blob: 0dd99dbef8d0ee7fdb0b76f65e9f6324ac772ce1 [file] [log] [blame]
Chris Daltonf6bf5162020-05-13 19:18:46 -06001/*
2 * Copyright 2020 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "include/utils/SkRandom.h"
9#include "src/core/SkGeometry.h"
10#include "src/gpu/tessellate/GrWangsFormula.h"
11#include "tests/Test.h"
12
13constexpr static int kIntolerance = 4; // 1/4 pixel max error.
14
15const SkPoint kSerp[4] = {
16 {285.625f, 499.687f}, {411.625f, 808.188f}, {1064.62f, 135.688f}, {1042.63f, 585.187f}};
17
18const SkPoint kLoop[4] = {
19 {635.625f, 614.687f}, {171.625f, 236.188f}, {1064.62f, 135.688f}, {516.625f, 570.187f}};
20
21const SkPoint kQuad[4] = {
22 {460.625f, 557.187f}, {707.121f, 209.688f}, {779.628f, 577.687f}};
23
Chris Dalton4dd3c8c2020-10-30 22:45:58 -060024static float wangs_formula_quadratic_reference_impl(float intolerance, const SkPoint p[3]) {
25 float k = (2 * 1) / 8.f * intolerance;
26 return sqrtf(k * (p[0] - p[1]*2 + p[2]).length());
Chris Daltonfc396a82020-09-23 20:11:26 -060027}
28
Chris Dalton4dd3c8c2020-10-30 22:45:58 -060029static float wangs_formula_cubic_reference_impl(float intolerance, const SkPoint p[4]) {
30 float k = (3 * 2) / 8.f * intolerance;
31 return sqrtf(k * std::max((p[0] - p[1]*2 + p[2]).length(),
32 (p[1] - p[2]*2 + p[3]).length()));
Chris Daltonfc396a82020-09-23 20:11:26 -060033}
34
Tyler Denniston573923c2020-12-10 11:47:40 -050035// Returns number of segments for linearized quadratic rational. This is an analogue
36// to Wang's formula, taken from:
37//
38// J. Zheng, T. Sederberg. "Estimating Tessellation Parameter Intervals for
39// Rational Curves and Surfaces." ACM Transactions on Graphics 19(1). 2000.
40// See Thm 3, Corollary 1.
41//
42// Input points should be in projected space.
43static float wangs_formula_conic_reference_impl(float intolerance,
44 const SkPoint P[3],
45 const float w) {
46 // Compute center of bounding box in projected space
47 float min_x = P[0].fX, max_x = min_x,
48 min_y = P[0].fY, max_y = min_y;
49 for (int i = 1; i < 3; i++) {
50 min_x = std::min(min_x, P[i].fX);
51 max_x = std::max(max_x, P[i].fX);
52 min_y = std::min(min_y, P[i].fY);
53 max_y = std::max(max_y, P[i].fY);
54 }
55 const SkPoint C = SkPoint::Make(0.5f * (min_x + max_x), 0.5f * (min_y + max_y));
56
57 // Translate control points and compute max length
58 SkPoint tP[3] = {P[0] - C, P[1] - C, P[2] - C};
59 float max_len = 0;
60 for (int i = 0; i < 3; i++) {
61 max_len = std::max(max_len, tP[i].length());
62 }
63 SkASSERT(max_len > 0);
64
65 // Compute delta = parametric step size of linearization
66 const float eps = 1 / intolerance;
67 const float r_minus_eps = std::max(0.f, max_len - eps);
68 const float min_w = std::min(w, 1.f);
69 const float numer = 4 * min_w * eps;
70 const float denom =
71 (tP[2] - tP[1] * 2 * w + tP[0]).length() + r_minus_eps * std::abs(1 - 2 * w + 1);
72 const float delta = sqrtf(numer / denom);
73
74 // Return corresponding num segments in the interval [tmin,tmax]
75 constexpr float tmin = 0, tmax = 1;
76 SkASSERT(delta > 0);
77 return (tmax - tmin) / delta;
78}
79
Chris Daltonfc396a82020-09-23 20:11:26 -060080static void for_random_matrices(SkRandom* rand, std::function<void(const SkMatrix&)> f) {
Chris Daltonf6bf5162020-05-13 19:18:46 -060081 SkMatrix m;
82 m.setIdentity();
83 f(m);
84
85 for (int i = -10; i <= 30; ++i) {
86 for (int j = -10; j <= 30; ++j) {
87 m.setScaleX(std::ldexp(1 + rand->nextF(), i));
88 m.setSkewX(0);
89 m.setSkewY(0);
90 m.setScaleY(std::ldexp(1 + rand->nextF(), j));
91 f(m);
92
93 m.setScaleX(std::ldexp(1 + rand->nextF(), i));
94 m.setSkewX(std::ldexp(1 + rand->nextF(), (j + i) / 2));
95 m.setSkewY(std::ldexp(1 + rand->nextF(), (j + i) / 2));
96 m.setScaleY(std::ldexp(1 + rand->nextF(), j));
97 f(m);
98 }
99 }
100}
101
Chris Daltonfc396a82020-09-23 20:11:26 -0600102static void for_random_beziers(int numPoints, SkRandom* rand,
Tyler Denniston4be95c52020-12-02 14:22:12 -0500103 std::function<void(const SkPoint[])> f,
104 int maxExponent = 30) {
Chris Daltonf6bf5162020-05-13 19:18:46 -0600105 SkASSERT(numPoints <= 4);
106 SkPoint pts[4];
Tyler Denniston4be95c52020-12-02 14:22:12 -0500107 for (int i = -10; i <= maxExponent; ++i) {
Chris Daltonf6bf5162020-05-13 19:18:46 -0600108 for (int j = 0; j < numPoints; ++j) {
109 pts[j].set(std::ldexp(1 + rand->nextF(), i), std::ldexp(1 + rand->nextF(), i));
110 }
111 f(pts);
112 }
113}
114
115// Ensure the optimized "*_log2" versions return the same value as ceil(std::log2(f)).
116DEF_TEST(WangsFormula_log2, r) {
117 // Constructs a cubic such that the 'length' term in wang's formula == term.
118 //
119 // f = sqrt(k * length(max(abs(p0 - p1*2 + p2),
120 // abs(p1 - p2*2 + p3))));
121 auto setupCubicLengthTerm = [](int seed, SkPoint pts[], float term) {
122 memset(pts, 0, sizeof(SkPoint) * 4);
123
124 SkPoint term2d = (seed & 1) ?
125 SkPoint::Make(term, 0) : SkPoint::Make(.5f, std::sqrt(3)/2) * term;
126 seed >>= 1;
127
128 if (seed & 1) {
129 term2d.fX = -term2d.fX;
130 }
131 seed >>= 1;
132
133 if (seed & 1) {
134 std::swap(term2d.fX, term2d.fY);
135 }
136 seed >>= 1;
137
138 switch (seed % 4) {
139 case 0:
140 pts[0] = term2d;
141 pts[3] = term2d * .75f;
142 return;
143 case 1:
144 pts[1] = term2d * -.5f;
145 return;
146 case 2:
147 pts[1] = term2d * -.5f;
148 return;
149 case 3:
150 pts[3] = term2d;
151 pts[0] = term2d * .75f;
152 return;
153 }
154 };
155
156 // Constructs a quadratic such that the 'length' term in wang's formula == term.
157 //
158 // f = sqrt(k * length(p0 - p1*2 + p2));
159 auto setupQuadraticLengthTerm = [](int seed, SkPoint pts[], float term) {
160 memset(pts, 0, sizeof(SkPoint) * 3);
161
162 SkPoint term2d = (seed & 1) ?
163 SkPoint::Make(term, 0) : SkPoint::Make(.5f, std::sqrt(3)/2) * term;
164 seed >>= 1;
165
166 if (seed & 1) {
167 term2d.fX = -term2d.fX;
168 }
169 seed >>= 1;
170
171 if (seed & 1) {
172 std::swap(term2d.fX, term2d.fY);
173 }
174 seed >>= 1;
175
176 switch (seed % 3) {
177 case 0:
178 pts[0] = term2d;
179 return;
180 case 1:
181 pts[1] = term2d * -.5f;
182 return;
183 case 2:
184 pts[2] = term2d;
185 return;
186 }
187 };
188
Chris Daltonfc396a82020-09-23 20:11:26 -0600189 // GrWangsFormula::cubic and ::quadratic both use rsqrt instead of sqrt for speed. Linearization
190 // is all approximate anyway, so as long as we are within ~1/2 tessellation segment of the
191 // reference value we are good enough.
192 constexpr static float kTessellationTolerance = 1/128.f;
193
Chris Daltonf6bf5162020-05-13 19:18:46 -0600194 for (int level = 0; level < 30; ++level) {
195 float epsilon = std::ldexp(SK_ScalarNearlyZero, level * 2);
196 SkPoint pts[4];
197
198 {
199 // Test cubic boundaries.
200 // f = sqrt(k * length(max(abs(p0 - p1*2 + p2),
201 // abs(p1 - p2*2 + p3))));
202 constexpr static float k = (3 * 2) / (8 * (1.f/kIntolerance));
203 float x = std::ldexp(1, level * 2) / k;
204 setupCubicLengthTerm(level << 1, pts, x - epsilon);
Chris Daltonfc396a82020-09-23 20:11:26 -0600205 float referenceValue = wangs_formula_cubic_reference_impl(kIntolerance, pts);
206 REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level);
207 float c = GrWangsFormula::cubic(kIntolerance, pts);
208 REPORTER_ASSERT(r, SkScalarNearlyEqual(c/referenceValue, 1, kTessellationTolerance));
Chris Daltonf6bf5162020-05-13 19:18:46 -0600209 REPORTER_ASSERT(r, GrWangsFormula::cubic_log2(kIntolerance, pts) == level);
210 setupCubicLengthTerm(level << 1, pts, x + epsilon);
Chris Daltonfc396a82020-09-23 20:11:26 -0600211 referenceValue = wangs_formula_cubic_reference_impl(kIntolerance, pts);
212 REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level + 1);
213 c = GrWangsFormula::cubic(kIntolerance, pts);
214 REPORTER_ASSERT(r, SkScalarNearlyEqual(c/referenceValue, 1, kTessellationTolerance));
Chris Daltonf6bf5162020-05-13 19:18:46 -0600215 REPORTER_ASSERT(r, GrWangsFormula::cubic_log2(kIntolerance, pts) == level + 1);
216 }
217
218 {
219 // Test quadratic boundaries.
220 // f = std::sqrt(k * Length(p0 - p1*2 + p2));
221 constexpr static float k = 2 / (8 * (1.f/kIntolerance));
222 float x = std::ldexp(1, level * 2) / k;
223 setupQuadraticLengthTerm(level << 1, pts, x - epsilon);
Chris Daltonfc396a82020-09-23 20:11:26 -0600224 float referenceValue = wangs_formula_quadratic_reference_impl(kIntolerance, pts);
225 REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level);
226 float q = GrWangsFormula::quadratic(kIntolerance, pts);
227 REPORTER_ASSERT(r, SkScalarNearlyEqual(q/referenceValue, 1, kTessellationTolerance));
Chris Daltonf6bf5162020-05-13 19:18:46 -0600228 REPORTER_ASSERT(r, GrWangsFormula::quadratic_log2(kIntolerance, pts) == level);
229 setupQuadraticLengthTerm(level << 1, pts, x + epsilon);
Chris Daltonfc396a82020-09-23 20:11:26 -0600230 referenceValue = wangs_formula_quadratic_reference_impl(kIntolerance, pts);
231 REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level+1);
232 q = GrWangsFormula::quadratic(kIntolerance, pts);
233 REPORTER_ASSERT(r, SkScalarNearlyEqual(q/referenceValue, 1, kTessellationTolerance));
Chris Daltonf6bf5162020-05-13 19:18:46 -0600234 REPORTER_ASSERT(r, GrWangsFormula::quadratic_log2(kIntolerance, pts) == level + 1);
235 }
236 }
237
238 auto check_cubic_log2 = [&](const SkPoint* pts) {
Chris Daltonfc396a82020-09-23 20:11:26 -0600239 float f = std::max(1.f, wangs_formula_cubic_reference_impl(kIntolerance, pts));
Chris Daltonf6bf5162020-05-13 19:18:46 -0600240 int f_log2 = GrWangsFormula::cubic_log2(kIntolerance, pts);
241 REPORTER_ASSERT(r, SkScalarCeilToInt(std::log2(f)) == f_log2);
Chris Daltonfc396a82020-09-23 20:11:26 -0600242 float c = std::max(1.f, GrWangsFormula::cubic(kIntolerance, pts));
243 REPORTER_ASSERT(r, SkScalarNearlyEqual(c/f, 1, kTessellationTolerance));
Chris Daltonf6bf5162020-05-13 19:18:46 -0600244 };
245
246 auto check_quadratic_log2 = [&](const SkPoint* pts) {
Chris Daltonfc396a82020-09-23 20:11:26 -0600247 float f = std::max(1.f, wangs_formula_quadratic_reference_impl(kIntolerance, pts));
Chris Daltonf6bf5162020-05-13 19:18:46 -0600248 int f_log2 = GrWangsFormula::quadratic_log2(kIntolerance, pts);
249 REPORTER_ASSERT(r, SkScalarCeilToInt(std::log2(f)) == f_log2);
Chris Daltonfc396a82020-09-23 20:11:26 -0600250 float q = std::max(1.f, GrWangsFormula::quadratic(kIntolerance, pts));
251 REPORTER_ASSERT(r, SkScalarNearlyEqual(q/f, 1, kTessellationTolerance));
Chris Daltonf6bf5162020-05-13 19:18:46 -0600252 };
253
254 SkRandom rand;
255
256 for_random_matrices(&rand, [&](const SkMatrix& m) {
257 SkPoint pts[4];
258 m.mapPoints(pts, kSerp, 4);
259 check_cubic_log2(pts);
260
261 m.mapPoints(pts, kLoop, 4);
262 check_cubic_log2(pts);
263
264 m.mapPoints(pts, kQuad, 3);
265 check_quadratic_log2(pts);
266 });
267
268 for_random_beziers(4, &rand, [&](const SkPoint pts[]) {
269 check_cubic_log2(pts);
270 });
271
272 for_random_beziers(3, &rand, [&](const SkPoint pts[]) {
273 check_quadratic_log2(pts);
274 });
275}
276
277// Ensure using transformations gives the same result as pre-transforming all points.
278DEF_TEST(WangsFormula_vectorXforms, r) {
279 auto check_cubic_log2_with_transform = [&](const SkPoint* pts, const SkMatrix& m){
280 SkPoint ptsXformed[4];
281 m.mapPoints(ptsXformed, pts, 4);
282 int expected = GrWangsFormula::cubic_log2(kIntolerance, ptsXformed);
283 int actual = GrWangsFormula::cubic_log2(kIntolerance, pts, GrVectorXform(m));
284 REPORTER_ASSERT(r, actual == expected);
285 };
286
287 auto check_quadratic_log2_with_transform = [&](const SkPoint* pts, const SkMatrix& m) {
288 SkPoint ptsXformed[3];
289 m.mapPoints(ptsXformed, pts, 3);
290 int expected = GrWangsFormula::quadratic_log2(kIntolerance, ptsXformed);
291 int actual = GrWangsFormula::quadratic_log2(kIntolerance, pts, GrVectorXform(m));
292 REPORTER_ASSERT(r, actual == expected);
293 };
294
295 SkRandom rand;
296
297 for_random_matrices(&rand, [&](const SkMatrix& m) {
298 check_cubic_log2_with_transform(kSerp, m);
299 check_cubic_log2_with_transform(kLoop, m);
300 check_quadratic_log2_with_transform(kQuad, m);
301
302 for_random_beziers(4, &rand, [&](const SkPoint pts[]) {
303 check_cubic_log2_with_transform(pts, m);
304 });
305
306 for_random_beziers(3, &rand, [&](const SkPoint pts[]) {
307 check_quadratic_log2_with_transform(pts, m);
308 });
309 });
Chris Daltonb96995d2020-06-04 16:44:29 -0600310}
Chris Daltonf6bf5162020-05-13 19:18:46 -0600311
Chris Daltonb96995d2020-06-04 16:44:29 -0600312DEF_TEST(WangsFormula_worst_case_cubic, r) {
313 {
314 SkPoint worstP[] = {{0,0}, {100,100}, {0,0}, {0,0}};
315 REPORTER_ASSERT(r, GrWangsFormula::worst_case_cubic(kIntolerance, 100, 100) ==
Chris Daltonfc396a82020-09-23 20:11:26 -0600316 wangs_formula_cubic_reference_impl(kIntolerance, worstP));
Chris Daltonb96995d2020-06-04 16:44:29 -0600317 REPORTER_ASSERT(r, GrWangsFormula::worst_case_cubic_log2(kIntolerance, 100, 100) ==
318 GrWangsFormula::cubic_log2(kIntolerance, worstP));
319 }
320 {
321 SkPoint worstP[] = {{100,100}, {100,100}, {200,200}, {100,100}};
322 REPORTER_ASSERT(r, GrWangsFormula::worst_case_cubic(kIntolerance, 100, 100) ==
Chris Daltonfc396a82020-09-23 20:11:26 -0600323 wangs_formula_cubic_reference_impl(kIntolerance, worstP));
Chris Daltonb96995d2020-06-04 16:44:29 -0600324 REPORTER_ASSERT(r, GrWangsFormula::worst_case_cubic_log2(kIntolerance, 100, 100) ==
325 GrWangsFormula::cubic_log2(kIntolerance, worstP));
326 }
327 auto check_worst_case_cubic = [&](const SkPoint* pts) {
328 SkRect bbox;
329 bbox.setBoundsNoCheck(pts, 4);
330 float worst = GrWangsFormula::worst_case_cubic(kIntolerance, bbox.width(), bbox.height());
331 int worst_log2 = GrWangsFormula::worst_case_cubic_log2(kIntolerance, bbox.width(),
332 bbox.height());
Chris Daltonfc396a82020-09-23 20:11:26 -0600333 float actual = wangs_formula_cubic_reference_impl(kIntolerance, pts);
Chris Daltonb96995d2020-06-04 16:44:29 -0600334 REPORTER_ASSERT(r, worst >= actual);
335 REPORTER_ASSERT(r, std::ceil(std::log2(std::max(1.f, worst))) == worst_log2);
Chris Daltonb96995d2020-06-04 16:44:29 -0600336 };
337 SkRandom rand;
338 for (int i = 0; i < 100; ++i) {
339 for_random_beziers(4, &rand, [&](const SkPoint pts[]) {
340 check_worst_case_cubic(pts);
341 });
342 }
Chris Daltonf6bf5162020-05-13 19:18:46 -0600343}
Tyler Denniston4be95c52020-12-02 14:22:12 -0500344
345// Ensure Wang's formula for quads produces max error within tolerance.
346DEF_TEST(WangsFormula_quad_within_tol, r) {
347 // Wang's formula and the quad math starts to lose precision with very large
348 // coordinate values, so limit the magnitude a bit to prevent test failures
349 // due to loss of precision.
350 constexpr int maxExponent = 15;
351 SkRandom rand;
352 for_random_beziers(3, &rand, [&r](const SkPoint pts[]) {
353 const int nsegs = static_cast<int>(
354 std::ceil(wangs_formula_quadratic_reference_impl(kIntolerance, pts)));
355
356 const float tdelta = 1.f / nsegs;
357 for (int j = 0; j < nsegs; ++j) {
358 const float tmin = j * tdelta, tmax = (j + 1) * tdelta;
359
360 // Get section of quad in [tmin,tmax]
361 const SkPoint* sectionPts;
362 SkPoint tmp0[5];
363 SkPoint tmp1[5];
364 if (tmin == 0) {
365 if (tmax == 1) {
366 sectionPts = pts;
367 } else {
368 SkChopQuadAt(pts, tmp0, tmax);
369 sectionPts = tmp0;
370 }
371 } else {
372 SkChopQuadAt(pts, tmp0, tmin);
373 if (tmax == 1) {
374 sectionPts = tmp0 + 2;
375 } else {
376 SkChopQuadAt(tmp0 + 2, tmp1, (tmax - tmin) / (1 - tmin));
377 sectionPts = tmp1;
378 }
379 }
380
381 // For quads, max distance from baseline is always at t=0.5.
382 SkPoint p;
383 p = SkEvalQuadAt(sectionPts, 0.5f);
384
385 // Get distance of p to baseline
386 const SkPoint n = {sectionPts[2].fY - sectionPts[0].fY,
387 sectionPts[0].fX - sectionPts[2].fX};
388 const float d = std::abs((p - sectionPts[0]).dot(n)) / n.length();
389
390 // Check distance is within specified tolerance
391 REPORTER_ASSERT(r, d <= (1.f / kIntolerance) + SK_ScalarNearlyZero);
392 }
393 }, maxExponent);
394}
Tyler Denniston573923c2020-12-10 11:47:40 -0500395
396// Ensure the specialized version for rational quads reduces to regular Wang's
397// formula when all weights are equal to one
398DEF_TEST(WangsFormula_rational_quad_reduces, r) {
399 constexpr static float kTessellationTolerance = 1 / 128.f;
400
401 SkRandom rand;
402 for (int i = 0; i < 100; ++i) {
403 for_random_beziers(3, &rand, [&r](const SkPoint pts[]) {
404 const float rational_nsegs = wangs_formula_conic_reference_impl(kIntolerance, pts, 1.f);
405 const float integral_nsegs = wangs_formula_quadratic_reference_impl(kIntolerance, pts);
406 REPORTER_ASSERT(
407 r, SkScalarNearlyEqual(rational_nsegs, integral_nsegs, kTessellationTolerance));
408 });
409 }
410}
411
412// Ensure the rational quad version (used for conics) produces max error within tolerance.
413DEF_TEST(WangsFormula_conic_within_tol, r) {
414 constexpr int maxExponent = 15;
415
416 SkRandom rand;
417 for (int i = -10; i <= 10; ++i) {
418 const float w = std::ldexp(1 + rand.nextF(), i);
419 for_random_beziers(
420 3, &rand,
421 [&r, w](const SkPoint pts[]) {
422 const SkPoint projPts[3] = {pts[0], pts[1] * (1.f / w), pts[2]};
423 const int nsegs = static_cast<int>(std::ceil(
424 wangs_formula_conic_reference_impl(kIntolerance, projPts, w)));
425
426 const SkConic conic(projPts[0], projPts[1], projPts[2], w);
427 const float tdelta = 1.f / nsegs;
428 for (int j = 0; j < nsegs; ++j) {
429 const float tmin = j * tdelta, tmax = (j + 1) * tdelta,
430 tmid = 0.5f * (tmin + tmax);
431
432 SkPoint p0, p1, p2;
433 conic.evalAt(tmin, &p0);
434 conic.evalAt(tmid, &p1);
435 conic.evalAt(tmax, &p2);
436
437 // Get distance of p1 to baseline (p0, p2).
438 const SkPoint n = {p2.fY - p0.fY, p0.fX - p2.fX};
439 SkASSERT(n.length() != 0);
440 const float d = std::abs((p1 - p0).dot(n)) / n.length();
441
442 // Check distance is within tolerance
443 REPORTER_ASSERT(r, d <= (1.f / kIntolerance) + SK_ScalarNearlyZero);
444 }
445 },
446 maxExponent);
447 }
448}