blob: fdfd375427fc883a9ef9182c99f55cf012e44dee [file] [log] [blame]
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +00001/*
epoger@google.comec3ed6a2011-07-28 14:26:00 +00002 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +00006 */
7
8#ifndef GrPathUtils_DEFINED
9#define GrPathUtils_DEFINED
10
commit-bot@chromium.orgfd03d4a2013-07-17 21:39:42 +000011#include "SkRect.h"
reed026beb52015-06-10 14:23:15 -070012#include "SkPathPriv.h"
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +000013#include "SkTArray.h"
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000014
bsalomon@google.comb9086a02012-11-01 18:02:54 +000015class SkMatrix;
16
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000017/**
18 * Utilities for evaluating paths.
19 */
bsalomon@google.com181e9bd2011-09-07 18:42:30 +000020namespace GrPathUtils {
Brian Osman25294d72017-05-09 16:36:41 -040021 // Very small tolerances will be increased to a minimum threshold value, to avoid division
22 // problems in subsequent math.
bsalomon@google.com81712882012-11-01 17:12:34 +000023 SkScalar scaleToleranceToSrc(SkScalar devTol,
bsalomon@google.comb9086a02012-11-01 18:02:54 +000024 const SkMatrix& viewM,
commit-bot@chromium.orgfd03d4a2013-07-17 21:39:42 +000025 const SkRect& pathBounds);
tomhudson@google.comc10a8882011-06-28 15:19:32 +000026
bsalomon@google.com8d033a12012-04-27 15:52:53 +000027 int worstCasePointCount(const SkPath&,
bsalomon@google.com181e9bd2011-09-07 18:42:30 +000028 int* subpaths,
bsalomon@google.com81712882012-11-01 17:12:34 +000029 SkScalar tol);
bsalomon@google.com19713172012-03-15 13:51:08 +000030
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +000031 uint32_t quadraticPointCount(const SkPoint points[], SkScalar tol);
bsalomon@google.com19713172012-03-15 13:51:08 +000032
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +000033 uint32_t generateQuadraticPoints(const SkPoint& p0,
34 const SkPoint& p1,
35 const SkPoint& p2,
bsalomon@google.com81712882012-11-01 17:12:34 +000036 SkScalar tolSqd,
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +000037 SkPoint** points,
bsalomon@google.com181e9bd2011-09-07 18:42:30 +000038 uint32_t pointsLeft);
bsalomon@google.com19713172012-03-15 13:51:08 +000039
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +000040 uint32_t cubicPointCount(const SkPoint points[], SkScalar tol);
bsalomon@google.com19713172012-03-15 13:51:08 +000041
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +000042 uint32_t generateCubicPoints(const SkPoint& p0,
43 const SkPoint& p1,
44 const SkPoint& p2,
45 const SkPoint& p3,
bsalomon@google.com81712882012-11-01 17:12:34 +000046 SkScalar tolSqd,
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +000047 SkPoint** points,
bsalomon@google.com181e9bd2011-09-07 18:42:30 +000048 uint32_t pointsLeft);
bsalomon@google.com19713172012-03-15 13:51:08 +000049
50 // A 2x3 matrix that goes from the 2d space coordinates to UV space where
51 // u^2-v = 0 specifies the quad. The matrix is determined by the control
52 // points of the quadratic.
53 class QuadUVMatrix {
54 public:
Mike Kleinfc6c37b2016-09-27 09:34:10 -040055 QuadUVMatrix() {}
bsalomon@google.com19713172012-03-15 13:51:08 +000056 // Initialize the matrix from the control pts
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +000057 QuadUVMatrix(const SkPoint controlPts[3]) { this->set(controlPts); }
58 void set(const SkPoint controlPts[3]);
bsalomon@google.com19713172012-03-15 13:51:08 +000059
60 /**
61 * Applies the matrix to vertex positions to compute UV coords. This
62 * has been templated so that the compiler can easliy unroll the loop
63 * and reorder to avoid stalling for loads. The assumption is that a
64 * path renderer will have a small fixed number of vertices that it
65 * uploads for each quad.
66 *
67 * N is the number of vertices.
68 * STRIDE is the size of each vertex.
69 * UV_OFFSET is the offset of the UV values within each vertex.
70 * vertices is a pointer to the first vertex.
71 */
72 template <int N, size_t STRIDE, size_t UV_OFFSET>
joshualitt144c3c82015-11-30 12:30:13 -080073 void apply(const void* vertices) const {
bsalomon@google.com19713172012-03-15 13:51:08 +000074 intptr_t xyPtr = reinterpret_cast<intptr_t>(vertices);
75 intptr_t uvPtr = reinterpret_cast<intptr_t>(vertices) + UV_OFFSET;
76 float sx = fM[0];
77 float kx = fM[1];
78 float tx = fM[2];
79 float ky = fM[3];
80 float sy = fM[4];
81 float ty = fM[5];
82 for (int i = 0; i < N; ++i) {
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +000083 const SkPoint* xy = reinterpret_cast<const SkPoint*>(xyPtr);
84 SkPoint* uv = reinterpret_cast<SkPoint*>(uvPtr);
bsalomon@google.com19713172012-03-15 13:51:08 +000085 uv->fX = sx * xy->fX + kx * xy->fY + tx;
86 uv->fY = ky * xy->fX + sy * xy->fY + ty;
87 xyPtr += STRIDE;
88 uvPtr += STRIDE;
89 }
90 }
91 private:
92 float fM[6];
93 };
94
commit-bot@chromium.org13948402013-08-20 17:55:43 +000095 // Input is 3 control points and a weight for a bezier conic. Calculates the
96 // three linear functionals (K,L,M) that represent the implicit equation of the
csmartdaltoncc261272017-03-23 13:38:45 -060097 // conic, k^2 - lm.
commit-bot@chromium.org13948402013-08-20 17:55:43 +000098 //
csmartdaltoncc261272017-03-23 13:38:45 -060099 // Output: klm holds the linear functionals K,L,M as row vectors:
100 //
101 // | ..K.. | | x | | k |
102 // | ..L.. | * | y | == | l |
103 // | ..M.. | | 1 | | m |
104 //
105 void getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* klm);
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000106
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000107 // Converts a cubic into a sequence of quads. If working in device space
108 // use tolScale = 1, otherwise set based on stretchiness of the matrix. The
bsalomon18fab302016-02-16 08:00:05 -0800109 // result is sets of 3 points in quads.
110 void convertCubicToQuads(const SkPoint p[4],
111 SkScalar tolScale,
112 SkTArray<SkPoint, true>* quads);
113
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000114 // When we approximate a cubic {a,b,c,d} with a quadratic we may have to
115 // ensure that the new control point lies between the lines ab and cd. The
116 // convex path renderer requires this. It starts with a path where all the
117 // control points taken together form a convex polygon. It relies on this
118 // property and the quadratic approximation of cubics step cannot alter it.
bsalomon18fab302016-02-16 08:00:05 -0800119 // This variation enforces this constraint. The cubic must be simple and dir
120 // must specify the orientation of the contour containing the cubic.
121 void convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
122 SkScalar tolScale,
123 SkPathPriv::FirstDirection dir,
124 SkTArray<SkPoint, true>* quads);
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000125
126 // Chops the cubic bezier passed in by src, at the double point (intersection point)
127 // if the curve is a cubic loop. If it is a loop, there will be two parametric values for
csmartdaltoncc261272017-03-23 13:38:45 -0600128 // the double point: t1 and t2. We chop the cubic at these values if they are between 0 and 1.
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000129 // Return value:
csmartdaltoncc261272017-03-23 13:38:45 -0600130 // Value of 3: t1 and t2 are both between (0,1), and dst will contain the three cubics,
halcanary96fcdcc2015-08-27 07:41:13 -0700131 // dst[0..3], dst[3..6], and dst[6..9] if dst is not nullptr
csmartdaltoncc261272017-03-23 13:38:45 -0600132 // Value of 2: Only one of t1 and t2 are between (0,1), and dst will contain the two cubics,
halcanary96fcdcc2015-08-27 07:41:13 -0700133 // dst[0..3] and dst[3..6] if dst is not nullptr
csmartdaltoncc261272017-03-23 13:38:45 -0600134 // Value of 1: Neither t1 nor t2 are between (0,1), and dst will contain the one original cubic,
halcanary96fcdcc2015-08-27 07:41:13 -0700135 // dst[0..3] if dst is not nullptr
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000136 //
137 // Optional KLM Calculation:
csmartdaltoncc261272017-03-23 13:38:45 -0600138 // The function can also return the KLM linear functionals for the cubic implicit form of
139 // k^3 - lm. This can be shared by all chopped cubics.
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000140 //
csmartdaltoncc261272017-03-23 13:38:45 -0600141 // Output:
142 //
143 // klm: Holds the linear functionals K,L,M as row vectors:
144 //
145 // | ..K.. | | x | | k |
146 // | ..L.. | * | y | == | l |
147 // | ..M.. | | 1 | | m |
148 //
149 // loopIndex: This value will tell the caller which of the chopped sections (if any) are the
150 // actual loop. A value of -1 means there is no loop section. The caller can then use
151 // this value to decide how/if they want to flip the orientation of this section.
152 // The flip should be done by negating the k and l values as follows:
153 //
154 // KLM.postScale(-1, -1)
155 //
156 // Notice that the KLM lines are calculated in the same space as the input control points.
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000157 // If you transform the points the lines will also need to be transformed. This can be done
158 // by mapping the lines with the inverse-transpose of the matrix used to map the points.
halcanary96fcdcc2015-08-27 07:41:13 -0700159 int chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10] = nullptr,
csmartdaltoncc261272017-03-23 13:38:45 -0600160 SkMatrix* klm = nullptr, int* loopIndex = nullptr);
senorblanco2b4bb072015-04-22 13:45:18 -0700161
162 // When tessellating curved paths into linear segments, this defines the maximum distance
163 // in screen space which a segment may deviate from the mathmatically correct value.
164 // Above this value, the segment will be subdivided.
165 // This value was chosen to approximate the supersampling accuracy of the raster path (16
166 // samples, or one quarter pixel).
167 static const SkScalar kDefaultTolerance = SkDoubleToScalar(0.25);
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000168};
169#endif