commit-bot@chromium.org | 4431e77 | 2014-04-14 17:08:59 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2013 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | #include "PathOpsTestCommon.h" |
| 8 | #include "SkIntersections.h" |
| 9 | #include "SkOpSegment.h" |
| 10 | #include "SkPathOpsTriangle.h" |
| 11 | #include "SkRandom.h" |
| 12 | #include "SkTArray.h" |
| 13 | #include "SkTSort.h" |
| 14 | #include "Test.h" |
| 15 | |
| 16 | static bool gPathOpsAngleIdeasVerbose = false; |
| 17 | static bool gPathOpsAngleIdeasEnableBruteCheck = false; |
| 18 | |
| 19 | class PathOpsAngleTester { |
| 20 | public: |
| 21 | static int ConvexHullOverlaps(const SkOpAngle& lh, const SkOpAngle& rh) { |
| 22 | return lh.convexHullOverlaps(rh); |
| 23 | } |
| 24 | |
| 25 | static int EndsIntersect(const SkOpAngle& lh, const SkOpAngle& rh) { |
| 26 | return lh.endsIntersect(rh); |
| 27 | } |
| 28 | }; |
| 29 | |
| 30 | struct TRange { |
| 31 | double tMin1; |
| 32 | double tMin2; |
| 33 | double t1; |
| 34 | double t2; |
| 35 | double tMin; |
| 36 | double a1; |
| 37 | double a2; |
| 38 | bool ccw; |
| 39 | }; |
| 40 | |
| 41 | static double testArc(skiatest::Reporter* reporter, const SkDQuad& quad, const SkDQuad& arcRef, |
| 42 | int octant) { |
| 43 | SkDQuad arc = arcRef; |
| 44 | SkDVector offset = {quad[0].fX, quad[0].fY}; |
| 45 | arc[0] += offset; |
| 46 | arc[1] += offset; |
| 47 | arc[2] += offset; |
| 48 | SkIntersections i; |
| 49 | i.intersect(arc, quad); |
| 50 | if (i.used() == 0) { |
| 51 | return -1; |
| 52 | } |
| 53 | int smallest = -1; |
| 54 | double t = 2; |
| 55 | for (int idx = 0; idx < i.used(); ++idx) { |
| 56 | if (i[0][idx] > 1 || i[0][idx] < 0) { |
| 57 | i.reset(); |
| 58 | i.intersect(arc, quad); |
| 59 | } |
| 60 | if (i[1][idx] > 1 || i[1][idx] < 0) { |
| 61 | i.reset(); |
| 62 | i.intersect(arc, quad); |
| 63 | } |
| 64 | if (t > i[1][idx]) { |
| 65 | smallest = idx; |
| 66 | t = i[1][idx]; |
| 67 | } |
| 68 | } |
| 69 | REPORTER_ASSERT(reporter, smallest >= 0); |
| 70 | REPORTER_ASSERT(reporter, t >= 0 && t <= 1); |
| 71 | return i[1][smallest]; |
| 72 | } |
| 73 | |
| 74 | static void orderQuads(skiatest::Reporter* reporter, const SkDQuad& quad, double radius, |
| 75 | SkTArray<double, false>* tArray) { |
| 76 | double r = radius; |
| 77 | double s = r * SK_ScalarTanPIOver8; |
| 78 | double m = r * SK_ScalarRoot2Over2; |
| 79 | // construct circle from quads |
| 80 | const SkDQuad circle[8] = {{{{ r, 0}, { r, -s}, { m, -m}}}, |
| 81 | {{{ m, -m}, { s, -r}, { 0, -r}}}, |
| 82 | {{{ 0, -r}, {-s, -r}, {-m, -m}}}, |
| 83 | {{{-m, -m}, {-r, -s}, {-r, 0}}}, |
| 84 | {{{-r, 0}, {-r, s}, {-m, m}}}, |
| 85 | {{{-m, m}, {-s, r}, { 0, r}}}, |
| 86 | {{{ 0, r}, { s, r}, { m, m}}}, |
| 87 | {{{ m, m}, { r, s}, { r, 0}}}}; |
| 88 | for (int octant = 0; octant < 8; ++octant) { |
| 89 | double t = testArc(reporter, quad, circle[octant], octant); |
| 90 | if (t < 0) { |
| 91 | continue; |
| 92 | } |
| 93 | for (int index = 0; index < tArray->count(); ++index) { |
| 94 | double matchT = (*tArray)[index]; |
| 95 | if (approximately_equal(t, matchT)) { |
| 96 | goto next; |
| 97 | } |
| 98 | } |
| 99 | tArray->push_back(t); |
| 100 | next: ; |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | static double quadAngle(skiatest::Reporter* reporter, const SkDQuad& quad, double t) { |
| 105 | const SkDVector& pt = quad.ptAtT(t) - quad[0]; |
| 106 | double angle = (atan2(pt.fY, pt.fX) + SK_ScalarPI) * 8 / (SK_ScalarPI * 2); |
| 107 | REPORTER_ASSERT(reporter, angle >= 0 && angle <= 8); |
| 108 | return angle; |
| 109 | } |
| 110 | |
| 111 | static bool angleDirection(double a1, double a2) { |
| 112 | double delta = a1 - a2; |
| 113 | return (delta < 4 && delta > 0) || delta < -4; |
| 114 | } |
| 115 | |
| 116 | static void setQuadHullSweep(const SkDQuad& quad, SkDVector sweep[2]) { |
| 117 | sweep[0] = quad[1] - quad[0]; |
| 118 | sweep[1] = quad[2] - quad[0]; |
| 119 | } |
| 120 | |
| 121 | static double distEndRatio(double dist, const SkDQuad& quad) { |
| 122 | SkDVector v[] = {quad[2] - quad[0], quad[1] - quad[0], quad[2] - quad[1]}; |
| 123 | double longest = SkTMax(v[0].length(), SkTMax(v[1].length(), v[2].length())); |
| 124 | return longest / dist; |
| 125 | } |
| 126 | |
| 127 | static bool checkParallel(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2) { |
| 128 | SkDVector sweep[2], tweep[2]; |
| 129 | setQuadHullSweep(quad1, sweep); |
| 130 | setQuadHullSweep(quad2, tweep); |
| 131 | // if the ctrl tangents are not nearly parallel, use them |
| 132 | // solve for opposite direction displacement scale factor == m |
| 133 | // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x |
| 134 | // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1] |
| 135 | // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x) |
| 136 | // v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x) |
| 137 | // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x |
| 138 | // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y) |
| 139 | // m = v1.cross(v2) / v1.dot(v2) |
| 140 | double s0dt0 = sweep[0].dot(tweep[0]); |
| 141 | REPORTER_ASSERT(reporter, s0dt0 != 0); |
| 142 | double s0xt0 = sweep[0].crossCheck(tweep[0]); |
| 143 | double m = s0xt0 / s0dt0; |
| 144 | double sDist = sweep[0].length() * m; |
| 145 | double tDist = tweep[0].length() * m; |
| 146 | bool useS = fabs(sDist) < fabs(tDist); |
| 147 | double mFactor = fabs(useS ? distEndRatio(sDist, quad1) : distEndRatio(tDist, quad2)); |
| 148 | if (mFactor < 5000) { // empirically found limit |
| 149 | return s0xt0 < 0; |
| 150 | } |
| 151 | SkDVector m0 = quad1.ptAtT(0.5) - quad1[0]; |
| 152 | SkDVector m1 = quad2.ptAtT(0.5) - quad2[0]; |
| 153 | return m0.crossCheck(m1) < 0; |
| 154 | } |
| 155 | |
| 156 | /* returns |
| 157 | -1 if overlaps |
| 158 | 0 if no overlap cw |
| 159 | 1 if no overlap ccw |
| 160 | */ |
| 161 | static int quadHullsOverlap(skiatest::Reporter* reporter, const SkDQuad& quad1, |
| 162 | const SkDQuad& quad2) { |
| 163 | SkDVector sweep[2], tweep[2]; |
| 164 | setQuadHullSweep(quad1, sweep); |
| 165 | setQuadHullSweep(quad2, tweep); |
| 166 | double s0xs1 = sweep[0].crossCheck(sweep[1]); |
| 167 | double s0xt0 = sweep[0].crossCheck(tweep[0]); |
| 168 | double s1xt0 = sweep[1].crossCheck(tweep[0]); |
| 169 | bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0; |
| 170 | double s0xt1 = sweep[0].crossCheck(tweep[1]); |
| 171 | double s1xt1 = sweep[1].crossCheck(tweep[1]); |
| 172 | tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0; |
| 173 | double t0xt1 = tweep[0].crossCheck(tweep[1]); |
| 174 | if (tBetweenS) { |
| 175 | return -1; |
| 176 | } |
| 177 | if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) { // s0 to s1 equals t0 to t1 |
| 178 | return -1; |
| 179 | } |
| 180 | bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0; |
| 181 | sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0; |
| 182 | if (sBetweenT) { |
| 183 | return -1; |
| 184 | } |
| 185 | // if all of the sweeps are in the same half plane, then the order of any pair is enough |
| 186 | if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) { |
| 187 | return 0; |
| 188 | } |
| 189 | if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) { |
| 190 | return 1; |
| 191 | } |
| 192 | // if the outside sweeps are greater than 180 degress: |
| 193 | // first assume the inital tangents are the ordering |
| 194 | // if the midpoint direction matches the inital order, that is enough |
| 195 | SkDVector m0 = quad1.ptAtT(0.5) - quad1[0]; |
| 196 | SkDVector m1 = quad2.ptAtT(0.5) - quad2[0]; |
| 197 | double m0xm1 = m0.crossCheck(m1); |
| 198 | if (s0xt0 > 0 && m0xm1 > 0) { |
| 199 | return 0; |
| 200 | } |
| 201 | if (s0xt0 < 0 && m0xm1 < 0) { |
| 202 | return 1; |
| 203 | } |
| 204 | REPORTER_ASSERT(reporter, s0xt0 != 0); |
| 205 | return checkParallel(reporter, quad1, quad2); |
| 206 | } |
| 207 | |
| 208 | static double radianSweep(double start, double end) { |
| 209 | double sweep = end - start; |
| 210 | if (sweep > SK_ScalarPI) { |
| 211 | sweep -= 2 * SK_ScalarPI; |
| 212 | } else if (sweep < -SK_ScalarPI) { |
| 213 | sweep += 2 * SK_ScalarPI; |
| 214 | } |
| 215 | return sweep; |
| 216 | } |
| 217 | |
| 218 | static bool radianBetween(double start, double test, double end) { |
| 219 | double startToEnd = radianSweep(start, end); |
| 220 | double startToTest = radianSweep(start, test); |
| 221 | double testToEnd = radianSweep(test, end); |
| 222 | return (startToTest <= 0 && testToEnd <= 0 && startToTest >= startToEnd) || |
| 223 | (startToTest >= 0 && testToEnd >= 0 && startToTest <= startToEnd); |
| 224 | } |
| 225 | |
| 226 | static bool orderTRange(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2, |
| 227 | double r, TRange* result) { |
| 228 | SkTArray<double, false> t1Array, t2Array; |
| 229 | orderQuads(reporter, quad1, r, &t1Array); |
| 230 | orderQuads(reporter,quad2, r, &t2Array); |
| 231 | if (!t1Array.count() || !t2Array.count()) { |
| 232 | return false; |
| 233 | } |
| 234 | SkTQSort<double>(t1Array.begin(), t1Array.end() - 1); |
| 235 | SkTQSort<double>(t2Array.begin(), t2Array.end() - 1); |
| 236 | double t1 = result->tMin1 = t1Array[0]; |
| 237 | double t2 = result->tMin2 = t2Array[0]; |
| 238 | double a1 = quadAngle(reporter,quad1, t1); |
| 239 | double a2 = quadAngle(reporter,quad2, t2); |
| 240 | if (approximately_equal(a1, a2)) { |
| 241 | return false; |
| 242 | } |
| 243 | bool refCCW = angleDirection(a1, a2); |
| 244 | result->t1 = t1; |
| 245 | result->t2 = t2; |
| 246 | result->tMin = SkTMin(t1, t2); |
| 247 | result->a1 = a1; |
| 248 | result->a2 = a2; |
| 249 | result->ccw = refCCW; |
| 250 | return true; |
| 251 | } |
| 252 | |
| 253 | static bool equalPoints(const SkDPoint& pt1, const SkDPoint& pt2, double max) { |
| 254 | return approximately_zero_when_compared_to(pt1.fX - pt2.fX, max) |
| 255 | && approximately_zero_when_compared_to(pt1.fY - pt2.fY, max); |
| 256 | } |
| 257 | |
| 258 | static double maxDist(const SkDQuad& quad) { |
| 259 | SkDRect bounds; |
| 260 | bounds.setBounds(quad); |
| 261 | SkDVector corner[4] = { |
| 262 | { bounds.fLeft - quad[0].fX, bounds.fTop - quad[0].fY }, |
| 263 | { bounds.fRight - quad[0].fX, bounds.fTop - quad[0].fY }, |
| 264 | { bounds.fLeft - quad[0].fX, bounds.fBottom - quad[0].fY }, |
| 265 | { bounds.fRight - quad[0].fX, bounds.fBottom - quad[0].fY } |
| 266 | }; |
| 267 | double max = 0; |
| 268 | for (unsigned index = 0; index < SK_ARRAY_COUNT(corner); ++index) { |
| 269 | max = SkTMax(max, corner[index].length()); |
| 270 | } |
| 271 | return max; |
| 272 | } |
| 273 | |
| 274 | static double maxQuad(const SkDQuad& quad) { |
| 275 | double max = 0; |
| 276 | for (int index = 0; index < 2; ++index) { |
| 277 | max = SkTMax(max, fabs(quad[index].fX)); |
| 278 | max = SkTMax(max, fabs(quad[index].fY)); |
| 279 | } |
| 280 | return max; |
| 281 | } |
| 282 | |
| 283 | static bool bruteMinT(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2, |
| 284 | TRange* lowerRange, TRange* upperRange) { |
| 285 | double maxRadius = SkTMin(maxDist(quad1), maxDist(quad2)); |
| 286 | double maxQuads = SkTMax(maxQuad(quad1), maxQuad(quad2)); |
| 287 | double r = maxRadius / 2; |
| 288 | double rStep = r / 2; |
| 289 | SkDPoint best1 = {SK_ScalarInfinity, SK_ScalarInfinity}; |
| 290 | SkDPoint best2 = {SK_ScalarInfinity, SK_ScalarInfinity}; |
| 291 | int bestCCW = -1; |
| 292 | double bestR = maxRadius; |
| 293 | upperRange->tMin = 0; |
| 294 | lowerRange->tMin = 1; |
| 295 | do { |
| 296 | do { // find upper bounds of single result |
| 297 | TRange tRange; |
| 298 | bool stepUp = orderTRange(reporter, quad1, quad2, r, &tRange); |
| 299 | if (stepUp) { |
| 300 | SkDPoint pt1 = quad1.ptAtT(tRange.t1); |
| 301 | if (equalPoints(pt1, best1, maxQuads)) { |
| 302 | break; |
| 303 | } |
| 304 | best1 = pt1; |
| 305 | SkDPoint pt2 = quad2.ptAtT(tRange.t2); |
| 306 | if (equalPoints(pt2, best2, maxQuads)) { |
| 307 | break; |
| 308 | } |
| 309 | best2 = pt2; |
| 310 | if (gPathOpsAngleIdeasVerbose) { |
| 311 | SkDebugf("u bestCCW=%d ccw=%d bestMin=%1.9g:%1.9g r=%1.9g tMin=%1.9g\n", |
| 312 | bestCCW, tRange.ccw, lowerRange->tMin, upperRange->tMin, r, |
| 313 | tRange.tMin); |
| 314 | } |
| 315 | if (bestCCW >= 0 && bestCCW != (int) tRange.ccw) { |
| 316 | if (tRange.tMin < upperRange->tMin) { |
| 317 | upperRange->tMin = 0; |
| 318 | } else { |
| 319 | stepUp = false; |
| 320 | } |
| 321 | } |
| 322 | if (upperRange->tMin < tRange.tMin) { |
| 323 | bestCCW = tRange.ccw; |
| 324 | bestR = r; |
| 325 | *upperRange = tRange; |
| 326 | } |
| 327 | if (lowerRange->tMin > tRange.tMin) { |
| 328 | *lowerRange = tRange; |
| 329 | } |
| 330 | } |
| 331 | r += stepUp ? rStep : -rStep; |
| 332 | rStep /= 2; |
| 333 | } while (rStep > FLT_EPSILON); |
| 334 | if (bestCCW < 0) { |
| 335 | REPORTER_ASSERT(reporter, bestR < maxRadius); |
| 336 | return false; |
| 337 | } |
| 338 | double lastHighR = bestR; |
| 339 | r = bestR / 2; |
| 340 | rStep = r / 2; |
| 341 | do { // find lower bounds of single result |
| 342 | TRange tRange; |
| 343 | bool success = orderTRange(reporter, quad1, quad2, r, &tRange); |
| 344 | if (success) { |
| 345 | if (gPathOpsAngleIdeasVerbose) { |
| 346 | SkDebugf("l bestCCW=%d ccw=%d bestMin=%1.9g:%1.9g r=%1.9g tMin=%1.9g\n", |
| 347 | bestCCW, tRange.ccw, lowerRange->tMin, upperRange->tMin, r, |
| 348 | tRange.tMin); |
| 349 | } |
| 350 | if (bestCCW != (int) tRange.ccw || upperRange->tMin < tRange.tMin) { |
| 351 | bestCCW = tRange.ccw; |
| 352 | *upperRange = tRange; |
| 353 | bestR = lastHighR; |
| 354 | break; // need to establish a new upper bounds |
| 355 | } |
| 356 | SkDPoint pt1 = quad1.ptAtT(tRange.t1); |
| 357 | SkDPoint pt2 = quad2.ptAtT(tRange.t2); |
| 358 | if (equalPoints(pt1, best1, maxQuads)) { |
| 359 | goto breakOut; |
| 360 | } |
| 361 | best1 = pt1; |
| 362 | if (equalPoints(pt2, best2, maxQuads)) { |
| 363 | goto breakOut; |
| 364 | } |
| 365 | best2 = pt2; |
| 366 | if (equalPoints(pt1, pt2, maxQuads)) { |
| 367 | success = false; |
| 368 | } else { |
| 369 | if (upperRange->tMin < tRange.tMin) { |
| 370 | *upperRange = tRange; |
| 371 | } |
| 372 | if (lowerRange->tMin > tRange.tMin) { |
| 373 | *lowerRange = tRange; |
| 374 | } |
| 375 | } |
| 376 | lastHighR = SkTMin(r, lastHighR); |
| 377 | } |
| 378 | r += success ? -rStep : rStep; |
| 379 | rStep /= 2; |
| 380 | } while (rStep > FLT_EPSILON); |
| 381 | } while (rStep > FLT_EPSILON); |
| 382 | breakOut: |
| 383 | if (gPathOpsAngleIdeasVerbose) { |
| 384 | SkDebugf("l a2-a1==%1.9g\n", lowerRange->a2 - lowerRange->a1); |
| 385 | } |
| 386 | return true; |
| 387 | } |
| 388 | |
| 389 | static void bruteForce(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2, |
| 390 | bool ccw) { |
| 391 | if (!gPathOpsAngleIdeasEnableBruteCheck) { |
| 392 | return; |
| 393 | } |
| 394 | TRange lowerRange, upperRange; |
| 395 | bool result = bruteMinT(reporter, quad1, quad2, &lowerRange, &upperRange); |
| 396 | REPORTER_ASSERT(reporter, result); |
| 397 | double angle = fabs(lowerRange.a2 - lowerRange.a1); |
| 398 | REPORTER_ASSERT(reporter, angle > 3.998 || ccw == upperRange.ccw); |
| 399 | } |
| 400 | |
| 401 | static bool bruteForceCheck(skiatest::Reporter* reporter, const SkDQuad& quad1, |
| 402 | const SkDQuad& quad2, bool ccw) { |
| 403 | TRange lowerRange, upperRange; |
| 404 | bool result = bruteMinT(reporter, quad1, quad2, &lowerRange, &upperRange); |
| 405 | REPORTER_ASSERT(reporter, result); |
| 406 | return ccw == upperRange.ccw; |
| 407 | } |
| 408 | |
| 409 | class PathOpsSegmentTester { |
| 410 | public: |
| 411 | static void ConstructQuad(SkOpSegment* segment, SkPoint shortQuad[3]) { |
| 412 | segment->debugConstructQuad(shortQuad); |
| 413 | } |
| 414 | }; |
| 415 | |
| 416 | static void makeSegment(const SkDQuad& quad, SkPoint shortQuad[3], SkOpSegment* result) { |
| 417 | shortQuad[0] = quad[0].asSkPoint(); |
| 418 | shortQuad[1] = quad[1].asSkPoint(); |
| 419 | shortQuad[2] = quad[2].asSkPoint(); |
| 420 | PathOpsSegmentTester::ConstructQuad(result, shortQuad); |
| 421 | } |
| 422 | |
| 423 | static void testQuadAngles(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2, |
| 424 | int testNo) { |
| 425 | SkPoint shortQuads[2][3]; |
| 426 | SkOpSegment seg[2]; |
| 427 | makeSegment(quad1, shortQuads[0], &seg[0]); |
| 428 | makeSegment(quad2, shortQuads[1], &seg[1]); |
caryclark | dac1d17 | 2014-06-17 05:15:38 -0700 | [diff] [blame] | 429 | int realOverlap = PathOpsAngleTester::ConvexHullOverlaps(*seg[0].debugLastAngle(), |
| 430 | *seg[1].debugLastAngle()); |
commit-bot@chromium.org | 4431e77 | 2014-04-14 17:08:59 +0000 | [diff] [blame] | 431 | const SkDPoint& origin = quad1[0]; |
| 432 | REPORTER_ASSERT(reporter, origin == quad2[0]); |
| 433 | double a1s = atan2(origin.fY - quad1[1].fY, quad1[1].fX - origin.fX); |
| 434 | double a1e = atan2(origin.fY - quad1[2].fY, quad1[2].fX - origin.fX); |
| 435 | double a2s = atan2(origin.fY - quad2[1].fY, quad2[1].fX - origin.fX); |
| 436 | double a2e = atan2(origin.fY - quad2[2].fY, quad2[2].fX - origin.fX); |
| 437 | bool oldSchoolOverlap = radianBetween(a1s, a2s, a1e) |
| 438 | || radianBetween(a1s, a2e, a1e) || radianBetween(a2s, a1s, a2e) |
| 439 | || radianBetween(a2s, a1e, a2e); |
| 440 | int overlap = quadHullsOverlap(reporter, quad1, quad2); |
| 441 | bool realMatchesOverlap = realOverlap == overlap || SK_ScalarPI - fabs(a2s - a1s) < 0.002; |
| 442 | if (realOverlap != overlap) { |
| 443 | SkDebugf("\nSK_ScalarPI - fabs(a2s - a1s) = %1.9g\n", SK_ScalarPI - fabs(a2s - a1s)); |
| 444 | } |
| 445 | if (!realMatchesOverlap) { |
| 446 | DumpQ(quad1, quad2, testNo); |
| 447 | } |
| 448 | REPORTER_ASSERT(reporter, realMatchesOverlap); |
| 449 | if (oldSchoolOverlap != (overlap < 0)) { |
| 450 | overlap = quadHullsOverlap(reporter, quad1, quad2); // set a breakpoint and debug if assert fires |
| 451 | REPORTER_ASSERT(reporter, oldSchoolOverlap == (overlap < 0)); |
| 452 | } |
| 453 | SkDVector v1s = quad1[1] - quad1[0]; |
| 454 | SkDVector v1e = quad1[2] - quad1[0]; |
| 455 | SkDVector v2s = quad2[1] - quad2[0]; |
| 456 | SkDVector v2e = quad2[2] - quad2[0]; |
| 457 | double vDir[2] = { v1s.cross(v1e), v2s.cross(v2e) }; |
| 458 | bool ray1In2 = v1s.cross(v2s) * vDir[1] <= 0 && v1s.cross(v2e) * vDir[1] >= 0; |
| 459 | bool ray2In1 = v2s.cross(v1s) * vDir[0] <= 0 && v2s.cross(v1e) * vDir[0] >= 0; |
| 460 | if (overlap >= 0) { |
| 461 | // verify that hulls really don't overlap |
| 462 | REPORTER_ASSERT(reporter, !ray1In2); |
| 463 | REPORTER_ASSERT(reporter, !ray2In1); |
| 464 | bool ctrl1In2 = v1e.cross(v2s) * vDir[1] <= 0 && v1e.cross(v2e) * vDir[1] >= 0; |
| 465 | REPORTER_ASSERT(reporter, !ctrl1In2); |
| 466 | bool ctrl2In1 = v2e.cross(v1s) * vDir[0] <= 0 && v2e.cross(v1e) * vDir[0] >= 0; |
| 467 | REPORTER_ASSERT(reporter, !ctrl2In1); |
| 468 | // check answer against reference |
| 469 | bruteForce(reporter, quad1, quad2, overlap > 0); |
| 470 | } |
| 471 | // continue end point rays and see if they intersect the opposite curve |
| 472 | SkDLine rays[] = {{{origin, quad2[2]}}, {{origin, quad1[2]}}}; |
| 473 | const SkDQuad* quads[] = {&quad1, &quad2}; |
| 474 | SkDVector midSpokes[2]; |
| 475 | SkIntersections intersect[2]; |
| 476 | double minX, minY, maxX, maxY; |
| 477 | minX = minY = SK_ScalarInfinity; |
| 478 | maxX = maxY = -SK_ScalarInfinity; |
| 479 | double maxWidth = 0; |
| 480 | bool useIntersect = false; |
| 481 | double smallestTs[] = {1, 1}; |
| 482 | for (unsigned index = 0; index < SK_ARRAY_COUNT(quads); ++index) { |
| 483 | const SkDQuad& q = *quads[index]; |
| 484 | midSpokes[index] = q.ptAtT(0.5) - origin; |
| 485 | minX = SkTMin(SkTMin(SkTMin(minX, origin.fX), q[1].fX), q[2].fX); |
| 486 | minY = SkTMin(SkTMin(SkTMin(minY, origin.fY), q[1].fY), q[2].fY); |
| 487 | maxX = SkTMax(SkTMax(SkTMax(maxX, origin.fX), q[1].fX), q[2].fX); |
| 488 | maxY = SkTMax(SkTMax(SkTMax(maxY, origin.fY), q[1].fY), q[2].fY); |
| 489 | maxWidth = SkTMax(maxWidth, SkTMax(maxX - minX, maxY - minY)); |
| 490 | intersect[index].intersectRay(q, rays[index]); |
| 491 | const SkIntersections& i = intersect[index]; |
| 492 | REPORTER_ASSERT(reporter, i.used() >= 1); |
| 493 | bool foundZero = false; |
| 494 | double smallT = 1; |
| 495 | for (int idx2 = 0; idx2 < i.used(); ++idx2) { |
| 496 | double t = i[0][idx2]; |
| 497 | if (t == 0) { |
| 498 | foundZero = true; |
| 499 | continue; |
| 500 | } |
| 501 | if (smallT > t) { |
| 502 | smallT = t; |
| 503 | } |
| 504 | } |
| 505 | REPORTER_ASSERT(reporter, foundZero == true); |
| 506 | if (smallT == 1) { |
| 507 | continue; |
| 508 | } |
| 509 | SkDVector ray = q.ptAtT(smallT) - origin; |
| 510 | SkDVector end = rays[index][1] - origin; |
| 511 | if (ray.fX * end.fX < 0 || ray.fY * end.fY < 0) { |
| 512 | continue; |
| 513 | } |
| 514 | double rayDist = ray.length(); |
| 515 | double endDist = end.length(); |
| 516 | double delta = fabs(rayDist - endDist) / maxWidth; |
| 517 | if (delta > 1e-4) { |
| 518 | useIntersect ^= true; |
| 519 | } |
| 520 | smallestTs[index] = smallT; |
| 521 | } |
| 522 | bool firstInside; |
| 523 | if (useIntersect) { |
| 524 | int sIndex = (int) (smallestTs[1] < 1); |
| 525 | REPORTER_ASSERT(reporter, smallestTs[sIndex ^ 1] == 1); |
| 526 | double t = smallestTs[sIndex]; |
| 527 | const SkDQuad& q = *quads[sIndex]; |
| 528 | SkDVector ray = q.ptAtT(t) - origin; |
| 529 | SkDVector end = rays[sIndex][1] - origin; |
| 530 | double rayDist = ray.length(); |
| 531 | double endDist = end.length(); |
| 532 | SkDVector mid = q.ptAtT(t / 2) - origin; |
| 533 | double midXray = mid.crossCheck(ray); |
| 534 | if (gPathOpsAngleIdeasVerbose) { |
| 535 | SkDebugf("rayDist>endDist:%d sIndex==0:%d vDir[sIndex]<0:%d midXray<0:%d\n", |
| 536 | rayDist > endDist, sIndex == 0, vDir[sIndex] < 0, midXray < 0); |
| 537 | } |
| 538 | SkASSERT(SkScalarSignAsInt(SkDoubleToScalar(midXray)) |
| 539 | == SkScalarSignAsInt(SkDoubleToScalar(vDir[sIndex]))); |
| 540 | firstInside = (rayDist > endDist) ^ (sIndex == 0) ^ (vDir[sIndex] < 0); |
| 541 | } else if (overlap >= 0) { |
| 542 | return; // answer has already been determined |
| 543 | } else { |
| 544 | firstInside = checkParallel(reporter, quad1, quad2); |
| 545 | } |
| 546 | if (overlap < 0) { |
| 547 | SkDEBUGCODE(int realEnds =) |
caryclark | dac1d17 | 2014-06-17 05:15:38 -0700 | [diff] [blame] | 548 | PathOpsAngleTester::EndsIntersect(*seg[0].debugLastAngle(), |
| 549 | *seg[1].debugLastAngle()); |
commit-bot@chromium.org | 4431e77 | 2014-04-14 17:08:59 +0000 | [diff] [blame] | 550 | SkASSERT(realEnds == (firstInside ? 1 : 0)); |
| 551 | } |
| 552 | bruteForce(reporter, quad1, quad2, firstInside); |
| 553 | } |
| 554 | |
| 555 | DEF_TEST(PathOpsAngleOverlapHullsOne, reporter) { |
| 556 | // gPathOpsAngleIdeasVerbose = true; |
| 557 | const SkDQuad quads[] = { |
| 558 | {{{939.4808349609375, 914.355224609375}, {-357.7921142578125, 590.842529296875}, {736.8936767578125, -350.717529296875}}}, |
| 559 | {{{939.4808349609375, 914.355224609375}, {-182.85418701171875, 634.4552001953125}, {-509.62615966796875, 576.1182861328125}}} |
| 560 | }; |
| 561 | for (int index = 0; index < (int) SK_ARRAY_COUNT(quads); index += 2) { |
| 562 | testQuadAngles(reporter, quads[index], quads[index + 1], 0); |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | DEF_TEST(PathOpsAngleOverlapHulls, reporter) { |
| 567 | if (!gPathOpsAngleIdeasVerbose) { // takes a while to run -- so exclude it by default |
| 568 | return; |
| 569 | } |
| 570 | SkRandom ran; |
| 571 | for (int index = 0; index < 100000; ++index) { |
| 572 | if (index % 1000 == 999) SkDebugf("."); |
| 573 | SkDPoint origin = {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}; |
| 574 | SkDQuad quad1 = {{origin, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, |
| 575 | {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}}}; |
| 576 | if (quad1[0] == quad1[2]) { |
| 577 | continue; |
| 578 | } |
| 579 | SkDQuad quad2 = {{origin, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, |
| 580 | {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}}}; |
| 581 | if (quad2[0] == quad2[2]) { |
| 582 | continue; |
| 583 | } |
| 584 | SkIntersections i; |
| 585 | i.intersect(quad1, quad2); |
| 586 | REPORTER_ASSERT(reporter, i.used() >= 1); |
| 587 | if (i.used() > 1) { |
| 588 | continue; |
| 589 | } |
| 590 | testQuadAngles(reporter, quad1, quad2, index); |
| 591 | } |
| 592 | } |
| 593 | |
| 594 | DEF_TEST(PathOpsAngleBruteT, reporter) { |
| 595 | if (!gPathOpsAngleIdeasVerbose) { // takes a while to run -- so exclude it by default |
| 596 | return; |
| 597 | } |
| 598 | SkRandom ran; |
| 599 | double smaller = SK_Scalar1; |
| 600 | SkDQuad small[2]; |
| 601 | SkDEBUGCODE(int smallIndex); |
| 602 | for (int index = 0; index < 100000; ++index) { |
| 603 | SkDPoint origin = {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}; |
| 604 | SkDQuad quad1 = {{origin, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, |
| 605 | {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}}}; |
| 606 | if (quad1[0] == quad1[2]) { |
| 607 | continue; |
| 608 | } |
| 609 | SkDQuad quad2 = {{origin, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, |
| 610 | {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}}}; |
| 611 | if (quad2[0] == quad2[2]) { |
| 612 | continue; |
| 613 | } |
| 614 | SkIntersections i; |
| 615 | i.intersect(quad1, quad2); |
| 616 | REPORTER_ASSERT(reporter, i.used() >= 1); |
| 617 | if (i.used() > 1) { |
| 618 | continue; |
| 619 | } |
| 620 | TRange lowerRange, upperRange; |
| 621 | bool result = bruteMinT(reporter, quad1, quad2, &lowerRange, &upperRange); |
| 622 | REPORTER_ASSERT(reporter, result); |
| 623 | double min = SkTMin(upperRange.t1, upperRange.t2); |
| 624 | if (smaller > min) { |
| 625 | small[0] = quad1; |
| 626 | small[1] = quad2; |
| 627 | SkDEBUGCODE(smallIndex = index); |
| 628 | smaller = min; |
| 629 | } |
| 630 | } |
| 631 | #ifdef SK_DEBUG |
| 632 | DumpQ(small[0], small[1], smallIndex); |
| 633 | #endif |
| 634 | } |
| 635 | |
| 636 | DEF_TEST(PathOpsAngleBruteTOne, reporter) { |
| 637 | // gPathOpsAngleIdeasVerbose = true; |
| 638 | const SkDQuad quads[] = { |
| 639 | {{{-770.8492431640625, 948.2369384765625}, {-853.37066650390625, 972.0301513671875}, {-200.62042236328125, -26.7174072265625}}}, |
| 640 | {{{-770.8492431640625, 948.2369384765625}, {513.602783203125, 578.8681640625}, {960.641357421875, -813.69757080078125}}}, |
| 641 | {{{563.8267822265625, -107.4566650390625}, {-44.67724609375, -136.57452392578125}, {492.3856201171875, -268.79644775390625}}}, |
| 642 | {{{563.8267822265625, -107.4566650390625}, {708.049072265625, -100.77789306640625}, {-48.88226318359375, 967.9022216796875}}}, |
| 643 | {{{598.857421875, 846.345458984375}, {-644.095703125, -316.12921142578125}, {-97.64599609375, 20.6158447265625}}}, |
| 644 | {{{598.857421875, 846.345458984375}, {715.7142333984375, 955.3599853515625}, {-919.9478759765625, 691.611328125}}}, |
| 645 | }; |
| 646 | TRange lowerRange, upperRange; |
| 647 | bruteMinT(reporter, quads[0], quads[1], &lowerRange, &upperRange); |
| 648 | bruteMinT(reporter, quads[2], quads[3], &lowerRange, &upperRange); |
| 649 | bruteMinT(reporter, quads[4], quads[5], &lowerRange, &upperRange); |
| 650 | } |
| 651 | |
| 652 | /* |
| 653 | The sorting problem happens when the inital tangents are not a true indicator of the curve direction |
| 654 | Nearly always, the initial tangents do give the right answer, |
| 655 | so the trick is to figure out when the initial tangent cannot be trusted. |
| 656 | If the convex hulls of both curves are in the same half plane, and not overlapping, sorting the |
| 657 | hulls is enough. |
| 658 | If the hulls overlap, and have the same general direction, then intersect the shorter end point ray |
| 659 | with the opposing curve, and see on which side of the shorter curve the opposing intersection lies. |
| 660 | Otherwise, if the control vector is extremely short, likely the point on curve must be computed |
| 661 | If moving the control point slightly can change the sign of the cross product, either answer could |
| 662 | be "right". |
| 663 | We need to determine how short is extremely short. Move the control point a set percentage of |
| 664 | the largest length to determine how stable the curve is vis-a-vis the initial tangent. |
| 665 | */ |
| 666 | |
| 667 | static const SkDQuad extremeTests[][2] = { |
| 668 | { |
| 669 | {{{-708.0077926931004,-154.61669472244046}, |
| 670 | {-707.9234268635319,-154.30459999551294}, |
| 671 | {505.58447265625,-504.9130859375}}}, |
| 672 | {{{-708.0077926931004,-154.61669472244046}, |
| 673 | {-711.127526325141,-163.9446090624656}, |
| 674 | {-32.39227294921875,-906.3277587890625}}}, |
| 675 | }, { |
| 676 | {{{-708.0077926931004,-154.61669472244046}, |
| 677 | {-708.2875337527566,-154.36676458635623}, |
| 678 | {505.58447265625,-504.9130859375}}}, |
| 679 | {{{-708.0077926931004,-154.61669472244046}, |
| 680 | {-708.4111557216864,-154.5366642875255}, |
| 681 | {-32.39227294921875,-906.3277587890625}}}, |
| 682 | }, { |
| 683 | {{{-609.0230951752058,-267.5435593490574}, |
| 684 | {-594.1120809906336,-136.08492475411555}, |
| 685 | {505.58447265625,-504.9130859375}}}, |
| 686 | {{{-609.0230951752058,-267.5435593490574}, |
| 687 | {-693.7467719138988,-341.3259237831895}, |
| 688 | {-32.39227294921875,-906.3277587890625}}} |
| 689 | }, { |
| 690 | {{{-708.0077926931004,-154.61669472244046}, |
| 691 | {-707.9994640658723,-154.58588461064852}, |
| 692 | {505.58447265625,-504.9130859375}}}, |
| 693 | {{{-708.0077926931004,-154.61669472244046}, |
| 694 | {-708.0239418990758,-154.6403553507124}, |
| 695 | {-32.39227294921875,-906.3277587890625}}} |
| 696 | }, { |
| 697 | {{{-708.0077926931004,-154.61669472244046}, |
| 698 | {-707.9993222215099,-154.55999389855003}, |
| 699 | {68.88981098017803,296.9273945411635}}}, |
| 700 | {{{-708.0077926931004,-154.61669472244046}, |
| 701 | {-708.0509091919608,-154.64675214697067}, |
| 702 | {-777.4871194247767,-995.1470120113145}}} |
| 703 | }, { |
| 704 | {{{-708.0077926931004,-154.61669472244046}, |
| 705 | {-708.0060491116379,-154.60889321524968}, |
| 706 | {229.97088707895057,-430.0569357467175}}}, |
| 707 | {{{-708.0077926931004,-154.61669472244046}, |
| 708 | {-708.013911296257,-154.6219143988058}, |
| 709 | {138.13162892614037,-573.3689311737394}}} |
| 710 | }, { |
| 711 | {{{-543.2570545751013,-237.29243831075053}, |
| 712 | {-452.4119186056987,-143.47223056267802}, |
| 713 | {229.97088707895057,-430.0569357467175}}}, |
| 714 | {{{-543.2570545751013,-237.29243831075053}, |
| 715 | {-660.5330371214436,-362.0016148388}, |
| 716 | {138.13162892614037,-573.3689311737394}}}, |
| 717 | }, |
| 718 | }; |
| 719 | |
| 720 | static double endCtrlRatio(const SkDQuad quad) { |
| 721 | SkDVector longEdge = quad[2] - quad[0]; |
| 722 | double longLen = longEdge.length(); |
| 723 | SkDVector shortEdge = quad[1] - quad[0]; |
| 724 | double shortLen = shortEdge.length(); |
| 725 | return longLen / shortLen; |
| 726 | } |
| 727 | |
| 728 | static void computeMV(const SkDQuad& quad, const SkDVector& v, double m, SkDVector mV[2]) { |
| 729 | SkDPoint mPta = {quad[1].fX - m * v.fY, quad[1].fY + m * v.fX}; |
| 730 | SkDPoint mPtb = {quad[1].fX + m * v.fY, quad[1].fY - m * v.fX}; |
| 731 | mV[0] = mPta - quad[0]; |
| 732 | mV[1] = mPtb - quad[0]; |
| 733 | } |
| 734 | |
| 735 | static double mDistance(skiatest::Reporter* reporter, bool agrees, const SkDQuad& q1, |
| 736 | const SkDQuad& q2) { |
| 737 | if (1 && agrees) { |
| 738 | return SK_ScalarMax; |
| 739 | } |
| 740 | // how close is the angle from inflecting in the opposite direction? |
| 741 | SkDVector v1 = q1[1] - q1[0]; |
| 742 | SkDVector v2 = q2[1] - q2[0]; |
| 743 | double dir = v1.crossCheck(v2); |
| 744 | REPORTER_ASSERT(reporter, dir != 0); |
| 745 | // solve for opposite direction displacement scale factor == m |
| 746 | // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x |
| 747 | // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1] |
| 748 | // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x) |
| 749 | // v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x) |
| 750 | // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x |
| 751 | // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y) |
| 752 | // m = v1.cross(v2) / v1.dot(v2) |
| 753 | double div = v1.dot(v2); |
| 754 | REPORTER_ASSERT(reporter, div != 0); |
| 755 | double m = dir / div; |
| 756 | SkDVector mV1[2], mV2[2]; |
| 757 | computeMV(q1, v1, m, mV1); |
| 758 | computeMV(q2, v2, m, mV2); |
| 759 | double dist1 = v1.length() * m; |
| 760 | double dist2 = v2.length() * m; |
| 761 | if (gPathOpsAngleIdeasVerbose) { |
| 762 | SkDebugf("%c r1=%1.9g r2=%1.9g m=%1.9g dist1=%1.9g dist2=%1.9g " |
| 763 | " dir%c 1a=%1.9g 1b=%1.9g 2a=%1.9g 2b=%1.9g\n", agrees ? 'T' : 'F', |
| 764 | endCtrlRatio(q1), endCtrlRatio(q2), m, dist1, dist2, dir > 0 ? '+' : '-', |
| 765 | mV1[0].crossCheck(v2), mV1[1].crossCheck(v2), |
| 766 | mV2[0].crossCheck(v1), mV2[1].crossCheck(v1)); |
| 767 | } |
| 768 | if (1) { |
| 769 | bool use1 = fabs(dist1) < fabs(dist2); |
| 770 | if (gPathOpsAngleIdeasVerbose) { |
| 771 | SkDebugf("%c dist=%1.9g r=%1.9g\n", agrees ? 'T' : 'F', use1 ? dist1 : dist2, |
| 772 | use1 ? distEndRatio(dist1, q1) : distEndRatio(dist2, q2)); |
| 773 | } |
| 774 | return fabs(use1 ? distEndRatio(dist1, q1) : distEndRatio(dist2, q2)); |
| 775 | } |
| 776 | return SK_ScalarMax; |
| 777 | } |
| 778 | |
| 779 | static void midPointAgrees(skiatest::Reporter* reporter, const SkDQuad& q1, const SkDQuad& q2, |
| 780 | bool ccw) { |
| 781 | SkDPoint mid1 = q1.ptAtT(0.5); |
| 782 | SkDVector m1 = mid1 - q1[0]; |
| 783 | SkDPoint mid2 = q2.ptAtT(0.5); |
| 784 | SkDVector m2 = mid2 - q2[0]; |
| 785 | REPORTER_ASSERT(reporter, ccw ? m1.crossCheck(m2) < 0 : m1.crossCheck(m2) > 0); |
| 786 | } |
| 787 | |
| 788 | DEF_TEST(PathOpsAngleExtreme, reporter) { |
| 789 | if (!gPathOpsAngleIdeasVerbose) { // takes a while to run -- so exclude it by default |
| 790 | return; |
| 791 | } |
| 792 | double maxR = SK_ScalarMax; |
| 793 | for (int index = 0; index < (int) SK_ARRAY_COUNT(extremeTests); ++index) { |
| 794 | const SkDQuad& quad1 = extremeTests[index][0]; |
| 795 | const SkDQuad& quad2 = extremeTests[index][1]; |
| 796 | if (gPathOpsAngleIdeasVerbose) { |
| 797 | SkDebugf("%s %d\n", __FUNCTION__, index); |
| 798 | } |
| 799 | REPORTER_ASSERT(reporter, quad1[0] == quad2[0]); |
| 800 | SkIntersections i; |
| 801 | i.intersect(quad1, quad2); |
| 802 | REPORTER_ASSERT(reporter, i.used() == 1); |
| 803 | REPORTER_ASSERT(reporter, i.pt(0) == quad1[0]); |
| 804 | int overlap = quadHullsOverlap(reporter, quad1, quad2); |
| 805 | REPORTER_ASSERT(reporter, overlap >= 0); |
| 806 | SkDVector sweep[2], tweep[2]; |
| 807 | setQuadHullSweep(quad1, sweep); |
| 808 | setQuadHullSweep(quad2, tweep); |
| 809 | double s0xt0 = sweep[0].crossCheck(tweep[0]); |
| 810 | REPORTER_ASSERT(reporter, s0xt0 != 0); |
| 811 | bool ccw = s0xt0 < 0; |
| 812 | bool agrees = bruteForceCheck(reporter, quad1, quad2, ccw); |
| 813 | maxR = SkTMin(maxR, mDistance(reporter, agrees, quad1, quad2)); |
| 814 | if (agrees) { |
| 815 | continue; |
| 816 | } |
| 817 | midPointAgrees(reporter, quad1, quad2, !ccw); |
| 818 | SkDQuad q1 = quad1; |
| 819 | SkDQuad q2 = quad2; |
| 820 | double loFail = 1; |
| 821 | double hiPass = 2; |
| 822 | // double vectors until t passes |
| 823 | do { |
| 824 | q1[1].fX = quad1[0].fX * (1 - hiPass) + quad1[1].fX * hiPass; |
| 825 | q1[1].fY = quad1[0].fY * (1 - hiPass) + quad1[1].fY * hiPass; |
| 826 | q2[1].fX = quad2[0].fX * (1 - hiPass) + quad2[1].fX * hiPass; |
| 827 | q2[1].fY = quad2[0].fY * (1 - hiPass) + quad2[1].fY * hiPass; |
| 828 | agrees = bruteForceCheck(reporter, q1, q2, ccw); |
| 829 | maxR = SkTMin(maxR, mDistance(reporter, agrees, q1, q2)); |
| 830 | if (agrees) { |
| 831 | break; |
| 832 | } |
| 833 | midPointAgrees(reporter, quad1, quad2, !ccw); |
| 834 | loFail = hiPass; |
| 835 | hiPass *= 2; |
| 836 | } while (true); |
| 837 | // binary search to find minimum pass |
| 838 | double midTest = (loFail + hiPass) / 2; |
| 839 | double step = (hiPass - loFail) / 4; |
| 840 | while (step > FLT_EPSILON) { |
| 841 | q1[1].fX = quad1[0].fX * (1 - midTest) + quad1[1].fX * midTest; |
| 842 | q1[1].fY = quad1[0].fY * (1 - midTest) + quad1[1].fY * midTest; |
| 843 | q2[1].fX = quad2[0].fX * (1 - midTest) + quad2[1].fX * midTest; |
| 844 | q2[1].fY = quad2[0].fY * (1 - midTest) + quad2[1].fY * midTest; |
| 845 | agrees = bruteForceCheck(reporter, q1, q2, ccw); |
| 846 | maxR = SkTMin(maxR, mDistance(reporter, agrees, q1, q2)); |
| 847 | if (!agrees) { |
| 848 | midPointAgrees(reporter, quad1, quad2, !ccw); |
| 849 | } |
| 850 | midTest += agrees ? -step : step; |
| 851 | step /= 2; |
| 852 | } |
| 853 | #ifdef SK_DEBUG |
| 854 | // DumpQ(q1, q2, 999); |
| 855 | #endif |
| 856 | } |
| 857 | if (gPathOpsAngleIdeasVerbose) { |
| 858 | SkDebugf("maxR=%1.9g\n", maxR); |
| 859 | } |
| 860 | } |