClipStack::Element>>;
342 std::unique_ptr<Uploader> uploader = std::make_unique<Uploader>(count);
343 for (int i = 0; i < count; ++i) {
344 uploader->data().push_back(*(elements[i]));
345 }
346
347 Uploader* uploaderRaw = uploader.get();
348 auto drawAndUploadMask = [uploaderRaw, bounds] {
349 TRACE_EVENT0("skia.gpu", "Threaded SW Clip Mask Render");
350 GrSWMaskHelper helper(uploaderRaw->getPixels());
351 if (helper.init(bounds)) {
352 for (int i = 0; i < uploaderRaw->data().count(); ++i) {
353 draw_to_sw_mask(&helper, uploaderRaw->data()[i], i == 0);
354 }
355 } else {
356 SkDEBUGFAIL("Unable to allocate SW clip mask.");
357 }
358 uploaderRaw->signalAndFreeData();
359 };
360
361 taskGroup->add(std::move(drawAndUploadMask));
362 proxy->texPriv().setDeferredUploader(std::move(uploader));
363
364 return {std::move(proxy), kMaskOrigin, swizzle};
365 } else {
366 GrSWMaskHelper helper;
367 if (!helper.init(bounds)) {
368 return {};
369 }
370
371 for (int i = 0; i < count; ++i) {
372 draw_to_sw_mask(&helper,*(elements[i]), i == 0);
373 }
374
375 return helper.toTextureView(context, SkBackingFit::kApprox);
376 }
377}
378
379static void render_stencil_mask(GrRecordingContext* context, GrRenderTargetContext* rtc,
380 uint32_t genID, const SkIRect& bounds,
381 const GrClipStack::Element** elements, int count,
382 GrAppliedClip* out) {
383 GrStencilMaskHelper helper(context, rtc);
384 if (helper.init(bounds, genID, out->windowRectsState().windows(), 0)) {
385 // This follows the same logic as in draw_sw_mask
386 bool startInside = elements[0]->fOp == SkClipOp::kDifference;
387 helper.clear(startInside);
388 for (int i = 0; i < count; ++i) {
389 const GrClipStack::Element& e = *(elements[i]);
390 SkRegion::Op op;
391 if (e.fOp == SkClipOp::kIntersect) {
392 op = (i == 0) ? SkRegion::kReplace_Op : SkRegion::kIntersect_Op;
393 } else {
394 op = SkRegion::kDifference_Op;
395 }
396 helper.drawShape(e.fShape, e.fLocalToDevice, op, e.fAA);
397 }
398 helper.finish();
399 }
400 out->hardClip().addStencilClip(genID);
401}
402
403} // anonymous namespace
404
405class GrClipStack::Draw {
406public:
407 Draw(const SkRect& drawBounds, GrAA aa)
408 : fBounds(GrClip::GetPixelIBounds(drawBounds, aa, BoundsType::kExterior))
409 , fAA(aa) {
410 // Be slightly more forgiving on whether or not a draw is inside a clip element.
411 fOriginalBounds = drawBounds.makeInset(GrClip::kBoundsTolerance, GrClip::kBoundsTolerance);
412 if (fOriginalBounds.isEmpty()) {
413 fOriginalBounds = drawBounds;
414 }
415 }
416
417 // Common clip type interface
418 SkClipOp op() const { return SkClipOp::kIntersect; }
419 const SkIRect& outerBounds() const { return fBounds; }
420
421 // Draw does not have inner bounds so cannot contain anything.
422 bool contains(const RawElement& e) const { return false; }
423 bool contains(const SaveRecord& s) const { return false; }
424
425 bool applyDeviceBounds(const SkIRect& deviceBounds) {
426 return fBounds.intersect(deviceBounds);
427 }
428
429 const SkRect& bounds() const { return fOriginalBounds; }
430 GrAA aa() const { return fAA; }
431
432private:
433 SkRect fOriginalBounds;
434 SkIRect fBounds;
435 GrAA fAA;
436};
437
438///////////////////////////////////////////////////////////////////////////////
439// GrClipStack::Element
440
441GrClipStack::RawElement::RawElement(const SkMatrix& localToDevice, const GrShape& shape,
442 GrAA aa, SkClipOp op)
443 : Element{shape, localToDevice, op, aa}
444 , fInnerBounds(SkIRect::MakeEmpty())
445 , fOuterBounds(SkIRect::MakeEmpty())
446 , fInvalidatedByIndex(-1) {
447 if (!localToDevice.invert(&fDeviceToLocal)) {
448 // If the transform can't be inverted, it means that two dimensions are collapsed to 0 or
449 // 1 dimension, making the device-space geometry effectively empty.
450 fShape.reset();
451 }
452}
453
454void GrClipStack::RawElement::markInvalid(const SaveRecord& current) {
455 SkASSERT(!this->isInvalid());
456 fInvalidatedByIndex = current.firstActiveElementIndex();
457}
458
459void GrClipStack::RawElement::restoreValid(const SaveRecord& current) {
460 if (current.firstActiveElementIndex() < fInvalidatedByIndex) {
461 fInvalidatedByIndex = -1;
462 }
463}
464
465bool GrClipStack::RawElement::contains(const Draw& d) const {
466 if (fInnerBounds.contains(d.outerBounds())) {
467 return true;
468 } else {
469 // If the draw is non-AA, use the already computed outer bounds so we don't need to use
470 // device-space outsetting inside shape_contains_rect.
471 SkRect queryBounds = d.aa() == GrAA::kYes ? d.bounds() : SkRect::Make(d.outerBounds());
472 return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal,
473 queryBounds, SkMatrix::I(), /* mixed-aa */ false);
474 }
475}
476
477bool GrClipStack::RawElement::contains(const SaveRecord& s) const {
478 if (fInnerBounds.contains(s.outerBounds())) {
479 return true;
480 } else {
481 // This is very similar to contains(Draw) but we just have outerBounds to work with.
482 SkRect queryBounds = SkRect::Make(s.outerBounds());
483 return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal,
484 queryBounds, SkMatrix::I(), /* mixed-aa */ false);
485 }
486}
487
488bool GrClipStack::RawElement::contains(const RawElement& e) const {
489 // This is similar to how RawElement checks containment for a Draw, except that both the tester
490 // and testee have a transform that needs to be considered.
491 if (fInnerBounds.contains(e.fOuterBounds)) {
492 return true;
493 }
494
495 bool mixedAA = fAA != e.fAA;
496 if (!mixedAA && fLocalToDevice == e.fLocalToDevice) {
497 // Test the shapes directly against each other, with a special check for a rrect+rrect
498 // containment (a intersect b == a implies b contains a) and paths (same gen ID, or same
499 // path for small paths means they contain each other).
500 static constexpr int kMaxPathComparePoints = 16;
501 if (fShape.isRRect() && e.fShape.isRRect()) {
502 return SkRRectPriv::ConservativeIntersect(fShape.rrect(), e.fShape.rrect())
503 == e.fShape.rrect();
504 } else if (fShape.isPath() && e.fShape.isPath()) {
505 return fShape.path().getGenerationID() == e.fShape.path().getGenerationID() ||
506 (fShape.path().getPoints(nullptr, 0) <= kMaxPathComparePoints &&
507 fShape.path() == e.fShape.path());
508 } // else fall through to shape_contains_rect
509 }
510
511 return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal,
512 e.fShape.bounds(), e.fLocalToDevice, mixedAA);
513
514}
515
516void GrClipStack::RawElement::simplify(const SkIRect& deviceBounds, bool forceAA) {
517 // Make sure the shape is not inverted. An inverted shape is equivalent to a non-inverted shape
518 // with the clip op toggled.
519 if (fShape.inverted()) {
520 fOp = fOp == SkClipOp::kIntersect ? SkClipOp::kDifference : SkClipOp::kIntersect;
521 fShape.setInverted(false);
522 }
523
524 // Then simplify the base shape, if it becomes empty, no need to update the bounds
525 fShape.simplify();
526 SkASSERT(!fShape.inverted());
527 if (fShape.isEmpty()) {
528 return;
529 }
530
531 // Lines and points should have been turned into empty since we assume everything is filled
532 SkASSERT(!fShape.isPoint() && !fShape.isLine());
533 // Validity check, we have no public API to create an arc at the moment
534 SkASSERT(!fShape.isArc());
535
536 SkRect outer = fLocalToDevice.mapRect(fShape.bounds());
537 if (!outer.intersect(SkRect::Make(deviceBounds))) {
538 // A non-empty shape is offscreen, so treat it as empty
539 fShape.reset();
540 return;
541 }
542
Michael Ludwig462bdfc2020-09-22 16:27:04 -0400543 // Except for axis-aligned clip rects, upgrade to AA when forced. We skip axis-aligned clip
544 // rects because a non-AA axis aligned rect can always be set as just a scissor test or window
545 // rect, avoiding an expensive stencil mask generation.
546 if (forceAA && !(fShape.isRect() && fLocalToDevice.isScaleTranslate())) {
Michael Ludwiga195d102020-09-15 14:51:52 -0400547 fAA = GrAA::kYes;
548 }
549
550 // Except for non-AA axis-aligned rects, the outer bounds is the rounded-out device-space
551 // mapped bounds of the shape.
552 fOuterBounds = GrClip::GetPixelIBounds(outer, fAA, BoundsType::kExterior);
553
554 if (fLocalToDevice.isScaleTranslate()) {
555 if (fShape.isRect()) {
556 // The actual geometry can be updated to the device-intersected bounds and we can
557 // know the inner bounds
558 fShape.rect() = outer;
559 fLocalToDevice.setIdentity();
560 fDeviceToLocal.setIdentity();
561
562 if (fAA == GrAA::kNo && outer.width() >= 1.f && outer.height() >= 1.f) {
563 // NOTE: Legacy behavior to avoid performance regressions. For non-aa axis-aligned
564 // clip rects we always just round so that they can be scissor-only (avoiding the
565 // uncertainty in how a GPU might actually round an edge on fractional coords).
566 fOuterBounds = outer.round();
567 fInnerBounds = fOuterBounds;
568 } else {
569 fInnerBounds = GrClip::GetPixelIBounds(outer, fAA, BoundsType::kInterior);
570 SkASSERT(fOuterBounds.contains(fInnerBounds) || fInnerBounds.isEmpty());
571 }
572 } else if (fShape.isRRect()) {
573 // Can't transform in place
574 SkRRect src = fShape.rrect();
575 SkAssertResult(src.transform(fLocalToDevice, &fShape.rrect()));
576 fLocalToDevice.setIdentity();
577 fDeviceToLocal.setIdentity();
578
579 SkRect inner = SkRRectPriv::InnerBounds(fShape.rrect());
580 fInnerBounds = GrClip::GetPixelIBounds(inner, fAA, BoundsType::kInterior);
581 if (!fInnerBounds.intersect(deviceBounds)) {
582 fInnerBounds = SkIRect::MakeEmpty();
583 }
584 }
585 }
586
587 if (fOuterBounds.isEmpty()) {
588 // This can happen if we have non-AA shapes smaller than a pixel that do not cover a pixel
589 // center. We could round out, but rasterization would still result in an empty clip.
590 fShape.reset();
591 }
592
593 // Post-conditions on inner and outer bounds
594 SkASSERT(fShape.isEmpty() || (!fOuterBounds.isEmpty() && deviceBounds.contains(fOuterBounds)));
595 SkASSERT(fShape.isEmpty() || fInnerBounds.isEmpty() || fOuterBounds.contains(fInnerBounds));
596}
597
598bool GrClipStack::RawElement::combine(const RawElement& other, const SaveRecord& current) {
599 // To reduce the number of possibilities, only consider intersect+intersect. Difference and
600 // mixed op cases could be analyzed to simplify one of the shapes, but that is a rare
601 // occurrence and the math is much more complicated.
602 if (other.fOp != SkClipOp::kIntersect || fOp != SkClipOp::kIntersect) {
603 return false;
604 }
605
606 // At the moment, only rect+rect or rrect+rrect are supported (although rect+rrect is
607 // treated as a degenerate case of rrect+rrect).
608 bool shapeUpdated = false;
609 if (fShape.isRect() && other.fShape.isRect()) {
610 bool aaMatch = fAA == other.fAA;
611 if (fLocalToDevice.isIdentity() && other.fLocalToDevice.isIdentity() && !aaMatch) {
612 if (GrClip::IsPixelAligned(fShape.rect())) {
613 // Our AA type doesn't really matter, take other's since its edges may not be
614 // pixel aligned, so after intersection clip behavior should respect its aa type.
615 fAA = other.fAA;
616 } else if (!GrClip::IsPixelAligned(other.fShape.rect())) {
617 // Neither shape is pixel aligned and AA types don't match so can't combine
618 return false;
619 }
620 // Either we've updated this->fAA to actually match, or other->fAA doesn't matter so
621 // this can be set to true. We just can't modify other to set it's aa to this->fAA.
622 // But since 'this' becomes the combo of the two, other will be deleted so that's fine.
623 aaMatch = true;
624 }
625
626 if (aaMatch && fLocalToDevice == other.fLocalToDevice) {
627 if (!fShape.rect().intersect(other.fShape.rect())) {
628 // By floating point, it turns out the combination should be empty
629 this->fShape.reset();
630 this->markInvalid(current);
631 return true;
632 }
633 shapeUpdated = true;
634 }
635 } else if ((fShape.isRect() || fShape.isRRect()) &&
636 (other.fShape.isRect() || other.fShape.isRRect())) {
637 // No such pixel-aligned disregard for AA for round rects
638 if (fAA == other.fAA && fLocalToDevice == other.fLocalToDevice) {
639 // Treat rrect+rect intersections as rrect+rrect
640 SkRRect a = fShape.isRect() ? SkRRect::MakeRect(fShape.rect()) : fShape.rrect();
641 SkRRect b = other.fShape.isRect() ? SkRRect::MakeRect(other.fShape.rect())
642 : other.fShape.rrect();
643
644 SkRRect joined = SkRRectPriv::ConservativeIntersect(a, b);
645 if (!joined.isEmpty()) {
646 // Can reduce to a single element
647 if (joined.isRect()) {
648 // And with a simplified type
649 fShape.setRect(joined.rect());
650 } else {
651 fShape.setRRect(joined);
652 }
653 shapeUpdated = true;
654 } else if (!a.getBounds().intersects(b.getBounds())) {
655 // Like the rect+rect combination, the intersection is actually empty
656 fShape.reset();
657 this->markInvalid(current);
658 return true;
659 }
660 }
661 }
662
663 if (shapeUpdated) {
664 // This logic works under the assumption that both combined elements were intersect, so we
665 // don't do the full bounds computations like in simplify().
666 SkASSERT(fOp == SkClipOp::kIntersect && other.fOp == SkClipOp::kIntersect);
667 SkAssertResult(fOuterBounds.intersect(other.fOuterBounds));
668 if (!fInnerBounds.intersect(other.fInnerBounds)) {
669 fInnerBounds = SkIRect::MakeEmpty();
670 }
671 return true;
672 } else {
673 return false;
674 }
675}
676
677void GrClipStack::RawElement::updateForElement(RawElement* added, const SaveRecord& current) {
678 if (this->isInvalid()) {
679 // Already doesn't do anything, so skip this element
680 return;
681 }
682
683 // 'A' refers to this element, 'B' refers to 'added'.
684 switch (get_clip_geometry(*this, *added)) {
685 case ClipGeometry::kEmpty:
686 // Mark both elements as invalid to signal that the clip is fully empty
687 this->markInvalid(current);
688 added->markInvalid(current);
689 break;
690
691 case ClipGeometry::kAOnly:
692 // This element already clips more than 'added', so mark 'added' is invalid to skip it
693 added->markInvalid(current);
694 break;
695
696 case ClipGeometry::kBOnly:
697 // 'added' clips more than this element, so mark this as invalid
698 this->markInvalid(current);
699 break;
700
701 case ClipGeometry::kBoth:
702 // Else the bounds checks think we need to keep both, but depending on the combination
703 // of the ops and shape kinds, we may be able to do better.
704 if (added->combine(*this, current)) {
705 // 'added' now fully represents the combination of the two elements
706 this->markInvalid(current);
707 }
708 break;
709 }
710}
711
712GrClipStack::ClipState GrClipStack::RawElement::clipType() const {
713 // Map from the internal shape kind to the clip state enum
714 switch (fShape.type()) {
715 case GrShape::Type::kEmpty:
716 return ClipState::kEmpty;
717
718 case GrShape::Type::kRect:
719 return fOp == SkClipOp::kIntersect && fLocalToDevice.isIdentity()
720 ? ClipState::kDeviceRect : ClipState::kComplex;
721
722 case GrShape::Type::kRRect:
723 return fOp == SkClipOp::kIntersect && fLocalToDevice.isIdentity()
724 ? ClipState::kDeviceRRect : ClipState::kComplex;
725
726 case GrShape::Type::kArc:
727 case GrShape::Type::kLine:
728 case GrShape::Type::kPoint:
729 // These types should never become RawElements
730 SkASSERT(false);
731 [[fallthrough]];
732
733 case GrShape::Type::kPath:
734 return ClipState::kComplex;
735 }
736 SkUNREACHABLE;
737}
738
739///////////////////////////////////////////////////////////////////////////////
740// GrClipStack::Mask
741
742GrClipStack::Mask::Mask(const SaveRecord& current, const SkIRect& drawBounds)
743 : fBounds(drawBounds)
744 , fGenID(current.genID()) {
745 static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
746
747 // The gen ID should not be invalid, empty, or wide open, since those do not require masks
748 SkASSERT(fGenID != kInvalidGenID && fGenID != kEmptyGenID && fGenID != kWideOpenGenID);
749
750 GrUniqueKey::Builder builder(&fKey, kDomain, 3, "clip_mask");
751 builder[0] = fGenID;
752 // SkToS16 because image filters outset layers to a size indicated by the filter, which can
753 // sometimes result in negative coordinates from device space.
754 builder[1] = SkToS16(drawBounds.fLeft) | (SkToS16(drawBounds.fRight) << 16);
755 builder[2] = SkToS16(drawBounds.fTop) | (SkToS16(drawBounds.fBottom) << 16);
756 SkASSERT(fKey.isValid());
757
758 SkDEBUGCODE(fOwner = &current;)
759}
760
761bool GrClipStack::Mask::appliesToDraw(const SaveRecord& current, const SkIRect& drawBounds) const {
762 // For the same save record, a larger mask will have the same or more elements
763 // baked into it, so it can be reused to clip the smaller draw.
764 SkASSERT(fGenID != current.genID() || &current == fOwner);
765 return fGenID == current.genID() && fBounds.contains(drawBounds);
766}
767
768void GrClipStack::Mask::invalidate(GrProxyProvider* proxyProvider) {
769 SkASSERT(proxyProvider);
770 SkASSERT(fKey.isValid()); // Should only be invalidated once
771 proxyProvider->processInvalidUniqueKey(
772 fKey, nullptr, GrProxyProvider::InvalidateGPUResource::kYes);
773 fKey.reset();
774}
775
776///////////////////////////////////////////////////////////////////////////////
777// GrClipStack::SaveRecord
778
779GrClipStack::SaveRecord::SaveRecord(const SkIRect& deviceBounds)
780 : fInnerBounds(deviceBounds)
781 , fOuterBounds(deviceBounds)
782 , fShader(nullptr)
783 , fStartingMaskIndex(0)
784 , fStartingElementIndex(0)
785 , fOldestValidIndex(0)
786 , fDeferredSaveCount(0)
787 , fStackOp(SkClipOp::kIntersect)
788 , fState(ClipState::kWideOpen)
789 , fGenID(kInvalidGenID) {}
790
791GrClipStack::SaveRecord::SaveRecord(const SaveRecord& prior,
792 int startingMaskIndex,
793 int startingElementIndex)
794 : fInnerBounds(prior.fInnerBounds)
795 , fOuterBounds(prior.fOuterBounds)
796 , fShader(prior.fShader)
797 , fStartingMaskIndex(startingMaskIndex)
798 , fStartingElementIndex(startingElementIndex)
799 , fOldestValidIndex(prior.fOldestValidIndex)
800 , fDeferredSaveCount(0)
801 , fStackOp(prior.fStackOp)
802 , fState(prior.fState)
803 , fGenID(kInvalidGenID) {
804 // If the prior record never needed a mask, this one will insert into the same index
805 // (that's okay since we'll remove it when this record is popped off the stack).
806 SkASSERT(startingMaskIndex >= prior.fStartingMaskIndex);
807 // The same goes for elements (the prior could have been wide open).
808 SkASSERT(startingElementIndex >= prior.fStartingElementIndex);
809}
810
811uint32_t GrClipStack::SaveRecord::genID() const {
812 if (fState == ClipState::kEmpty) {
813 return kEmptyGenID;
814 } else if (fState == ClipState::kWideOpen) {
815 return kWideOpenGenID;
816 } else {
817 // The gen ID shouldn't be empty or wide open, since they are reserved for the above
818 // if-cases. It may be kInvalid if the record hasn't had any elements added to it yet.
819 SkASSERT(fGenID != kEmptyGenID && fGenID != kWideOpenGenID);
820 return fGenID;
821 }
822}
823
824GrClipStack::ClipState GrClipStack::SaveRecord::state() const {
825 if (fShader && fState != ClipState::kEmpty) {
826 return ClipState::kComplex;
827 } else {
828 return fState;
829 }
830}
831
832bool GrClipStack::SaveRecord::contains(const GrClipStack::Draw& draw) const {
833 return fInnerBounds.contains(draw.outerBounds());
834}
835
836bool GrClipStack::SaveRecord::contains(const GrClipStack::RawElement& element) const {
837 return fInnerBounds.contains(element.outerBounds());
838}
839
840void GrClipStack::SaveRecord::removeElements(RawElement::Stack* elements) {
841 while (elements->count() > fStartingElementIndex) {
842 elements->pop_back();
843 }
844}
845
846void GrClipStack::SaveRecord::restoreElements(RawElement::Stack* elements) {
847 // Presumably this SaveRecord is the new top of the stack, and so it owns the elements
848 // from its starting index to restoreCount - 1. Elements from the old save record have
849 // been destroyed already, so their indices would have been >= restoreCount, and any
850 // still-present element can be un-invalidated based on that.
851 int i = elements->count() - 1;
852 for (RawElement& e : elements->ritems()) {
853 if (i < fOldestValidIndex) {
854 break;
855 }
856 e.restoreValid(*this);
857 --i;
858 }
859}
860
861void GrClipStack::SaveRecord::invalidateMasks(GrProxyProvider* proxyProvider,
862 Mask::Stack* masks) {
863 // Must explicitly invalidate the key before removing the mask object from the stack
864 while (masks->count() > fStartingMaskIndex) {
865 SkASSERT(masks->back().owner() == this && proxyProvider);
866 masks->back().invalidate(proxyProvider);
867 masks->pop_back();
868 }
869 SkASSERT(masks->empty() || masks->back().genID() != fGenID);
870}
871
872void GrClipStack::SaveRecord::reset(const SkIRect& bounds) {
873 SkASSERT(this->canBeUpdated());
874 fOldestValidIndex = fStartingElementIndex;
875 fOuterBounds = bounds;
876 fInnerBounds = bounds;
877 fStackOp = SkClipOp::kIntersect;
878 fState = ClipState::kWideOpen;
879 fShader = nullptr;
880}
881
882void GrClipStack::SaveRecord::addShader(sk_sp<SkShader> shader) {
883 SkASSERT(shader);
884 SkASSERT(this->canBeUpdated());
885 if (!fShader) {
886 fShader = std::move(shader);
887 } else {
888 // The total coverage is computed by multiplying the coverage from each element (shape or
889 // shader), but since multiplication is associative, we can use kSrcIn blending to make
890 // a new shader that represents 'shader' * 'fShader'
891 fShader = SkShaders::Blend(SkBlendMode::kSrcIn, std::move(shader), fShader);
892 }
893}
894
895bool GrClipStack::SaveRecord::addElement(RawElement&& toAdd, RawElement::Stack* elements) {
896 // Validity check the element's state first; if the shape class isn't empty, the outer bounds
897 // shouldn't be empty; if the inner bounds are not empty, they must be contained in outer.
898 SkASSERT((toAdd.shape().isEmpty() || !toAdd.outerBounds().isEmpty()) &&
899 (toAdd.innerBounds().isEmpty() || toAdd.outerBounds().contains(toAdd.innerBounds())));
900 // And we shouldn't be adding an element if we have a deferred save
901 SkASSERT(this->canBeUpdated());
902
903 if (fState == ClipState::kEmpty) {
904 // The clip is already empty, and we only shrink, so there's no need to record this element.
905 return false;
906 } else if (toAdd.shape().isEmpty()) {
907 // An empty difference op should have been detected earlier, since it's a no-op
908 SkASSERT(toAdd.op() == SkClipOp::kIntersect);
909 fState = ClipState::kEmpty;
910 return true;
911 }
912
913 // In this invocation, 'A' refers to the existing stack's bounds and 'B' refers to the new
914 // element.
915 switch (get_clip_geometry(*this, toAdd)) {
916 case ClipGeometry::kEmpty:
917 // The combination results in an empty clip
918 fState = ClipState::kEmpty;
919 return true;
920
921 case ClipGeometry::kAOnly:
922 // The combination would not be any different than the existing clip
923 return false;
924
925 case ClipGeometry::kBOnly:
926 // The combination would invalidate the entire existing stack and can be replaced with
927 // just the new element.
928 this->replaceWithElement(std::move(toAdd), elements);
929 return true;
930
931 case ClipGeometry::kBoth:
932 // The new element combines in a complex manner, so update the stack's bounds based on
933 // the combination of its and the new element's ops (handled below)
934 break;
935 }
936
937 if (fState == ClipState::kWideOpen) {
938 // When the stack was wide open and the clip effect was kBoth, the "complex" manner is
939 // simply to keep the element and update the stack bounds to be the element's intersected
940 // with the device.
941 this->replaceWithElement(std::move(toAdd), elements);
942 return true;
943 }
944
945 // Some form of actual clip element(s) to combine with.
946 if (fStackOp == SkClipOp::kIntersect) {
947 if (toAdd.op() == SkClipOp::kIntersect) {
948 // Intersect (stack) + Intersect (toAdd)
949 // - Bounds updates is simply the paired intersections of outer and inner.
950 SkAssertResult(fOuterBounds.intersect(toAdd.outerBounds()));
951 if (!fInnerBounds.intersect(toAdd.innerBounds())) {
952 // NOTE: this does the right thing if either rect is empty, since we set the
953 // inner bounds to empty here
954 fInnerBounds = SkIRect::MakeEmpty();
955 }
956 } else {
957 // Intersect (stack) + Difference (toAdd)
958 // - Shrink the stack's outer bounds if the difference op's inner bounds completely
959 // cuts off an edge.
960 // - Shrink the stack's inner bounds to completely exclude the op's outer bounds.
961 fOuterBounds = subtract(fOuterBounds, toAdd.innerBounds(), /* exact */ true);
962 fInnerBounds = subtract(fInnerBounds, toAdd.outerBounds(), /* exact */ false);
963 }
964 } else {
965 if (toAdd.op() == SkClipOp::kIntersect) {
966 // Difference (stack) + Intersect (toAdd)
967 // - Bounds updates are just the mirror of Intersect(stack) + Difference(toAdd)
968 SkIRect oldOuter = fOuterBounds;
969 fOuterBounds = subtract(toAdd.outerBounds(), fInnerBounds, /* exact */ true);
970 fInnerBounds = subtract(toAdd.innerBounds(), oldOuter, /* exact */ false);
971 } else {
972 // Difference (stack) + Difference (toAdd)
973 // - The updated outer bounds is the union of outer bounds and the inner becomes the
974 // largest of the two possible inner bounds
975 fOuterBounds.join(toAdd.outerBounds());
976 if (toAdd.innerBounds().width() * toAdd.innerBounds().height() >
977 fInnerBounds.width() * fInnerBounds.height()) {
978 fInnerBounds = toAdd.innerBounds();
979 }
980 }
981 }
982
983 // If we get here, we're keeping the new element and the stack's bounds have been updated.
984 // We ought to have caught the cases where the stack bounds resemble an empty or wide open
985 // clip, so assert that's the case.
986 SkASSERT(!fOuterBounds.isEmpty() &&
987 (fInnerBounds.isEmpty() || fOuterBounds.contains(fInnerBounds)));
988
989 return this->appendElement(std::move(toAdd), elements);
990}
991
992bool GrClipStack::SaveRecord::appendElement(RawElement&& toAdd, RawElement::Stack* elements) {
993 // Update past elements to account for the new element
994 int i = elements->count() - 1;
995
996 // After the loop, elements between [max(youngestValid, startingIndex)+1, count-1] can be
997 // removed from the stack (these are the active elements that have been invalidated by the
998 // newest element; since it's the active part of the stack, no restore() can bring them back).
999 int youngestValid = fStartingElementIndex - 1;
1000 // After the loop, elements between [0, oldestValid-1] are all invalid. The value of oldestValid
1001 // becomes the save record's new fLastValidIndex value.
1002 int oldestValid = elements->count();
1003 // After the loop, this is the earliest active element that was invalidated. It may be
1004 // older in the stack than earliestValid, so cannot be popped off, but can be used to store
1005 // the new element instead of allocating more.
1006 RawElement* oldestActiveInvalid = nullptr;
1007 int oldestActiveInvalidIndex = elements->count();
1008
1009 for (RawElement& existing : elements->ritems()) {
1010 if (i < fOldestValidIndex) {
1011 break;
1012 }
1013 // We don't need to pass the actual index that toAdd will be saved to; just the minimum
1014 // index of this save record, since that will result in the same restoration behavior later.
1015 existing.updateForElement(&toAdd, *this);
1016
1017 if (toAdd.isInvalid()) {
1018 if (existing.isInvalid()) {
1019 // Both new and old invalid implies the entire clip becomes empty
1020 fState = ClipState::kEmpty;
1021 return true;
1022 } else {
1023 // The new element doesn't change the clip beyond what the old element already does
1024 return false;
1025 }
1026 } else if (existing.isInvalid()) {
1027 // The new element cancels out the old element. The new element may have been modified
1028 // to account for the old element's geometry.
1029 if (i >= fStartingElementIndex) {
1030 // Still active, so the invalidated index could be used to store the new element
1031 oldestActiveInvalid = &existing;
1032 oldestActiveInvalidIndex = i;
1033 }
1034 } else {
1035 // Keep both new and old elements
1036 oldestValid = i;
1037 if (i > youngestValid) {
1038 youngestValid = i;
1039 }
1040 }
1041
1042 --i;
1043 }
1044
1045 // Post-iteration validity check
1046 SkASSERT(oldestValid == elements->count() ||
1047 (oldestValid >= fOldestValidIndex && oldestValid < elements->count()));
1048 SkASSERT(youngestValid == fStartingElementIndex - 1 ||
1049 (youngestValid >= fStartingElementIndex && youngestValid < elements->count()));
1050 SkASSERT((oldestActiveInvalid && oldestActiveInvalidIndex >= fStartingElementIndex &&
1051 oldestActiveInvalidIndex < elements->count()) || !oldestActiveInvalid);
1052
1053 // Update final state
1054 SkASSERT(oldestValid >= fOldestValidIndex);
1055 fOldestValidIndex = std::min(oldestValid, oldestActiveInvalidIndex);
1056 fState = oldestValid == elements->count() ? toAdd.clipType() : ClipState::kComplex;
1057 if (fStackOp == SkClipOp::kDifference && toAdd.op() == SkClipOp::kIntersect) {
1058 // The stack remains in difference mode only as long as all elements are difference
1059 fStackOp = SkClipOp::kIntersect;
1060 }
1061
1062 int targetCount = youngestValid + 1;
1063 if (!oldestActiveInvalid || oldestActiveInvalidIndex >= targetCount) {
1064 // toAdd will be stored right after youngestValid
1065 targetCount++;
1066 oldestActiveInvalid = nullptr;
1067 }
1068 while (elements->count() > targetCount) {
1069 SkASSERT(oldestActiveInvalid != &elements->back()); // shouldn't delete what we'll reuse
1070 elements->pop_back();
1071 }
1072 if (oldestActiveInvalid) {
1073 *oldestActiveInvalid = std::move(toAdd);
1074 } else if (elements->count() < targetCount) {
1075 elements->push_back(std::move(toAdd));
1076 } else {
1077 elements->back() = std::move(toAdd);
1078 }
1079
1080 // Changing this will prompt GrClipStack to invalidate any masks associated with this record.
1081 fGenID = next_gen_id();
1082 return true;
1083}
1084
1085void GrClipStack::SaveRecord::replaceWithElement(RawElement&& toAdd, RawElement::Stack* elements) {
1086 // The aggregate state of the save record mirrors the element
1087 fInnerBounds = toAdd.innerBounds();
1088 fOuterBounds = toAdd.outerBounds();
1089 fStackOp = toAdd.op();
1090 fState = toAdd.clipType();
1091
1092 // All prior active element can be removed from the stack: [startingIndex, count - 1]
1093 int targetCount = fStartingElementIndex + 1;
1094 while (elements->count() > targetCount) {
1095 elements->pop_back();
1096 }
1097 if (elements->count() < targetCount) {
1098 elements->push_back(std::move(toAdd));
1099 } else {
1100 elements->back() = std::move(toAdd);
1101 }
1102
1103 SkASSERT(elements->count() == fStartingElementIndex + 1);
1104
1105 // This invalidates all older elements that are owned by save records lower in the clip stack.
1106 fOldestValidIndex = fStartingElementIndex;
1107 fGenID = next_gen_id();
1108}
1109
1110///////////////////////////////////////////////////////////////////////////////
1111// GrClipStack
1112
1113// NOTE: Based on draw calls in all GMs, SKPs, and SVGs as of 08/20, 98% use a clip stack with
1114// one Element and up to two SaveRecords, thus the inline size for RawElement::Stack and
1115// SaveRecord::Stack (this conveniently keeps the size of GrClipStack manageable). The max
1116// encountered element stack depth was 5 and the max save depth was 6. Using an increment of 8 for
1117// these stacks means that clip management will incur a single allocation for the remaining 2%
1118// of the draws, with extra head room for more complex clips encountered in the wild.
1119//
1120// The mask stack increment size was chosen to be smaller since only 0.2% of the evaluated draw call
1121// set ever used a mask (which includes stencil masks), or up to 0.3% when CCPR is disabled.
1122static constexpr int kElementStackIncrement = 8;
1123static constexpr int kSaveStackIncrement = 8;
1124static constexpr int kMaskStackIncrement = 4;
1125
1126// And from this same draw call set, the most complex clip could only use 5 analytic coverage FPs.
1127// Historically we limited it to 4 based on Blink's call pattern, so we keep the limit as-is since
1128// it's so close to the empirically encountered max.
1129static constexpr int kMaxAnalyticFPs = 4;
1130// The number of stack-allocated mask pointers to store before extending the arrays.
1131// Stack size determined empirically, the maximum number of elements put in a SW mask was 4
1132// across our set of GMs, SKPs, and SVGs used for testing.
1133static constexpr int kNumStackMasks = 4;
1134
1135GrClipStack::GrClipStack(const SkIRect& deviceBounds, const SkMatrixProvider* matrixProvider,
1136 bool forceAA)
1137 : fElements(kElementStackIncrement)
1138 , fSaves(kSaveStackIncrement)
1139 , fMasks(kMaskStackIncrement)
1140 , fProxyProvider(nullptr)
1141 , fDeviceBounds(deviceBounds)
1142 , fMatrixProvider(matrixProvider)
1143 , fForceAA(forceAA) {
1144 // Start with a save record that is wide open
1145 fSaves.emplace_back(deviceBounds);
1146}
1147
1148GrClipStack::~GrClipStack() {
1149 // Invalidate all mask keys that remain. Since we're tearing the clip stack down, we don't need
1150 // to go through SaveRecord.
1151 SkASSERT(fProxyProvider || fMasks.empty());
1152 if (fProxyProvider) {
1153 for (Mask& m : fMasks.ritems()) {
1154 m.invalidate(fProxyProvider);
1155 }
1156 }
1157}
1158
1159void GrClipStack::save() {
1160 SkASSERT(!fSaves.empty());
1161 fSaves.back().pushSave();
1162}
1163
1164void GrClipStack::restore() {
1165 SkASSERT(!fSaves.empty());
1166 SaveRecord& current = fSaves.back();
1167 if (current.popSave()) {
1168 // This was just a deferred save being undone, so the record doesn't need to be removed yet
1169 return;
1170 }
1171
1172 // When we remove a save record, we delete all elements >= its starting index and any masks
1173 // that were rasterized for it.
1174 current.removeElements(&fElements);
1175 SkASSERT(fProxyProvider || fMasks.empty());
1176 if (fProxyProvider) {
1177 current.invalidateMasks(fProxyProvider, &fMasks);
1178 }
1179 fSaves.pop_back();
1180 // Restore any remaining elements that were only invalidated by the now-removed save record.
1181 fSaves.back().restoreElements(&fElements);
1182}
1183
1184SkIRect GrClipStack::getConservativeBounds() const {
1185 const SaveRecord& current = this->currentSaveRecord();
1186 if (current.state() == ClipState::kEmpty) {
1187 return SkIRect::MakeEmpty();
1188 } else if (current.state() == ClipState::kWideOpen) {
1189 return fDeviceBounds;
1190 } else {
1191 if (current.op() == SkClipOp::kDifference) {
1192 // The outer/inner bounds represent what's cut out, so full bounds remains the device
1193 // bounds, minus any fully clipped content that spans the device edge.
1194 return subtract(fDeviceBounds, current.innerBounds(), /* exact */ true);
1195 } else {
1196 SkASSERT(fDeviceBounds.contains(current.outerBounds()));
1197 return current.outerBounds();
1198 }
1199 }
1200}
1201
1202GrClip::PreClipResult GrClipStack::preApply(const SkRect& bounds, GrAA aa) const {
1203 Draw draw(bounds, fForceAA ? GrAA::kYes : aa);
1204 if (!draw.applyDeviceBounds(fDeviceBounds)) {
1205 return GrClip::Effect::kClippedOut;
1206 }
1207
1208 const SaveRecord& cs = this->currentSaveRecord();
1209 // Early out if we know a priori that the clip is full 0s or full 1s.
1210 if (cs.state() == ClipState::kEmpty) {
1211 return GrClip::Effect::kClippedOut;
1212 } else if (cs.state() == ClipState::kWideOpen) {
1213 SkASSERT(!cs.shader());
1214 return GrClip::Effect::kUnclipped;
1215 }
1216
1217 // Given argument order, 'A' == current clip, 'B' == draw
1218 switch (get_clip_geometry(cs, draw)) {
1219 case ClipGeometry::kEmpty:
1220 // Can ignore the shader since the geometry removed everything already
1221 return GrClip::Effect::kClippedOut;
1222
1223 case ClipGeometry::kBOnly:
1224 // Geometrically, the draw is unclipped, but can't ignore a shader
1225 return cs.shader() ? GrClip::Effect::kClipped : GrClip::Effect::kUnclipped;
1226
1227 case ClipGeometry::kAOnly:
1228 // Shouldn't happen since the inner bounds of a draw are unknown
1229 SkASSERT(false);
1230 // But if it did, it technically means the draw covered the clip and should be
1231 // considered kClipped or similar, which is what the next case handles.
1232 [[fallthrough]];
1233
1234 case ClipGeometry::kBoth: {
1235 SkASSERT(fElements.count() > 0);
1236 const RawElement& back = fElements.back();
1237 if (cs.state() == ClipState::kDeviceRect) {
1238 SkASSERT(back.clipType() == ClipState::kDeviceRect);
1239 return {back.shape().rect(), back.aa()};
1240 } else if (cs.state() == ClipState::kDeviceRRect) {
1241 SkASSERT(back.clipType() == ClipState::kDeviceRRect);
1242 return {back.shape().rrect(), back.aa()};
1243 } else {
1244 // The clip stack has complex shapes, multiple elements, or a shader; we could
1245 // iterate per element like we would in apply(), but preApply() is meant to be
1246 // conservative and efficient.
1247 SkASSERT(cs.state() == ClipState::kComplex);
1248 return GrClip::Effect::kClipped;
1249 }
1250 }
1251 }
1252
1253 SkUNREACHABLE;
1254}
1255
1256GrClip::Effect GrClipStack::apply(GrRecordingContext* context, GrRenderTargetContext* rtc,
1257 GrAAType aa, bool hasUserStencilSettings,
1258 GrAppliedClip* out, SkRect* bounds) const {
1259 // TODO: Once we no longer store SW masks, we don't need to sneak the provider in like this
1260 if (!fProxyProvider) {
1261 fProxyProvider = context->priv().proxyProvider();
1262 }
1263 SkASSERT(fProxyProvider == context->priv().proxyProvider());
1264 const GrCaps* caps = context->priv().caps();
1265
1266 // Convert the bounds to a Draw and apply device bounds clipping, making our query as tight
1267 // as possible.
1268 Draw draw(*bounds, GrAA(fForceAA || aa != GrAAType::kNone));
1269 if (!draw.applyDeviceBounds(fDeviceBounds)) {
1270 return Effect::kClippedOut;
1271 }
1272 SkAssertResult(bounds->intersect(SkRect::Make(fDeviceBounds)));
1273
1274 const SaveRecord& cs = this->currentSaveRecord();
1275 // Early out if we know a priori that the clip is full 0s or full 1s.
1276 if (cs.state() == ClipState::kEmpty) {
1277 return Effect::kClippedOut;
1278 } else if (cs.state() == ClipState::kWideOpen) {
1279 SkASSERT(!cs.shader());
1280 return Effect::kUnclipped;
1281 }
1282
1283 // Convert any clip shader first, since it's not geometrically related to the draw bounds
1284 std::unique_ptr<GrFragmentProcessor> clipFP = nullptr;
1285 if (cs.shader()) {
1286 static const GrColorInfo kCoverageColorInfo{GrColorType::kUnknown, kPremul_SkAlphaType,
1287 nullptr};
1288 GrFPArgs args(context, *fMatrixProvider, kNone_SkFilterQuality, &kCoverageColorInfo);
1289 clipFP = as_SB(cs.shader())->asFragmentProcessor(args);
1290 if (clipFP) {
1291 clipFP = GrFragmentProcessor::SwizzleOutput(std::move(clipFP), GrSwizzle::AAAA());
1292 }
1293 }
1294
1295 // A refers to the entire clip stack, B refers to the draw
1296 switch (get_clip_geometry(cs, draw)) {
1297 case ClipGeometry::kEmpty:
1298 return Effect::kClippedOut;
1299
1300 case ClipGeometry::kBOnly:
1301 // Geometrically unclipped, but may need to add the shader as a coverage FP
1302 if (clipFP) {
1303 out->addCoverageFP(std::move(clipFP));
1304 return Effect::kClipped;
1305 } else {
1306 return Effect::kUnclipped;
1307 }
1308
1309 case ClipGeometry::kAOnly:
1310 // Shouldn't happen since draws don't report inner bounds
1311 SkASSERT(false);
1312 [[fallthrough]];
1313
1314 case ClipGeometry::kBoth:
1315 // The draw is combined with the saved clip elements; the below logic tries to skip
1316 // as many elements as possible.
1317 SkASSERT(cs.state() == ClipState::kDeviceRect ||
1318 cs.state() == ClipState::kDeviceRRect ||
1319 cs.state() == ClipState::kComplex);
1320 break;
1321 }
1322
1323 // We can determine a scissor based on the draw and the overall stack bounds.
1324 SkIRect scissorBounds;
1325 if (cs.op() == SkClipOp::kIntersect) {
1326 // Initially we keep this as large as possible; if the clip is applied solely with coverage
1327 // FPs then using a loose scissor increases the chance we can batch the draws.
1328 // We tighten it later if any form of mask or atlas element is needed.
1329 scissorBounds = cs.outerBounds();
1330 } else {
1331 scissorBounds = subtract(draw.outerBounds(), cs.innerBounds(), /* exact */ true);
1332 }
1333
1334 // We mark this true once we have a coverage FP (since complex clipping is occurring), or we
1335 // have an element that wouldn't affect the scissored draw bounds, but does affect the regular
1336 // draw bounds. In that case, the scissor is sufficient for clipping and we can skip the
1337 // element but definitely cannot then drop the scissor.
1338 bool scissorIsNeeded = SkToBool(cs.shader());
1339
1340 int remainingAnalyticFPs = kMaxAnalyticFPs;
Michael Ludwigb28e1412020-09-18 15:07:49 -04001341 if (hasUserStencilSettings) {
1342 // Disable analytic clips when there are user stencil settings to ensure the clip is
1343 // respected in the stencil buffer.
Michael Ludwiga195d102020-09-15 14:51:52 -04001344 remainingAnalyticFPs = 0;
Michael Ludwigb28e1412020-09-18 15:07:49 -04001345 // If we have user stencil settings, we shouldn't be avoiding the stencil buffer anyways.
Michael Ludwiga195d102020-09-15 14:51:52 -04001346 SkASSERT(!context->priv().caps()->avoidStencilBuffers());
1347 }
1348
1349 // If window rectangles are supported, we can use them to exclude inner bounds of difference ops
1350 int maxWindowRectangles = rtc->priv().maxWindowRectangles();
1351 GrWindowRectangles windowRects;
1352
1353 // Elements not represented as an analytic FP or skipped will be collected here and later
1354 // applied by using the stencil buffer, CCPR clip atlas, or a cached SW mask.
1355 SkSTArray<kNumStackMasks, const Element*> elementsForMask;
1356 SkSTArray<kNumStackMasks, const RawElement*> elementsForAtlas;
1357
1358 bool maskRequiresAA = false;
1359 auto* ccpr = context->priv().drawingManager()->getCoverageCountingPathRenderer();
1360
1361 int i = fElements.count();
1362 for (const RawElement& e : fElements.ritems()) {
1363 --i;
1364 if (i < cs.oldestElementIndex()) {
1365 // All earlier elements have been invalidated by elements already processed
1366 break;
1367 } else if (e.isInvalid()) {
1368 continue;
1369 }
1370
1371 switch (get_clip_geometry(e, draw)) {
1372 case ClipGeometry::kEmpty:
1373 // This can happen for difference op elements that have a larger fInnerBounds than
1374 // can be preserved at the next level.
1375 return Effect::kClippedOut;
1376
1377 case ClipGeometry::kBOnly:
1378 // We don't need to produce a coverage FP or mask for the element
1379 break;
1380
1381 case ClipGeometry::kAOnly:
1382 // Shouldn't happen for draws, fall through to regular element processing
1383 SkASSERT(false);
1384 [[fallthrough]];
1385
1386 case ClipGeometry::kBoth: {
1387 // The element must apply coverage to the draw, enable the scissor to limit overdraw
1388 scissorIsNeeded = true;
1389
1390 // First apply using HW methods (scissor and window rects). When the inner and outer
1391 // bounds match, nothing else needs to be done.
1392 bool fullyApplied = false;
1393 if (e.op() == SkClipOp::kIntersect) {
1394 // The second test allows clipped draws that are scissored by multiple elements
1395 // to remain scissor-only.
1396 fullyApplied = e.innerBounds() == e.outerBounds() ||
1397 e.innerBounds().contains(scissorBounds);
1398 } else {
1399 if (!e.innerBounds().isEmpty() &&
1400 out->windowRectsState().numWindows() < maxWindowRectangles) {
1401 // TODO: If we have more difference ops than available window rects, we
1402 // should prioritize those with the largest inner bounds.
1403 windowRects.addWindow(e.innerBounds());
1404 fullyApplied = e.innerBounds() == e.outerBounds();
1405 }
1406 }
1407
1408 if (!fullyApplied && remainingAnalyticFPs > 0) {
1409 std::tie(fullyApplied, clipFP) = analytic_clip_fp(e.asElement(),
1410 *caps->shaderCaps(),
1411 std::move(clipFP));
1412 if (fullyApplied) {
1413 remainingAnalyticFPs--;
1414 } else if (ccpr && e.aa() == GrAA::kYes) {
1415 // While technically the element is turned into a mask, each atlas entry
1416 // counts towards the FP complexity of the clip.
1417 // TODO - CCPR needs a stable ops task ID so we can't create FPs until we
1418 // know any other mask generation is finished. It also only works with AA
1419 // shapes, future atlas systems can improve on this.
1420 elementsForAtlas.push_back(&e);
1421 remainingAnalyticFPs--;
1422 fullyApplied = true;
1423 }
1424 }
1425
1426 if (!fullyApplied) {
1427 elementsForMask.push_back(&e.asElement());
1428 maskRequiresAA |= (e.aa() == GrAA::kYes);
1429 }
1430
1431 break;
1432 }
1433 }
1434 }
1435
1436 if (!scissorIsNeeded) {
1437 // More detailed analysis of the element shapes determined no clip is needed
1438 SkASSERT(elementsForMask.empty() && elementsForAtlas.empty() && !clipFP);
1439 return Effect::kUnclipped;
1440 }
1441
1442 // Fill out the GrAppliedClip with what we know so far, possibly with a tightened scissor
1443 if (cs.op() == SkClipOp::kIntersect &&
1444 (!elementsForMask.empty() || !elementsForAtlas.empty())) {
1445 SkAssertResult(scissorBounds.intersect(draw.outerBounds()));
1446 }
1447 if (!GrClip::IsInsideClip(scissorBounds, *bounds)) {
1448 out->hardClip().addScissor(scissorBounds, bounds);
1449 }
1450 if (!windowRects.empty()) {
1451 out->hardClip().addWindowRectangles(windowRects, GrWindowRectsState::Mode::kExclusive);
1452 }
1453
1454 // Now rasterize any remaining elements, either to the stencil or a SW mask. All elements are
1455 // flattened into a single mask.
1456 if (!elementsForMask.empty()) {
1457 bool stencilUnavailable = context->priv().caps()->avoidStencilBuffers() ||
1458 rtc->wrapsVkSecondaryCB();
1459
1460 bool hasSWMask = false;
1461 if ((rtc->numSamples() <= 1 && maskRequiresAA) || stencilUnavailable) {
1462 // Must use a texture mask to represent the combined clip elements since the stencil
1463 // cannot be used, or cannot handle smooth clips.
1464 std::tie(hasSWMask, clipFP) = GetSWMaskFP(
1465 context, &fMasks, cs, scissorBounds, elementsForMask.begin(),
1466 elementsForMask.count(), std::move(clipFP));
1467 }
1468
1469 if (!hasSWMask) {
1470 if (stencilUnavailable) {
1471 SkDebugf("WARNING: Clip mask requires stencil, but stencil unavailable. "
1472 "Draw will be ignored.\n");
1473 return Effect::kClippedOut;
1474 } else {
1475 // Rasterize the remaining elements to the stencil buffer
1476 render_stencil_mask(context, rtc, cs.genID(), scissorBounds,
1477 elementsForMask.begin(), elementsForMask.count(), out);
1478 }
1479 }
1480 }
1481
1482 // Finish CCPR paths now that the render target's ops task is stable.
1483 if (!elementsForAtlas.empty()) {
1484 uint32_t opsTaskID = rtc->getOpsTask()->uniqueID();
1485 for (int i = 0; i < elementsForAtlas.count(); ++i) {
1486 SkASSERT(elementsForAtlas[i]->aa() == GrAA::kYes);
1487 clipFP = clip_atlas_fp(ccpr, opsTaskID, scissorBounds, elementsForAtlas[i]->asElement(),
1488 elementsForAtlas[i]->devicePath(), *caps, std::move(clipFP));
1489 }
1490 }
1491
1492 if (clipFP) {
1493 // This will include all analytic FPs, all CCPR atlas FPs, and a SW mask FP.
1494 out->addCoverageFP(std::move(clipFP));
1495 }
1496
1497 SkASSERT(out->doesClip());
1498 return Effect::kClipped;
1499}
1500
1501GrClipStack::SaveRecord& GrClipStack::writableSaveRecord(bool* wasDeferred) {
1502 SaveRecord& current = fSaves.back();
1503 if (current.canBeUpdated()) {
1504 // Current record is still open, so it can be modified directly
1505 *wasDeferred = false;
1506 return current;
1507 } else {
1508 // Must undefer the save to get a new record.
1509 SkAssertResult(current.popSave());
1510 *wasDeferred = true;
1511 return fSaves.emplace_back(current, fMasks.count(), fElements.count());
1512 }
1513}
1514
1515void GrClipStack::clipShader(sk_sp<SkShader> shader) {
1516 // Shaders can't bring additional coverage
1517 if (this->currentSaveRecord().state() == ClipState::kEmpty) {
1518 return;
1519 }
1520
1521 bool wasDeferred;
1522 this->writableSaveRecord(&wasDeferred).addShader(std::move(shader));
1523 // Masks and geometry elements are not invalidated by updating the clip shader
1524}
1525
1526void GrClipStack::replaceClip(const SkIRect& rect) {
1527 bool wasDeferred;
1528 SaveRecord& save = this->writableSaveRecord(&wasDeferred);
1529
1530 if (!wasDeferred) {
1531 save.removeElements(&fElements);
1532 save.invalidateMasks(fProxyProvider, &fMasks);
1533 }
1534
1535 save.reset(fDeviceBounds);
1536 if (rect != fDeviceBounds) {
1537 this->clipRect(SkMatrix::I(), SkRect::Make(rect), GrAA::kNo, SkClipOp::kIntersect);
1538 }
1539}
1540
1541void GrClipStack::clip(RawElement&& element) {
1542 if (this->currentSaveRecord().state() == ClipState::kEmpty) {
1543 return;
1544 }
1545
1546 // Reduce the path to anything simpler, will apply the transform if it's a scale+translate
1547 // and ensures the element's bounds are clipped to the device (NOT the conservative clip bounds,
1548 // since those are based on the net effect of all elements while device bounds clipping happens
1549 // implicitly. During addElement, we may still be able to invalidate some older elements).
1550 element.simplify(fDeviceBounds, fForceAA);
1551 SkASSERT(!element.shape().inverted());
1552
1553 // An empty op means do nothing (for difference), or close the save record, so we try and detect
1554 // that early before doing additional unnecessary save record allocation.
1555 if (element.shape().isEmpty()) {
1556 if (element.op() == SkClipOp::kDifference) {
1557 // If the shape is empty and we're subtracting, this has no effect on the clip
1558 return;
1559 }
1560 // else we will make the clip empty, but we need a new save record to record that change
1561 // in the clip state; fall through to below and updateForElement() will handle it.
1562 }
1563
1564 bool wasDeferred;
1565 SaveRecord& save = this->writableSaveRecord(&wasDeferred);
1566 SkDEBUGCODE(uint32_t oldGenID = save.genID();)
1567 SkDEBUGCODE(int elementCount = fElements.count();)
1568 if (!save.addElement(std::move(element), &fElements)) {
1569 if (wasDeferred) {
1570 // We made a new save record, but ended up not adding an element to the stack.
1571 // So instead of keeping an empty save record around, pop it off and restore the counter
1572 SkASSERT(elementCount == fElements.count());
1573 fSaves.pop_back();
1574 fSaves.back().pushSave();
1575 } else {
1576 // Should not have changed gen ID if the element and save were not modified
1577 SkASSERT(oldGenID == save.genID());
1578 }
1579 } else {
1580 // The gen ID should be new, and should not be invalid
1581 SkASSERT(oldGenID != save.genID() && save.genID() != kInvalidGenID);
1582 if (fProxyProvider && !wasDeferred) {
1583 // We modified an active save record so any old masks it had can be invalidated
1584 save.invalidateMasks(fProxyProvider, &fMasks);
1585 }
1586 }
1587}
1588
1589GrFPResult GrClipStack::GetSWMaskFP(GrRecordingContext* context, Mask::Stack* masks,
1590 const SaveRecord& current, const SkIRect& bounds,
1591 const Element** elements, int count,
1592 std::unique_ptr<GrFragmentProcessor> clipFP) {
1593 GrProxyProvider* proxyProvider = context->priv().proxyProvider();
1594 GrSurfaceProxyView maskProxy;
1595
1596 SkIRect maskBounds; // may not be 'bounds' if we reuse a large clip mask
1597 // Check the existing masks from this save record for compatibility
1598 for (const Mask& m : masks->ritems()) {
1599 if (m.genID() != current.genID()) {
1600 break;
1601 }
1602 if (m.appliesToDraw(current, bounds)) {
1603 maskProxy = proxyProvider->findCachedProxyWithColorTypeFallback(
1604 m.key(), kMaskOrigin, GrColorType::kAlpha_8, 1);
1605 if (maskProxy) {
1606 maskBounds = m.bounds();
1607 break;
1608 }
1609 }
1610 }
1611
1612 if (!maskProxy) {
1613 // No existing mask was found, so need to render a new one
1614 maskProxy = render_sw_mask(context, bounds, elements, count);
1615 if (!maskProxy) {
1616 // If we still don't have one, there's nothing we can do
1617 return GrFPFailure(std::move(clipFP));
1618 }
1619
1620 // Register the mask for later invalidation
1621 Mask& mask = masks->emplace_back(current, bounds);
1622 proxyProvider->assignUniqueKeyToProxy(mask.key(), maskProxy.asTextureProxy());
1623 maskBounds = bounds;
1624 }
1625
1626 // Wrap the mask in an FP that samples it for coverage
1627 SkASSERT(maskProxy && maskProxy.origin() == kMaskOrigin);
1628
1629 GrSamplerState samplerState(GrSamplerState::WrapMode::kClampToBorder,
1630 GrSamplerState::Filter::kNearest);
1631 // Maps the device coords passed to the texture effect to the top-left corner of the mask, and
1632 // make sure that the draw bounds are pre-mapped into the mask's space as well.
1633 auto m = SkMatrix::Translate(-maskBounds.fLeft, -maskBounds.fTop);
1634 auto subset = SkRect::Make(bounds);
1635 subset.offset(-maskBounds.fLeft, -maskBounds.fTop);
1636 // We scissor to bounds. The mask's texel centers are aligned to device space
1637 // pixel centers. Hence this domain of texture coordinates.
1638 auto domain = subset.makeInset(0.5, 0.5);
1639 auto fp = GrTextureEffect::MakeSubset(std::move(maskProxy), kPremul_SkAlphaType, m,
1640 samplerState, subset, domain, *context->priv().caps());
1641 fp = GrDeviceSpaceEffect::Make(std::move(fp));
1642
1643 // Must combine the coverage sampled from the texture effect with the previous coverage
1644 fp = GrBlendFragmentProcessor::Make(std::move(clipFP), std::move(fp), SkBlendMode::kModulate);
1645 return GrFPSuccess(std::move(fp));
1646}