blob: dffca6dafe413f99ccd015515c87978b1d02081c [file] [log] [blame]
caryclark@google.com639df892012-01-10 21:46:10 +00001#include "CubicIntersection.h"
2#include "CubicIntersection_Tests.h"
3#include "IntersectionUtilities.h"
4
5const Cubic convex[] = {
6 {{0, 0}, {2, 0}, {2, 1}, {0, 1}},
7 {{1, 0}, {1, 1}, {0, 1}, {0, 0}},
8 {{1, 1}, {0, 1}, {0, 0}, {1, 0}},
9 {{0, 1}, {0, 0}, {1, 0}, {1, 1}},
10 {{0, 0}, {10, 0}, {10, 10}, {5, 6}},
11};
12
13size_t convex_count = sizeof(convex) / sizeof(convex[0]);
14
15const Cubic bowtie[] = {
16 {{0, 0}, {1, 1}, {1, 0}, {0, 1}},
17 {{1, 0}, {0, 1}, {1, 1}, {0, 0}},
18 {{1, 1}, {0, 0}, {0, 1}, {1, 0}},
19 {{0, 1}, {1, 0}, {0, 0}, {1, 1}},
20};
21
22size_t bowtie_count = sizeof(bowtie) / sizeof(bowtie[0]);
23
24const Cubic arrow[] = {
25 {{0, 0}, {10, 0}, {10, 10}, {5, 4}},
26 {{10, 0}, {10, 10}, {5, 4}, {0, 0}},
27 {{10, 10}, {5, 4}, {0, 0}, {10, 0}},
28 {{5, 4}, {0, 0}, {10, 0}, {10, 10}},
29};
30
31size_t arrow_count = sizeof(arrow) / sizeof(arrow[0]);
32
33const Cubic three[] = {
34 {{1, 0}, {1, 0}, {1, 1}, {0, 1}}, // 0 == 1
35 {{0, 0}, {1, 1}, {1, 1}, {0, 1}}, // 1 == 2
36 {{0, 0}, {1, 0}, {0, 1}, {0, 1}}, // 2 == 3
37 {{1, 0}, {1, 1}, {1, 0}, {0, 1}}, // 0 == 2
38 {{1, 0}, {1, 1}, {0, 1}, {1, 0}}, // 0 == 3
39 {{0, 0}, {1, 0}, {1, 1}, {1, 0}}, // 1 == 3
40};
41
42size_t three_count = sizeof(three) / sizeof(three[0]);
43
44const Cubic triangle[] = {
45 {{0, 0}, {1, 0}, {2, 0}, {0, 1}}, // extra point on horz
46 {{1, 0}, {2, 0}, {0, 1}, {0, 0}},
47 {{2, 0}, {0, 1}, {0, 0}, {1, 0}},
48 {{0, 1}, {0, 0}, {1, 0}, {2, 0}},
49
50 {{0, 0}, {0, 1}, {0, 2}, {1, 1}}, // extra point on vert
51 {{0, 1}, {0, 2}, {1, 1}, {0, 0}},
52 {{0, 2}, {1, 1}, {0, 0}, {0, 1}},
53 {{1, 1}, {0, 0}, {0, 1}, {0, 2}},
54
55 {{0, 0}, {1, 1}, {2, 2}, {2, 0}}, // extra point on diag
56 {{1, 1}, {2, 2}, {2, 0}, {0, 0}},
57 {{2, 2}, {2, 0}, {0, 0}, {1, 1}},
58 {{2, 0}, {0, 0}, {1, 1}, {2, 2}},
59
60 {{0, 0}, {2, 0}, {2, 2}, {1, 1}}, // extra point on diag
61 {{2, 0}, {2, 2}, {1, 1}, {0, 0}},
62 {{2, 2}, {1, 1}, {0, 0}, {2, 0}},
63 {{1, 1}, {0, 0}, {2, 0}, {2, 2}},
64};
65
66size_t triangle_count = sizeof(triangle) / sizeof(triangle[0]);
67
68const struct CubicDataSet {
69 const Cubic* data;
70 size_t size;
71} cubicDataSet[] = {
72 { three, three_count },
73 { convex, convex_count },
74 { bowtie, bowtie_count },
75 { arrow, arrow_count },
76 { triangle, triangle_count },
77};
78
79size_t cubicDataSet_count = sizeof(cubicDataSet) / sizeof(cubicDataSet[0]);
80
81typedef double Matrix3x2[3][2];
82
83static bool rotateToAxis(const _Point& a, const _Point& b, Matrix3x2& matrix) {
84 double dx = b.x - a.x;
85 double dy = b.y - a.y;
86 double length = sqrt(dx * dx + dy * dy);
87 if (length == 0) {
88 return false;
89 }
90 double invLength = 1 / length;
91 matrix[0][0] = dx * invLength;
92 matrix[1][0] = dy * invLength;
93 matrix[2][0] = 0;
94 matrix[0][1] = -dy * invLength;
95 matrix[1][1] = dx * invLength;
96 matrix[2][1] = 0;
97 return true;
98}
99
100static void transform(const Cubic& cubic, const Matrix3x2& matrix, Cubic& rotPath) {
101 for (int index = 0; index < 4; ++index) {
102 rotPath[index].x = cubic[index].x * matrix[0][0]
103 + cubic[index].y * matrix[1][0] + matrix[2][0];
104 rotPath[index].y = cubic[index].x * matrix[0][1]
105 + cubic[index].y * matrix[1][1] + matrix[2][1];
106 }
107}
108
109// brute force way to find convex hull:
110// pick two points
111// rotate all four until the two points are horizontal
112// are the remaining two points both above or below the horizontal line?
113// if so, the two points must be an edge of the convex hull
114static int rotate_to_hull(const Cubic& cubic, char order[4], size_t idx, size_t inr) {
115 bool debug_rotate_to_hull = false;
116 int outsidePtSet[4];
117 memset(outsidePtSet, -1, sizeof(outsidePtSet));
118 for (int outer = 0; outer < 3; ++outer) {
119 for (int priorOuter = 0; priorOuter < outer; ++priorOuter) {
120 if (cubic[outer].approximatelyEqual(cubic[priorOuter])) {
121 goto skip;
122 }
123 }
124 for (int inner = outer + 1; inner < 4; ++inner) {
125 for (int priorInner = outer + 1; priorInner < inner; ++priorInner) {
126 if (cubic[inner].approximatelyEqual(cubic[priorInner])) {
127 goto skipInner;
128 }
129 }
130 if (cubic[outer].approximatelyEqual(cubic[inner])) {
131 continue;
132 }
133 Matrix3x2 matrix;
134 if (!rotateToAxis(cubic[outer], cubic[inner], matrix)) {
135 continue;
136 }
137 Cubic rotPath;
138 transform(cubic, matrix, rotPath);
139 int sides[3];
140 int zeroes;
141 zeroes = -1;
142 bzero(sides, sizeof(sides));
143 if (debug_rotate_to_hull) printf("%s [%d,%d] [o=%d,i=%d] src=(%g,%g) rot=", __FUNCTION__,
144 (int)idx, (int)inr, (int)outer, (int)inner,
145 cubic[inner].x, cubic[inner].y);
146 for (int index = 0; index < 4; ++index) {
147 if (debug_rotate_to_hull) printf("(%g,%g) ", rotPath[index].x, rotPath[index].y);
148 sides[side(rotPath[index].y - rotPath[inner].y)]++;
149 if (index != outer && index != inner
150 && side(rotPath[index].y - rotPath[inner].y) == 1)
151 zeroes = index;
152 }
153 if (debug_rotate_to_hull) printf("sides=(%d,%d,%d)\n", sides[0], sides[1], sides[2]);
154 if (sides[0] && sides[2]) {
155 continue;
156 }
157 if (sides[1] == 3 && zeroes >= 0) {
158 // verify that third point is between outer, inner
159 // if either of remaining two equals outer or equal, pick lower
160 if (rotPath[zeroes].approximatelyEqual(rotPath[inner])
161 && zeroes < inner) {
162 if (debug_rotate_to_hull) printf("%s [%d,%d] [o=%d,i=%d] zeroes < inner\n",
163 __FUNCTION__, (int)idx, (int)inr, (int)outer, (int)inner);
164 continue;
165 }
166 if (rotPath[zeroes].approximatelyEqual(rotPath[outer])
167 && zeroes < outer) {
168 if (debug_rotate_to_hull) printf("%s [%d,%d] [o=%d,i=%d] zeroes < outer\n",
169 __FUNCTION__, (int)idx, (int)inr, (int)outer, (int)inner);
170 continue;
171 }
172 if (rotPath[zeroes].x < rotPath[inner].x
173 && rotPath[zeroes].x < rotPath[outer].x) {
174 if (debug_rotate_to_hull) printf("%s [%d,%d] [o=%d,i=%d] zeroes < inner && outer\n",
175 __FUNCTION__, (int)idx, (int)inr, (int)outer, (int)inner);
176 continue;
177 }
178 if (rotPath[zeroes].x > rotPath[inner].x
179 && rotPath[zeroes].x > rotPath[outer].x) {
180 if (debug_rotate_to_hull) printf("%s [%d,%d] [o=%d,i=%d] zeroes > inner && outer\n",
181 __FUNCTION__, (int)idx, (int)inr, (int)outer, (int)inner);
182 continue;
183 }
184 }
185 if (outsidePtSet[outer] < 0) {
186 outsidePtSet[outer] = inner;
187 } else {
188 if (outsidePtSet[inner] > 0) {
189 if (debug_rotate_to_hull) printf("%s [%d,%d] [o=%d,i=%d] too many rays from one point\n",
190 __FUNCTION__, (int)idx, (int)inr, (int)outer, (int)inner);
191 }
192 outsidePtSet[inner] = outer;
193 }
194skipInner:
195 ;
196 }
197skip:
198 ;
199 }
200 int totalSides = 0;
201 int first = 0;
202 for (; first < 4; ++first) {
203 if (outsidePtSet[first] >= 0) {
204 break;
205 }
206 }
207 if (first > 3) {
208 order[0] = 0;
209 return 1;
210 }
211 int next = first;
212 do {
213 order[totalSides++] = next;
214 next = outsidePtSet[next];
215 } while (next != -1 && next != first);
216 return totalSides;
217}
218
219int firstIndex = 0;
220int firstInner = 0;
221
222void ConvexHull_Test() {
223 for (size_t index = firstIndex; index < cubicDataSet_count; ++index) {
224 const CubicDataSet& set = cubicDataSet[index];
225 for (size_t inner = firstInner; inner < set.size; ++inner) {
226 const Cubic& cubic = set.data[inner];
227 char order[4], cmpOrder[4];
228 int cmp = rotate_to_hull(cubic, cmpOrder, index, inner);
229 if (cmp < 3) {
230 continue;
231 }
232 int result = convex_hull(cubic, order);
233 if (cmp != result) {
234 printf("%s [%d,%d] result=%d cmp=%d\n", __FUNCTION__,
235 (int)index, (int)inner, result, cmp);
236 continue;
237 }
238 // check for same indices
239 char pts = 0;
240 char cmpPts = 0;
241 int pt, bit;
242 for (pt = 0; pt < cmp; ++pt) {
243 if (pts & 1 << order[pt]) {
244 printf("%s [%d,%d] duplicate index in order: %d,%d,%d",
245 __FUNCTION__, (int)index, (int)inner,
246 order[0], order[1], order[2]);
247 if (cmp == 4) {
248 printf(",%d", order[3]);
249 }
250 printf("\n");
251 goto next;
252 }
253 if (cmpPts & 1 << cmpOrder[pt]) {
254 printf("%s [%d,%d] duplicate index in order: %d,%d,%d",
255 __FUNCTION__, (int)index, (int)inner,
256 cmpOrder[0], cmpOrder[1], cmpOrder[2]);
257 if (cmp == 4) {
258 printf(",%d", cmpOrder[3]);
259 }
260 printf("\n");
261 goto next;
262 }
263 pts |= 1 << order[pt];
264 cmpPts |= 1 << cmpOrder[pt];
265 }
266 for (bit = 0; bit < 4; ++bit) {
267 if (pts & 1 << bit) {
268 continue;
269 }
270 for (pt = 0; pt < cmp; ++pt) {
271 if (order[pt] == bit) {
272 continue;
273 }
274 if (cubic[order[pt]] == cubic[bit]) {
275 pts |= 1 << bit;
276 }
277 }
278 }
279 for (bit = 0; bit < 4; ++bit) {
280 if (cmpPts & 1 << bit) {
281 continue;
282 }
283 for (pt = 0; pt < cmp; ++pt) {
284 if (cmpOrder[pt] == bit) {
285 continue;
286 }
287 if (cubic[cmpOrder[pt]] == cubic[bit]) {
288 cmpPts |= 1 << bit;
289 }
290 }
291 }
292 if (pts != cmpPts) {
293 printf("%s [%d,%d] mismatch indices: order=%d,%d,%d",
294 __FUNCTION__, (int)index, (int)inner,
295 order[0], order[1], order[2]);
296 if (cmp == 4) {
297 printf(",%d", order[3]);
298 }
299 printf(" cmpOrder=%d,%d,%d", cmpOrder[0], cmpOrder[1], cmpOrder[2]);
300 if (cmp == 4) {
301 printf(",%d", cmpOrder[3]);
302 }
303 printf("\n");
304 continue;
305 }
306 if (cmp == 4) { // check for bow ties
307 int match = 0;
308 while (cmpOrder[match] != order[0]) {
309 ++match;
310 }
311 if (cmpOrder[match ^ 2] != order[2]) {
312 printf("%s [%d,%d] bowtie mismatch: order=%d,%d,%d,%d"
313 " cmpOrder=%d,%d,%d,%d\n",
314 __FUNCTION__, (int)index, (int)inner,
315 order[0], order[1], order[2], order[3],
316 cmpOrder[0], cmpOrder[1], cmpOrder[2], cmpOrder[3]);
317 }
318 }
319 next:
320 ;
321 }
322 }
323}
324
325const double a = 1.0/3;
326const double b = 2.0/3;
327
328const Cubic x_cubic[] = {
329 {{0, 0}, {a, 0}, {b, 0}, {1, 0}}, // 0
330 {{0, 0}, {a, 0}, {b, 0}, {1, 1}}, // 1
331 {{0, 0}, {a, 0}, {b, 1}, {1, 0}}, // 2
332 {{0, 0}, {a, 0}, {b, 1}, {1, 1}}, // 3
333 {{0, 0}, {a, 1}, {b, 0}, {1, 0}}, // 4
334 {{0, 0}, {a, 1}, {b, 0}, {1, 1}}, // 5
335 {{0, 0}, {a, 1}, {b, 1}, {1, 0}}, // 6
336 {{0, 0}, {a, 1}, {b, 1}, {1, 1}}, // 7
337 {{0, 1}, {a, 0}, {b, 0}, {1, 0}}, // 8
338 {{0, 1}, {a, 0}, {b, 0}, {1, 1}}, // 9
339 {{0, 1}, {a, 0}, {b, 1}, {1, 0}}, // 10
340 {{0, 1}, {a, 0}, {b, 1}, {1, 1}}, // 11
341 {{0, 1}, {a, 1}, {b, 0}, {1, 0}}, // 12
342 {{0, 1}, {a, 1}, {b, 0}, {1, 1}}, // 13
343 {{0, 1}, {a, 1}, {b, 1}, {1, 0}}, // 14
344 {{0, 1}, {a, 1}, {b, 1}, {1, 1}}, // 15
345};
346
347size_t x_cubic_count = sizeof(x_cubic) / sizeof(x_cubic[0]);
348
349static int first_x_test = 0;
350
351void ConvexHull_X_Test() {
352 for (size_t index = first_x_test; index < x_cubic_count; ++index) {
353 const Cubic& cubic = x_cubic[index];
354 char connectTo0[2] = {-1, -1};
355 char connectTo3[2] = {-1, -1};
356 convex_x_hull(cubic, connectTo0, connectTo3);
357 int idx, cmp;
358 for (idx = 0; idx < 2; ++idx) {
359 if (connectTo0[idx] >= 1 && connectTo0[idx] < 4) {
360 continue;
361 } else {
362 printf("%s connectTo0[idx]=%d", __FUNCTION__, connectTo0[idx]);
363 }
364 if (connectTo3[idx] >= 0 && connectTo3[idx] < 3) {
365 continue;
366 } else {
367 printf("%s connectTo3[idx]=%d", __FUNCTION__, connectTo3[idx]);
368 }
369 goto nextTest;
370 }
371 char rOrder[4];
372 char cmpOrder[4];
373 cmp = rotate_to_hull(cubic, cmpOrder, index, 0);
374 if (index == 0 || index == 15) {
375 // FIXME: make rotate_to_hull work for degenerate 2 edge hull cases
376 cmpOrder[0] = 0;
377 cmpOrder[1] = 3;
378 cmp = 2;
379 }
380 if (cmp < 3) {
381 // FIXME: make rotate_to_hull work for index == 3 etc
382 continue;
383 }
384 for (idx = 0; idx < cmp; ++idx) {
385 if (cmpOrder[idx] == 0) {
386 rOrder[0] = cmpOrder[(idx + 1) % cmp];
387 rOrder[1] = cmpOrder[(idx + cmp - 1) % cmp];
388 } else if (cmpOrder[idx] == 3) {
389 rOrder[2] = cmpOrder[(idx + 1) % cmp];
390 rOrder[3] = cmpOrder[(idx + cmp - 1) % cmp];
391 }
392 }
393 if (connectTo0[0] != connectTo0[1]) {
394 if (rOrder[0] == rOrder[1]) {
395 printf("%s [%d] (1) order=(%d,%d,%d,%d) r_order=(%d,%d,%d,%d)\n",
396 __FUNCTION__, (int)index, connectTo0[0], connectTo0[1],
397 connectTo3[0], connectTo3[1],
398 rOrder[0], rOrder[1], rOrder[2], rOrder[3]);
399 continue;
400 }
401 int unused = 6 - connectTo0[0] - connectTo0[1];
402 int rUnused = 6 - rOrder[0] - rOrder[1];
403 if (unused != rUnused) {
404 printf("%s [%d] (2) order=(%d,%d,%d,%d) r_order=(%d,%d,%d,%d)\n",
405 __FUNCTION__, (int)index, connectTo0[0], connectTo0[1],
406 connectTo3[0], connectTo3[1],
407 rOrder[0], rOrder[1], rOrder[2], rOrder[3]);
408 continue;
409 }
410 } else {
411 if (rOrder[0] != rOrder[1]) {
412 printf("%s [%d] (3) order=(%d,%d,%d,%d) r_order=(%d,%d,%d,%d)\n",
413 __FUNCTION__, (int)index, connectTo0[0], connectTo0[1],
414 connectTo3[0], connectTo3[1],
415 rOrder[0], rOrder[1], rOrder[2], rOrder[3]);
416 continue;
417 }
418 if (connectTo0[0] != rOrder[0]) {
419 printf("%s [%d] (4) order=(%d,%d,%d,%d) r_order=(%d,%d,%d,%d)\n",
420 __FUNCTION__, (int)index, connectTo0[0], connectTo0[1],
421 connectTo3[0], connectTo3[1],
422 rOrder[0], rOrder[1], rOrder[2], rOrder[3]);
423 continue;
424 }
425 }
426 if (connectTo3[0] != connectTo3[1]) {
427 if (rOrder[2] == rOrder[3]) {
428 printf("%s [%d] (5) order=(%d,%d,%d,%d) r_order=(%d,%d,%d,%d)\n",
429 __FUNCTION__, (int)index, connectTo0[0], connectTo0[1],
430 connectTo3[0], connectTo3[1],
431 rOrder[0], rOrder[1], rOrder[2], rOrder[3]);
432 continue;
433 }
434 int unused = 6 - connectTo3[0] - connectTo3[1];
435 int rUnused = 6 - rOrder[2] - rOrder[3];
436 if (unused != rUnused) {
437 printf("%s [%d] (6) order=(%d,%d,%d,%d) r_order=(%d,%d,%d,%d)\n",
438 __FUNCTION__, (int)index, connectTo0[0], connectTo0[1],
439 connectTo3[0], connectTo3[1],
440 rOrder[0], rOrder[1], rOrder[2], rOrder[3]);
441 continue;
442 }
443 } else {
444 if (rOrder[2] != rOrder[3]) {
445 printf("%s [%d] (7) order=(%d,%d,%d,%d) r_order=(%d,%d,%d,%d)\n",
446 __FUNCTION__, (int)index, connectTo0[0], connectTo0[1],
447 connectTo3[0], connectTo3[1],
448 rOrder[0], rOrder[1], rOrder[2], rOrder[3]);
449 continue;
450 }
451 if (connectTo3[1] != rOrder[3]) {
452 printf("%s [%d] (8) order=(%d,%d,%d,%d) r_order=(%d,%d,%d,%d)\n",
453 __FUNCTION__, (int)index, connectTo0[0], connectTo0[1],
454 connectTo3[0], connectTo3[1],
455 rOrder[0], rOrder[1], rOrder[2], rOrder[3]);
456 continue;
457 }
458 }
459nextTest:
460 ;
461 }
462}
463
464
465