blob: 91dc7689d89dda0361d733acf051c372c7acdfc0 [file] [log] [blame]
rileya@google.com589708b2012-07-26 20:04:23 +00001
2/*
3 * Copyright 2012 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9#include "SkTwoPointConicalGradient.h"
10
11static int valid_divide(float numer, float denom, float* ratio) {
12 SkASSERT(ratio);
13 if (0 == denom) {
14 return 0;
15 }
16 *ratio = numer / denom;
17 return 1;
18}
19
20// Return the number of distinct real roots, and write them into roots[] in
21// ascending order
22static int find_quad_roots(float A, float B, float C, float roots[2]) {
23 SkASSERT(roots);
24
25 if (A == 0) {
26 return valid_divide(-C, B, roots);
27 }
28
29 float R = B*B - 4*A*C;
30 if (R < 0) {
31 return 0;
32 }
33 R = sk_float_sqrt(R);
34
35#if 1
36 float Q = B;
37 if (Q < 0) {
38 Q -= R;
39 } else {
40 Q += R;
41 }
42#else
43 // on 10.6 this was much slower than the above branch :(
44 float Q = B + copysignf(R, B);
45#endif
46 Q *= -0.5f;
47 if (0 == Q) {
48 roots[0] = 0;
49 return 1;
50 }
51
52 float r0 = Q / A;
53 float r1 = C / Q;
54 roots[0] = r0 < r1 ? r0 : r1;
55 roots[1] = r0 > r1 ? r0 : r1;
56 return 2;
57}
58
59static float lerp(float x, float dx, float t) {
60 return x + t * dx;
61}
62
63static float sqr(float x) { return x * x; }
64
65void TwoPtRadial::init(const SkPoint& center0, SkScalar rad0,
66 const SkPoint& center1, SkScalar rad1) {
67 fCenterX = SkScalarToFloat(center0.fX);
68 fCenterY = SkScalarToFloat(center0.fY);
69 fDCenterX = SkScalarToFloat(center1.fX) - fCenterX;
70 fDCenterY = SkScalarToFloat(center1.fY) - fCenterY;
71 fRadius = SkScalarToFloat(rad0);
72 fDRadius = SkScalarToFloat(rad1) - fRadius;
73
74 fA = sqr(fDCenterX) + sqr(fDCenterY) - sqr(fDRadius);
75 fRadius2 = sqr(fRadius);
76 fRDR = fRadius * fDRadius;
77}
78
79void TwoPtRadial::setup(SkScalar fx, SkScalar fy, SkScalar dfx, SkScalar dfy) {
80 fRelX = SkScalarToFloat(fx) - fCenterX;
81 fRelY = SkScalarToFloat(fy) - fCenterY;
82 fIncX = SkScalarToFloat(dfx);
83 fIncY = SkScalarToFloat(dfy);
84 fB = -2 * (fDCenterX * fRelX + fDCenterY * fRelY + fRDR);
85 fDB = -2 * (fDCenterX * fIncX + fDCenterY * fIncY);
86}
87
88SkFixed TwoPtRadial::nextT() {
89 float roots[2];
90
91 float C = sqr(fRelX) + sqr(fRelY) - fRadius2;
92 int countRoots = find_quad_roots(fA, fB, C, roots);
93
94 fRelX += fIncX;
95 fRelY += fIncY;
96 fB += fDB;
97
98 if (0 == countRoots) {
99 return kDontDrawT;
100 }
101
102 // Prefer the bigger t value if both give a radius(t) > 0
103 // find_quad_roots returns the values sorted, so we start with the last
104 float t = roots[countRoots - 1];
105 float r = lerp(fRadius, fDRadius, t);
106 if (r <= 0) {
107 t = roots[0]; // might be the same as roots[countRoots-1]
108 r = lerp(fRadius, fDRadius, t);
109 if (r <= 0) {
110 return kDontDrawT;
111 }
112 }
113 return SkFloatToFixed(t);
114}
115
116typedef void (*TwoPointRadialProc)(TwoPtRadial* rec, SkPMColor* dstC,
117 const SkPMColor* cache, int count);
118
119static void twopoint_clamp(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
120 const SkPMColor* SK_RESTRICT cache, int count) {
121 for (; count > 0; --count) {
122 SkFixed t = rec->nextT();
123 if (TwoPtRadial::DontDrawT(t)) {
124 *dstC++ = 0;
125 } else {
126 SkFixed index = SkClampMax(t, 0xFFFF);
127 SkASSERT(index <= 0xFFFF);
128 *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
129 }
130 }
131}
132
133static void twopoint_repeat(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
134 const SkPMColor* SK_RESTRICT cache, int count) {
135 for (; count > 0; --count) {
136 SkFixed t = rec->nextT();
137 if (TwoPtRadial::DontDrawT(t)) {
138 *dstC++ = 0;
139 } else {
140 SkFixed index = repeat_tileproc(t);
141 SkASSERT(index <= 0xFFFF);
142 *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
143 }
144 }
145}
146
147static void twopoint_mirror(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
148 const SkPMColor* SK_RESTRICT cache, int count) {
149 for (; count > 0; --count) {
150 SkFixed t = rec->nextT();
151 if (TwoPtRadial::DontDrawT(t)) {
152 *dstC++ = 0;
153 } else {
154 SkFixed index = mirror_tileproc(t);
155 SkASSERT(index <= 0xFFFF);
156 *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
157 }
158 }
159}
160
161void SkTwoPointConicalGradient::init() {
162 fRec.init(fCenter1, fRadius1, fCenter2, fRadius2);
163 fPtsToUnit.reset();
164}
165
166SkTwoPointConicalGradient::SkTwoPointConicalGradient(
167 const SkPoint& start, SkScalar startRadius,
168 const SkPoint& end, SkScalar endRadius,
169 const SkColor colors[], const SkScalar pos[],
170 int colorCount, SkShader::TileMode mode,
171 SkUnitMapper* mapper)
172 : SkGradientShaderBase(colors, pos, colorCount, mode, mapper),
173 fCenter1(start),
174 fCenter2(end),
175 fRadius1(startRadius),
176 fRadius2(endRadius) {
177 // this is degenerate, and should be caught by our caller
178 SkASSERT(fCenter1 != fCenter2 || fRadius1 != fRadius2);
179 this->init();
180}
181
182void SkTwoPointConicalGradient::shadeSpan(int x, int y, SkPMColor* dstCParam,
183 int count) {
184 SkASSERT(count > 0);
185
186 SkPMColor* SK_RESTRICT dstC = dstCParam;
187
188 SkMatrix::MapXYProc dstProc = fDstToIndexProc;
189 TileProc proc = fTileProc;
190 const SkPMColor* SK_RESTRICT cache = this->getCache32();
191
192 TwoPointRadialProc shadeProc = twopoint_repeat;
193 if (SkShader::kClamp_TileMode == fTileMode) {
194 shadeProc = twopoint_clamp;
195 } else if (SkShader::kMirror_TileMode == fTileMode) {
196 shadeProc = twopoint_mirror;
197 } else {
198 SkASSERT(SkShader::kRepeat_TileMode == fTileMode);
199 }
200
201 if (fDstToIndexClass != kPerspective_MatrixClass) {
202 SkPoint srcPt;
203 dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
204 SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
205 SkScalar dx, fx = srcPt.fX;
206 SkScalar dy, fy = srcPt.fY;
207
208 if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
209 SkFixed fixedX, fixedY;
210 (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), &fixedX, &fixedY);
211 dx = SkFixedToScalar(fixedX);
212 dy = SkFixedToScalar(fixedY);
213 } else {
214 SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
215 dx = fDstToIndex.getScaleX();
216 dy = fDstToIndex.getSkewY();
217 }
218
219 fRec.setup(fx, fy, dx, dy);
220 (*shadeProc)(&fRec, dstC, cache, count);
221 } else { // perspective case
222 SkScalar dstX = SkIntToScalar(x);
223 SkScalar dstY = SkIntToScalar(y);
224 for (; count > 0; --count) {
225 SkPoint srcPt;
226 dstProc(fDstToIndex, dstX, dstY, &srcPt);
227 dstX += SK_Scalar1;
228
229 fRec.setup(srcPt.fX, srcPt.fY, 0, 0);
230 (*shadeProc)(&fRec, dstC, cache, 1);
231 }
232 }
233}
234
235bool SkTwoPointConicalGradient::setContext(const SkBitmap& device,
236 const SkPaint& paint,
237 const SkMatrix& matrix) {
238 if (!this->INHERITED::setContext(device, paint, matrix)) {
239 return false;
240 }
241
242 // we don't have a span16 proc
243 fFlags &= ~kHasSpan16_Flag;
244
245 // in general, we might discard based on computed-radius, so clear
246 // this flag (todo: sometimes we can detect that we never discard...)
247 fFlags &= ~kOpaqueAlpha_Flag;
248
249 return true;
250}
251
252SkShader::BitmapType SkTwoPointConicalGradient::asABitmap(
253 SkBitmap* bitmap, SkMatrix* matrix, SkShader::TileMode* xy) const {
254 SkPoint diff = fCenter2 - fCenter1;
255 SkScalar diffRadius = fRadius2 - fRadius1;
256 SkScalar startRadius = fRadius1;
257 SkScalar diffLen = 0;
258
259 if (bitmap) {
260 this->commonAsABitmap(bitmap);
261 }
262 if (matrix) {
263 diffLen = diff.length();
264 }
265 if (matrix) {
266 if (diffLen) {
267 SkScalar invDiffLen = SkScalarInvert(diffLen);
268 // rotate to align circle centers with the x-axis
269 matrix->setSinCos(-SkScalarMul(invDiffLen, diff.fY),
270 SkScalarMul(invDiffLen, diff.fX));
271 } else {
272 matrix->reset();
273 }
274 matrix->preTranslate(-fCenter1.fX, -fCenter1.fY);
275 }
276 if (xy) {
277 xy[0] = fTileMode;
278 xy[1] = kClamp_TileMode;
279 }
280 return kTwoPointConical_BitmapType;
281}
282
283SkShader::GradientType SkTwoPointConicalGradient::asAGradient(
284 GradientInfo* info) const {
285 if (info) {
286 commonAsAGradient(info);
287 info->fPoint[0] = fCenter1;
288 info->fPoint[1] = fCenter2;
289 info->fRadius[0] = fRadius1;
290 info->fRadius[1] = fRadius2;
291 }
292 return kConical_GradientType;
293}
294
295GrCustomStage* SkTwoPointConicalGradient::asNewCustomStage(
296 GrContext* context, GrSamplerState* sampler) const {
297 SkASSERT(NULL != context && NULL != sampler);
298 SkPoint diff = fCenter2 - fCenter1;
299 SkScalar diffLen = diff.length();
300 if (0 != diffLen) {
301 SkScalar invDiffLen = SkScalarInvert(diffLen);
302 sampler->matrix()->setSinCos(-SkScalarMul(invDiffLen, diff.fY),
303 SkScalarMul(invDiffLen, diff.fX));
304 } else {
305 sampler->matrix()->reset();
306 }
307 sampler->matrix()->preTranslate(-fCenter1.fX, -fCenter1.fY);
308 sampler->textureParams()->setTileModeX(fTileMode);
309 sampler->textureParams()->setTileModeY(kClamp_TileMode);
310 sampler->textureParams()->setBilerp(true);
311 return SkNEW_ARGS(GrConical2Gradient, (context, *this, sampler,
312 diffLen, fRadius1, fRadius2 - fRadius1));
313}
314
315SkTwoPointConicalGradient::SkTwoPointConicalGradient(
316 SkFlattenableReadBuffer& buffer)
317 : INHERITED(buffer),
318 fCenter1(buffer.readPoint()),
319 fCenter2(buffer.readPoint()),
320 fRadius1(buffer.readScalar()),
321 fRadius2(buffer.readScalar()) {
322 this->init();
323};
324
325void SkTwoPointConicalGradient::flatten(
326 SkFlattenableWriteBuffer& buffer) const {
327 this->INHERITED::flatten(buffer);
328 buffer.writePoint(fCenter1);
329 buffer.writePoint(fCenter2);
330 buffer.writeScalar(fRadius1);
331 buffer.writeScalar(fRadius2);
332}
333