krajcevski | 6c35488 | 2014-07-22 07:44:00 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2014 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "SkTextureCompressor.h" |
| 9 | |
| 10 | #include "SkEndian.h" |
| 11 | |
| 12 | // #define COMPRESS_R11_EAC_SLOW 1 |
| 13 | // #define COMPRESS_R11_EAC_FAST 1 |
| 14 | #define COMPRESS_R11_EAC_FASTEST 1 |
| 15 | |
| 16 | // Blocks compressed into R11 EAC are represented as follows: |
| 17 | // 0000000000000000000000000000000000000000000000000000000000000000 |
| 18 | // |base_cw|mod|mul| ----------------- indices ------------------- |
| 19 | // |
| 20 | // To reconstruct the value of a given pixel, we use the formula: |
| 21 | // clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8) |
| 22 | // |
| 23 | // mod_val is chosen from a palette of values based on the index of the |
| 24 | // given pixel. The palette is chosen by the value stored in mod. |
| 25 | // This formula returns a value between 0 and 2047, which is converted |
| 26 | // to a float from 0 to 1 in OpenGL. |
| 27 | // |
| 28 | // If mul is zero, then we set mul = 1/8, so that the formula becomes |
| 29 | // clamp[0, 2047](base_cw * 8 + 4 + mod_val) |
| 30 | |
| 31 | #if COMPRESS_R11_EAC_SLOW |
| 32 | |
| 33 | static const int kNumR11EACPalettes = 16; |
| 34 | static const int kR11EACPaletteSize = 8; |
| 35 | static const int kR11EACModifierPalettes[kNumR11EACPalettes][kR11EACPaletteSize] = { |
| 36 | {-3, -6, -9, -15, 2, 5, 8, 14}, |
| 37 | {-3, -7, -10, -13, 2, 6, 9, 12}, |
| 38 | {-2, -5, -8, -13, 1, 4, 7, 12}, |
| 39 | {-2, -4, -6, -13, 1, 3, 5, 12}, |
| 40 | {-3, -6, -8, -12, 2, 5, 7, 11}, |
| 41 | {-3, -7, -9, -11, 2, 6, 8, 10}, |
| 42 | {-4, -7, -8, -11, 3, 6, 7, 10}, |
| 43 | {-3, -5, -8, -11, 2, 4, 7, 10}, |
| 44 | {-2, -6, -8, -10, 1, 5, 7, 9}, |
| 45 | {-2, -5, -8, -10, 1, 4, 7, 9}, |
| 46 | {-2, -4, -8, -10, 1, 3, 7, 9}, |
| 47 | {-2, -5, -7, -10, 1, 4, 6, 9}, |
| 48 | {-3, -4, -7, -10, 2, 3, 6, 9}, |
| 49 | {-1, -2, -3, -10, 0, 1, 2, 9}, |
| 50 | {-4, -6, -8, -9, 3, 5, 7, 8}, |
| 51 | {-3, -5, -7, -9, 2, 4, 6, 8} |
| 52 | }; |
| 53 | |
| 54 | // Pack the base codeword, palette, and multiplier into the 64 bits necessary |
| 55 | // to decode it. |
| 56 | static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t multiplier, |
| 57 | uint64_t indices) { |
| 58 | SkASSERT(palette < 16); |
| 59 | SkASSERT(multiplier < 16); |
| 60 | SkASSERT(indices < (static_cast<uint64_t>(1) << 48)); |
| 61 | |
| 62 | const uint64_t b = static_cast<uint64_t>(base_cw) << 56; |
| 63 | const uint64_t m = static_cast<uint64_t>(multiplier) << 52; |
| 64 | const uint64_t p = static_cast<uint64_t>(palette) << 48; |
| 65 | return SkEndian_SwapBE64(b | m | p | indices); |
| 66 | } |
| 67 | |
| 68 | // Given a base codeword, a modifier, and a multiplier, compute the proper |
| 69 | // pixel value in the range [0, 2047]. |
| 70 | static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) { |
| 71 | int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8); |
| 72 | return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret); |
| 73 | } |
| 74 | |
| 75 | // Compress a block into R11 EAC format. |
| 76 | // The compression works as follows: |
| 77 | // 1. Find the center of the span of the block's values. Use this as the base codeword. |
| 78 | // 2. Choose a multiplier based roughly on the size of the span of block values |
| 79 | // 3. Iterate through each palette and choose the one with the most accurate |
| 80 | // modifiers. |
| 81 | static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { |
| 82 | // Find the center of the data... |
| 83 | uint16_t bmin = block[0]; |
| 84 | uint16_t bmax = block[0]; |
| 85 | for (int i = 1; i < 16; ++i) { |
| 86 | bmin = SkTMin<uint16_t>(bmin, block[i]); |
| 87 | bmax = SkTMax<uint16_t>(bmax, block[i]); |
| 88 | } |
| 89 | |
| 90 | uint16_t center = (bmax + bmin) >> 1; |
| 91 | SkASSERT(center <= 255); |
| 92 | |
| 93 | // Based on the min and max, we can guesstimate a proper multiplier |
| 94 | // This is kind of a magic choice to start with. |
| 95 | uint16_t multiplier = (bmax - center) / 10; |
| 96 | |
| 97 | // Now convert the block to 11 bits and transpose it to match |
| 98 | // the proper layout |
| 99 | uint16_t cblock[16]; |
| 100 | for (int i = 0; i < 4; ++i) { |
| 101 | for (int j = 0; j < 4; ++j) { |
| 102 | int srcIdx = i*4+j; |
| 103 | int dstIdx = j*4+i; |
| 104 | cblock[dstIdx] = (block[srcIdx] << 3) | (block[srcIdx] >> 5); |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | // Finally, choose the proper palette and indices |
| 109 | uint32_t bestError = 0xFFFFFFFF; |
| 110 | uint64_t bestIndices = 0; |
| 111 | uint16_t bestPalette = 0; |
| 112 | for (uint16_t paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) { |
| 113 | const int *palette = kR11EACModifierPalettes[paletteIdx]; |
| 114 | |
| 115 | // Iterate through each pixel to find the best palette index |
| 116 | // and update the indices with the choice. Also store the error |
| 117 | // for this palette to be compared against the best error... |
| 118 | uint32_t error = 0; |
| 119 | uint64_t indices = 0; |
| 120 | for (int pixelIdx = 0; pixelIdx < 16; ++pixelIdx) { |
| 121 | const uint16_t pixel = cblock[pixelIdx]; |
| 122 | |
| 123 | // Iterate through each palette value to find the best index |
| 124 | // for this particular pixel for this particular palette. |
| 125 | uint16_t bestPixelError = |
| 126 | abs_diff(pixel, compute_r11eac_pixel(center, palette[0], multiplier)); |
| 127 | int bestIndex = 0; |
| 128 | for (int i = 1; i < kR11EACPaletteSize; ++i) { |
| 129 | const uint16_t p = compute_r11eac_pixel(center, palette[i], multiplier); |
| 130 | const uint16_t perror = abs_diff(pixel, p); |
| 131 | |
| 132 | // Is this index better? |
| 133 | if (perror < bestPixelError) { |
| 134 | bestIndex = i; |
| 135 | bestPixelError = perror; |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | SkASSERT(bestIndex < 8); |
| 140 | |
| 141 | error += bestPixelError; |
| 142 | indices <<= 3; |
| 143 | indices |= bestIndex; |
| 144 | } |
| 145 | |
| 146 | SkASSERT(indices < (static_cast<uint64_t>(1) << 48)); |
| 147 | |
| 148 | // Is this palette better? |
| 149 | if (error < bestError) { |
| 150 | bestPalette = paletteIdx; |
| 151 | bestIndices = indices; |
| 152 | bestError = error; |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | // Finally, pack everything together... |
| 157 | return pack_r11eac_block(center, bestPalette, multiplier, bestIndices); |
| 158 | } |
| 159 | #endif // COMPRESS_R11_EAC_SLOW |
| 160 | |
| 161 | #if COMPRESS_R11_EAC_FAST |
| 162 | // This function takes into account that most blocks that we compress have a gradation from |
| 163 | // fully opaque to fully transparent. The compression scheme works by selecting the |
| 164 | // palette and multiplier that has the tightest fit to the 0-255 range. This is encoded |
| 165 | // as the block header (0x8490). The indices are then selected by considering the top |
| 166 | // three bits of each alpha value. For alpha masks, this reduces the dynamic range from |
| 167 | // 17 to 8, but the quality is still acceptable. |
| 168 | // |
| 169 | // There are a few caveats that need to be taken care of... |
| 170 | // |
| 171 | // 1. The block is read in as scanlines, so the indices are stored as: |
| 172 | // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
| 173 | // However, the decomrpession routine reads them in column-major order, so they |
| 174 | // need to be packed as: |
| 175 | // 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 |
| 176 | // So when reading, they must be transposed. |
| 177 | // |
| 178 | // 2. We cannot use the top three bits as an index directly, since the R11 EAC palettes |
| 179 | // above store the modulation values first decreasing and then increasing: |
| 180 | // e.g. {-3, -6, -9, -15, 2, 5, 8, 14} |
| 181 | // Hence, we need to convert the indices with the following mapping: |
| 182 | // From: 0 1 2 3 4 5 6 7 |
| 183 | // To: 3 2 1 0 4 5 6 7 |
| 184 | static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { |
| 185 | uint64_t retVal = static_cast<uint64_t>(0x8490) << 48; |
| 186 | for(int i = 0; i < 4; ++i) { |
| 187 | for(int j = 0; j < 4; ++j) { |
| 188 | const int shift = 45-3*(j*4+i); |
| 189 | SkASSERT(shift <= 45); |
| 190 | const uint64_t idx = block[i*4+j] >> 5; |
| 191 | SkASSERT(idx < 8); |
| 192 | |
| 193 | // !SPEED! This is slightly faster than having an if-statement. |
| 194 | switch(idx) { |
| 195 | case 0: |
| 196 | case 1: |
| 197 | case 2: |
| 198 | case 3: |
| 199 | retVal |= (3-idx) << shift; |
| 200 | break; |
| 201 | default: |
| 202 | retVal |= idx << shift; |
| 203 | break; |
| 204 | } |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | return SkEndian_SwapBE64(retVal); |
| 209 | } |
| 210 | #endif // COMPRESS_R11_EAC_FAST |
| 211 | |
| 212 | #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
| 213 | static uint64_t compress_r11eac_block(const uint8_t block[16]) { |
| 214 | // Are all blocks a solid color? |
| 215 | bool solid = true; |
| 216 | for (int i = 1; i < 16; ++i) { |
| 217 | if (block[i] != block[0]) { |
| 218 | solid = false; |
| 219 | break; |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | if (solid) { |
| 224 | switch(block[0]) { |
| 225 | // Fully transparent? We know the encoding... |
| 226 | case 0: |
| 227 | // (0x0020 << 48) produces the following: |
| 228 | // basw_cw: 0 |
| 229 | // mod: 0, palette: {-3, -6, -9, -15, 2, 5, 8, 14} |
| 230 | // multiplier: 2 |
| 231 | // mod_val: -3 |
| 232 | // |
| 233 | // this gives the following formula: |
| 234 | // clamp[0, 2047](0*8+4+(-3)*2*8) = 0 |
| 235 | // |
| 236 | // Furthermore, it is impervious to endianness: |
| 237 | // 0x0020000000002000ULL |
| 238 | // Will produce one pixel with index 2, which gives: |
| 239 | // clamp[0, 2047](0*8+4+(-9)*2*8) = 0 |
| 240 | return 0x0020000000002000ULL; |
| 241 | |
| 242 | // Fully opaque? We know this encoding too... |
| 243 | case 255: |
| 244 | |
| 245 | // -1 produces the following: |
| 246 | // basw_cw: 255 |
| 247 | // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8} |
| 248 | // mod_val: 8 |
| 249 | // |
| 250 | // this gives the following formula: |
| 251 | // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047 |
| 252 | return 0xFFFFFFFFFFFFFFFFULL; |
| 253 | |
| 254 | default: |
| 255 | // !TODO! krajcevski: |
| 256 | // This will probably never happen, since we're using this format |
| 257 | // primarily for compressing alpha maps. Usually the only |
| 258 | // non-fullly opaque or fully transparent blocks are not a solid |
| 259 | // intermediate color. If we notice that they are, then we can |
| 260 | // add another optimization... |
| 261 | break; |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | return compress_heterogeneous_r11eac_block(block); |
| 266 | } |
| 267 | |
| 268 | // This function is used by R11 EAC to compress 4x4 blocks |
| 269 | // of 8-bit alpha into 64-bit values that comprise the compressed data. |
| 270 | // We need to make sure that the dimensions of the src pixels are divisible |
| 271 | // by 4, and copy 4x4 blocks one at a time for compression. |
| 272 | typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]); |
| 273 | |
| 274 | static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src, |
| 275 | int width, int height, int rowBytes, |
| 276 | A84x4To64BitProc proc) { |
| 277 | // Make sure that our data is well-formed enough to be considered for compression |
| 278 | if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { |
| 279 | return false; |
| 280 | } |
| 281 | |
| 282 | int blocksX = width >> 2; |
| 283 | int blocksY = height >> 2; |
| 284 | |
| 285 | uint8_t block[16]; |
| 286 | uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
| 287 | for (int y = 0; y < blocksY; ++y) { |
| 288 | for (int x = 0; x < blocksX; ++x) { |
| 289 | // Load block |
| 290 | for (int k = 0; k < 4; ++k) { |
| 291 | memcpy(block + k*4, src + k*rowBytes + 4*x, 4); |
| 292 | } |
| 293 | |
| 294 | // Compress it |
| 295 | *encPtr = proc(block); |
| 296 | ++encPtr; |
| 297 | } |
| 298 | src += 4 * rowBytes; |
| 299 | } |
| 300 | |
| 301 | return true; |
| 302 | } |
| 303 | #endif // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
| 304 | |
| 305 | #if COMPRESS_R11_EAC_FASTEST |
| 306 | template<unsigned shift> |
| 307 | static inline uint64_t swap_shift(uint64_t x, uint64_t mask) { |
| 308 | const uint64_t t = (x ^ (x >> shift)) & mask; |
| 309 | return x ^ t ^ (t << shift); |
| 310 | } |
| 311 | |
| 312 | static inline uint64_t interleave6(uint64_t topRows, uint64_t bottomRows) { |
| 313 | // If our 3-bit block indices are laid out as: |
| 314 | // a b c d |
| 315 | // e f g h |
| 316 | // i j k l |
| 317 | // m n o p |
| 318 | // |
| 319 | // This function expects topRows and bottomRows to contain the first two rows |
| 320 | // of indices interleaved in the least significant bits of a and b. In other words... |
| 321 | // |
| 322 | // If the architecture is big endian, then topRows and bottomRows will contain the following: |
| 323 | // Bits 31-0: |
| 324 | // a: 00 a e 00 b f 00 c g 00 d h |
| 325 | // b: 00 i m 00 j n 00 k o 00 l p |
| 326 | // |
| 327 | // If the architecture is little endian, then topRows and bottomRows will contain |
| 328 | // the following: |
| 329 | // Bits 31-0: |
| 330 | // a: 00 d h 00 c g 00 b f 00 a e |
| 331 | // b: 00 l p 00 k o 00 j n 00 i m |
| 332 | // |
| 333 | // This function returns a 48-bit packing of the form: |
| 334 | // a e i m b f j n c g k o d h l p |
| 335 | // |
| 336 | // !SPEED! this function might be even faster if certain SIMD intrinsics are |
| 337 | // used.. |
| 338 | |
| 339 | // For both architectures, we can figure out a packing of the bits by |
| 340 | // using a shuffle and a few shift-rotates... |
| 341 | uint64_t x = (static_cast<uint64_t>(topRows) << 32) | static_cast<uint64_t>(bottomRows); |
| 342 | |
| 343 | // x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p |
| 344 | |
| 345 | x = swap_shift<10>(x, 0x3FC0003FC00000ULL); |
| 346 | |
| 347 | // x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p |
| 348 | |
| 349 | x = (x | ((x << 52) & (0x3FULL << 52)) | ((x << 20) & (0x3FULL << 28))) >> 16; |
| 350 | |
| 351 | // x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n |
| 352 | |
| 353 | x = swap_shift<6>(x, 0xFC0000ULL); |
| 354 | |
| 355 | #if defined (SK_CPU_BENDIAN) |
| 356 | // x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n |
| 357 | |
| 358 | x = swap_shift<36>(x, 0x3FULL); |
| 359 | |
| 360 | // x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p |
| 361 | |
| 362 | x = swap_shift<12>(x, 0xFFF000000ULL); |
| 363 | #else |
| 364 | // If our CPU is little endian, then the above logic will |
| 365 | // produce the following indices: |
| 366 | // x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o |
| 367 | |
| 368 | x = swap_shift<36>(x, 0xFC0ULL); |
| 369 | |
| 370 | // x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o |
| 371 | |
| 372 | x = (x & (0xFFFULL << 36)) | ((x & 0xFFFFFFULL) << 12) | ((x >> 24) & 0xFFFULL); |
| 373 | #endif |
| 374 | |
| 375 | // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p |
| 376 | return x; |
| 377 | } |
| 378 | |
| 379 | // This function converts an integer containing four bytes of alpha |
| 380 | // values into an integer containing four bytes of indices into R11 EAC. |
| 381 | // Note, there needs to be a mapping of indices: |
| 382 | // 0 1 2 3 4 5 6 7 |
| 383 | // 3 2 1 0 4 5 6 7 |
| 384 | // |
| 385 | // To compute this, we first negate each byte, and then add three, which |
| 386 | // gives the mapping |
| 387 | // 3 2 1 0 -1 -2 -3 -4 |
| 388 | // |
| 389 | // Then we mask out the negative values, take their absolute value, and |
| 390 | // add three. |
| 391 | // |
| 392 | // Most of the voodoo in this function comes from Hacker's Delight, section 2-18 |
| 393 | static inline uint32_t convert_indices(uint32_t x) { |
| 394 | // Take the top three bits... |
| 395 | x = (x & 0xE0E0E0E0) >> 5; |
| 396 | |
| 397 | // Negate... |
| 398 | x = ~((0x80808080 - x) ^ 0x7F7F7F7F); |
| 399 | |
| 400 | // Add three |
| 401 | const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303; |
| 402 | x = ((x ^ 0x03030303) & 0x80808080) ^ s; |
| 403 | |
| 404 | // Absolute value |
| 405 | const uint32_t a = x & 0x80808080; |
| 406 | const uint32_t b = a >> 7; |
| 407 | |
| 408 | // Aside: mask negatives (m is three if the byte was negative) |
| 409 | const uint32_t m = (a >> 6) | b; |
| 410 | |
| 411 | // .. continue absolute value |
| 412 | x = (x ^ ((a - b) | a)) + b; |
| 413 | |
| 414 | // Add three |
| 415 | return x + m; |
| 416 | } |
| 417 | |
| 418 | // This function follows the same basic procedure as compress_heterogeneous_r11eac_block |
| 419 | // above when COMPRESS_R11_EAC_FAST is defined, but it avoids a few loads/stores and |
| 420 | // tries to optimize where it can using SIMD. |
| 421 | static uint64_t compress_r11eac_block_fast(const uint8_t* src, int rowBytes) { |
| 422 | // Store each row of alpha values in an integer |
| 423 | const uint32_t alphaRow1 = *(reinterpret_cast<const uint32_t*>(src)); |
| 424 | const uint32_t alphaRow2 = *(reinterpret_cast<const uint32_t*>(src + rowBytes)); |
| 425 | const uint32_t alphaRow3 = *(reinterpret_cast<const uint32_t*>(src + 2*rowBytes)); |
| 426 | const uint32_t alphaRow4 = *(reinterpret_cast<const uint32_t*>(src + 3*rowBytes)); |
| 427 | |
| 428 | // Check for solid blocks. The explanations for these values |
| 429 | // can be found in the comments of compress_r11eac_block above |
| 430 | if (alphaRow1 == alphaRow2 && alphaRow1 == alphaRow3 && alphaRow1 == alphaRow4) { |
| 431 | if (0 == alphaRow1) { |
| 432 | // Fully transparent block |
| 433 | return 0x0020000000002000ULL; |
| 434 | } else if (0xFFFFFFFF == alphaRow1) { |
| 435 | // Fully opaque block |
| 436 | return 0xFFFFFFFFFFFFFFFFULL; |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | // Convert each integer of alpha values into an integer of indices |
| 441 | const uint32_t indexRow1 = convert_indices(alphaRow1); |
| 442 | const uint32_t indexRow2 = convert_indices(alphaRow2); |
| 443 | const uint32_t indexRow3 = convert_indices(alphaRow3); |
| 444 | const uint32_t indexRow4 = convert_indices(alphaRow4); |
| 445 | |
| 446 | // Interleave the indices from the top two rows and bottom two rows |
| 447 | // prior to passing them to interleave6. Since each index is at most |
| 448 | // three bits, then each byte can hold two indices... The way that the |
| 449 | // compression scheme expects the packing allows us to efficiently pack |
| 450 | // the top two rows and bottom two rows. Interleaving each 6-bit sequence |
| 451 | // and tightly packing it into a uint64_t is a little trickier, which is |
| 452 | // taken care of in interleave6. |
| 453 | const uint32_t r1r2 = (indexRow1 << 3) | indexRow2; |
| 454 | const uint32_t r3r4 = (indexRow3 << 3) | indexRow4; |
| 455 | const uint64_t indices = interleave6(r1r2, r3r4); |
| 456 | |
| 457 | // Return the packed incdices in the least significant bits with the magic header |
| 458 | return SkEndian_SwapBE64(0x8490000000000000ULL | indices); |
| 459 | } |
| 460 | |
| 461 | static bool compress_a8_to_r11eac_fast(uint8_t* dst, const uint8_t* src, |
| 462 | int width, int height, int rowBytes) { |
| 463 | // Make sure that our data is well-formed enough to be considered for compression |
| 464 | if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { |
| 465 | return false; |
| 466 | } |
| 467 | |
| 468 | const int blocksX = width >> 2; |
| 469 | const int blocksY = height >> 2; |
| 470 | |
| 471 | uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
| 472 | for (int y = 0; y < blocksY; ++y) { |
| 473 | for (int x = 0; x < blocksX; ++x) { |
| 474 | // Compress it |
| 475 | *encPtr = compress_r11eac_block_fast(src + 4*x, rowBytes); |
| 476 | ++encPtr; |
| 477 | } |
| 478 | src += 4 * rowBytes; |
| 479 | } |
| 480 | return true; |
| 481 | } |
| 482 | #endif // COMPRESS_R11_EAC_FASTEST |
| 483 | |
| 484 | //////////////////////////////////////////////////////////////////////////////// |
| 485 | // |
| 486 | // Utility functions used by the blitter |
| 487 | // |
| 488 | //////////////////////////////////////////////////////////////////////////////// |
| 489 | |
| 490 | // The R11 EAC format expects that indices are given in column-major order. Since |
| 491 | // we receive alpha values in raster order, this usually means that we have to use |
| 492 | // pack6 above to properly pack our indices. However, if our indices come from the |
| 493 | // blitter, then each integer will be a column of indices, and hence can be efficiently |
| 494 | // packed. This function takes the bottom three bits of each byte and places them in |
| 495 | // the least significant 12 bits of the resulting integer. |
| 496 | static inline uint32_t pack_indices_vertical(uint32_t x) { |
| 497 | #if defined (SK_CPU_BENDIAN) |
| 498 | return |
| 499 | (x & 7) | |
| 500 | ((x >> 5) & (7 << 3)) | |
| 501 | ((x >> 10) & (7 << 6)) | |
| 502 | ((x >> 15) & (7 << 9)); |
| 503 | #else |
| 504 | return |
| 505 | ((x >> 24) & 7) | |
| 506 | ((x >> 13) & (7 << 3)) | |
| 507 | ((x >> 2) & (7 << 6)) | |
| 508 | ((x << 9) & (7 << 9)); |
| 509 | #endif |
| 510 | } |
| 511 | |
| 512 | // This function returns the compressed format of a block given as four columns of |
| 513 | // alpha values. Each column is assumed to be loaded from top to bottom, and hence |
| 514 | // must first be converted to indices and then packed into the resulting 64-bit |
| 515 | // integer. |
| 516 | static inline uint64_t compress_block_vertical(const uint32_t alphaColumn0, |
| 517 | const uint32_t alphaColumn1, |
| 518 | const uint32_t alphaColumn2, |
| 519 | const uint32_t alphaColumn3) { |
| 520 | |
| 521 | if (alphaColumn0 == alphaColumn1 && |
| 522 | alphaColumn2 == alphaColumn3 && |
| 523 | alphaColumn0 == alphaColumn2) { |
| 524 | |
| 525 | if (0 == alphaColumn0) { |
| 526 | // Transparent |
| 527 | return 0x0020000000002000ULL; |
| 528 | } |
| 529 | else if (0xFFFFFFFF == alphaColumn0) { |
| 530 | // Opaque |
| 531 | return 0xFFFFFFFFFFFFFFFFULL; |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | const uint32_t indexColumn0 = convert_indices(alphaColumn0); |
| 536 | const uint32_t indexColumn1 = convert_indices(alphaColumn1); |
| 537 | const uint32_t indexColumn2 = convert_indices(alphaColumn2); |
| 538 | const uint32_t indexColumn3 = convert_indices(alphaColumn3); |
| 539 | |
| 540 | const uint32_t packedIndexColumn0 = pack_indices_vertical(indexColumn0); |
| 541 | const uint32_t packedIndexColumn1 = pack_indices_vertical(indexColumn1); |
| 542 | const uint32_t packedIndexColumn2 = pack_indices_vertical(indexColumn2); |
| 543 | const uint32_t packedIndexColumn3 = pack_indices_vertical(indexColumn3); |
| 544 | |
| 545 | return SkEndian_SwapBE64(0x8490000000000000ULL | |
| 546 | (static_cast<uint64_t>(packedIndexColumn0) << 36) | |
| 547 | (static_cast<uint64_t>(packedIndexColumn1) << 24) | |
| 548 | static_cast<uint64_t>(packedIndexColumn2 << 12) | |
| 549 | static_cast<uint64_t>(packedIndexColumn3)); |
| 550 | |
| 551 | } |
| 552 | |
| 553 | // Updates the block whose columns are stored in blockColN. curAlphai is expected |
| 554 | // to store, as an integer, the four alpha values that will be placed within each |
| 555 | // of the columns in the range [col, col+colsLeft). |
| 556 | static inline void update_block_columns(uint32_t* block, const int col, |
| 557 | const int colsLeft, const uint32_t curAlphai) { |
| 558 | SkASSERT(NULL != block); |
| 559 | SkASSERT(col + colsLeft <= 4); |
| 560 | |
| 561 | for (int i = col; i < (col + colsLeft); ++i) { |
| 562 | block[i] = curAlphai; |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | //////////////////////////////////////////////////////////////////////////////// |
| 567 | |
| 568 | namespace SkTextureCompressor { |
| 569 | |
| 570 | bool CompressA8ToR11EAC(uint8_t* dst, const uint8_t* src, int width, int height, int rowBytes) { |
| 571 | |
| 572 | #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
| 573 | |
| 574 | return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_r11eac_block); |
| 575 | |
| 576 | #elif COMPRESS_R11_EAC_FASTEST |
| 577 | |
| 578 | return compress_a8_to_r11eac_fast(dst, src, width, height, rowBytes); |
| 579 | |
| 580 | #else |
| 581 | #error "Must choose R11 EAC algorithm" |
| 582 | #endif |
| 583 | } |
| 584 | |
| 585 | // This class implements a blitter that blits directly into a buffer that will |
| 586 | // be used as an R11 EAC compressed texture. We compute this buffer by |
| 587 | // buffering four scan lines and then outputting them all at once. This blitter |
| 588 | // is only expected to be used with alpha masks, i.e. kAlpha8_SkColorType. |
| 589 | class R11_EACBlitter : public SkBlitter { |
| 590 | public: |
| 591 | R11_EACBlitter(int width, int height, void *compressedBuffer); |
| 592 | virtual ~R11_EACBlitter() { this->flushRuns(); } |
| 593 | |
| 594 | // Blit a horizontal run of one or more pixels. |
| 595 | virtual void blitH(int x, int y, int width) SK_OVERRIDE { |
| 596 | // This function is intended to be called from any standard RGB |
| 597 | // buffer, so we should never encounter it. However, if some code |
| 598 | // path does end up here, then this needs to be investigated. |
| 599 | SkFAIL("Not implemented!"); |
| 600 | } |
| 601 | |
| 602 | // Blit a horizontal run of antialiased pixels; runs[] is a *sparse* |
| 603 | // zero-terminated run-length encoding of spans of constant alpha values. |
| 604 | virtual void blitAntiH(int x, int y, |
| 605 | const SkAlpha antialias[], |
| 606 | const int16_t runs[]) SK_OVERRIDE; |
| 607 | |
| 608 | // Blit a vertical run of pixels with a constant alpha value. |
| 609 | virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE { |
| 610 | // This function is currently not implemented. It is not explicitly |
| 611 | // required by the contract, but if at some time a code path runs into |
| 612 | // this function (which is entirely possible), it needs to be implemented. |
| 613 | // |
| 614 | // TODO (krajcevski): |
| 615 | // This function will be most easily implemented in one of two ways: |
| 616 | // 1. Buffer each vertical column value and then construct a list |
| 617 | // of alpha values and output all of the blocks at once. This only |
| 618 | // requires a write to the compressed buffer |
| 619 | // 2. Replace the indices of each block with the proper indices based |
| 620 | // on the alpha value. This requires a read and write of the compressed |
| 621 | // buffer, but much less overhead. |
| 622 | SkFAIL("Not implemented!"); |
| 623 | } |
| 624 | |
| 625 | // Blit a solid rectangle one or more pixels wide. |
| 626 | virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE { |
| 627 | // Analogous to blitRow, this function is intended for RGB targets |
| 628 | // and should never be called by this blitter. Any calls to this function |
| 629 | // are probably a bug and should be investigated. |
| 630 | SkFAIL("Not implemented!"); |
| 631 | } |
| 632 | |
| 633 | // Blit a rectangle with one alpha-blended column on the left, |
| 634 | // width (zero or more) opaque pixels, and one alpha-blended column |
| 635 | // on the right. The result will always be at least two pixels wide. |
| 636 | virtual void blitAntiRect(int x, int y, int width, int height, |
| 637 | SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE { |
| 638 | // This function is currently not implemented. It is not explicitly |
| 639 | // required by the contract, but if at some time a code path runs into |
| 640 | // this function (which is entirely possible), it needs to be implemented. |
| 641 | // |
| 642 | // TODO (krajcevski): |
| 643 | // This function will be most easily implemented as follows: |
| 644 | // 1. If width/height are smaller than a block, then update the |
| 645 | // indices of the affected blocks. |
| 646 | // 2. If width/height are larger than a block, then construct a 9-patch |
| 647 | // of block encodings that represent the rectangle, and write them |
| 648 | // to the compressed buffer as necessary. Whether or not the blocks |
| 649 | // are overwritten by zeros or just their indices are updated is up |
| 650 | // to debate. |
| 651 | SkFAIL("Not implemented!"); |
| 652 | } |
| 653 | |
| 654 | // Blit a pattern of pixels defined by a rectangle-clipped mask; |
| 655 | // typically used for text. |
| 656 | virtual void blitMask(const SkMask&, const SkIRect& clip) SK_OVERRIDE { |
| 657 | // This function is currently not implemented. It is not explicitly |
| 658 | // required by the contract, but if at some time a code path runs into |
| 659 | // this function (which is entirely possible), it needs to be implemented. |
| 660 | // |
| 661 | // TODO (krajcevski): |
| 662 | // This function will be most easily implemented in the same way as |
| 663 | // blitAntiRect above. |
| 664 | SkFAIL("Not implemented!"); |
| 665 | } |
| 666 | |
| 667 | // If the blitter just sets a single value for each pixel, return the |
| 668 | // bitmap it draws into, and assign value. If not, return NULL and ignore |
| 669 | // the value parameter. |
| 670 | virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) SK_OVERRIDE { |
| 671 | return NULL; |
| 672 | } |
| 673 | |
| 674 | /** |
| 675 | * Compressed texture blitters only really work correctly if they get |
| 676 | * four blocks at a time. That being said, this blitter tries it's best |
| 677 | * to preserve semantics if blitAntiH doesn't get called in too many |
| 678 | * weird ways... |
| 679 | */ |
| 680 | virtual int requestRowsPreserved() const { return kR11_EACBlockSz; } |
| 681 | |
| 682 | protected: |
| 683 | virtual void onNotifyFinished() { this->flushRuns(); } |
| 684 | |
| 685 | private: |
| 686 | static const int kR11_EACBlockSz = 4; |
| 687 | static const int kPixelsPerBlock = kR11_EACBlockSz * kR11_EACBlockSz; |
| 688 | |
| 689 | // The longest possible run of pixels that this blitter will receive. |
| 690 | // This is initialized in the constructor to 0x7FFE, which is one less |
| 691 | // than the largest positive 16-bit integer. We make sure that it's one |
| 692 | // less for debugging purposes. We also don't make this variable static |
| 693 | // in order to make sure that we can construct a valid pointer to it. |
| 694 | const int16_t kLongestRun; |
| 695 | |
| 696 | // Usually used in conjunction with kLongestRun. This is initialized to |
| 697 | // zero. |
| 698 | const SkAlpha kZeroAlpha; |
| 699 | |
| 700 | // This is the information that we buffer whenever we're asked to blit |
| 701 | // a row with this blitter. |
| 702 | struct BufferedRun { |
| 703 | const SkAlpha* fAlphas; |
| 704 | const int16_t* fRuns; |
| 705 | int fX, fY; |
| 706 | } fBufferedRuns[kR11_EACBlockSz]; |
| 707 | |
| 708 | // The next row (0-3) that we need to blit. This value should never exceed |
| 709 | // the number of rows that we have (kR11_EACBlockSz) |
| 710 | int fNextRun; |
| 711 | |
| 712 | // The width and height of the image that we're blitting |
| 713 | const int fWidth; |
| 714 | const int fHeight; |
| 715 | |
| 716 | // The R11 EAC buffer that we're blitting into. It is assumed that the buffer |
| 717 | // is large enough to store a compressed image of size fWidth*fHeight. |
| 718 | uint64_t* const fBuffer; |
| 719 | |
| 720 | // Various utility functions |
| 721 | int blocksWide() const { return fWidth / kR11_EACBlockSz; } |
| 722 | int blocksTall() const { return fHeight / kR11_EACBlockSz; } |
| 723 | int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; } |
| 724 | |
| 725 | // Returns the block index for the block containing pixel (x, y). Block |
| 726 | // indices start at zero and proceed in raster order. |
| 727 | int getBlockOffset(int x, int y) const { |
| 728 | SkASSERT(x < fWidth); |
| 729 | SkASSERT(y < fHeight); |
| 730 | const int blockCol = x / kR11_EACBlockSz; |
| 731 | const int blockRow = y / kR11_EACBlockSz; |
| 732 | return blockRow * this->blocksWide() + blockCol; |
| 733 | } |
| 734 | |
| 735 | // Returns a pointer to the block containing pixel (x, y) |
| 736 | uint64_t *getBlock(int x, int y) const { |
| 737 | return fBuffer + this->getBlockOffset(x, y); |
| 738 | } |
| 739 | |
| 740 | // The following function writes the buffered runs to compressed blocks. |
| 741 | // If fNextRun < 4, then we fill the runs that we haven't buffered with |
| 742 | // the constant zero buffer. |
| 743 | void flushRuns(); |
| 744 | }; |
| 745 | |
| 746 | |
| 747 | R11_EACBlitter::R11_EACBlitter(int width, int height, void *latcBuffer) |
| 748 | // 0x7FFE is one minus the largest positive 16-bit int. We use it for |
| 749 | // debugging to make sure that we're properly setting the nextX distance |
| 750 | // in flushRuns(). |
| 751 | : kLongestRun(0x7FFE), kZeroAlpha(0) |
| 752 | , fNextRun(0) |
| 753 | , fWidth(width) |
| 754 | , fHeight(height) |
| 755 | , fBuffer(reinterpret_cast<uint64_t*const>(latcBuffer)) |
| 756 | { |
| 757 | SkASSERT((width % kR11_EACBlockSz) == 0); |
| 758 | SkASSERT((height % kR11_EACBlockSz) == 0); |
| 759 | } |
| 760 | |
| 761 | void R11_EACBlitter::blitAntiH(int x, int y, |
| 762 | const SkAlpha* antialias, |
| 763 | const int16_t* runs) { |
| 764 | // Make sure that the new row to blit is either the first |
| 765 | // row that we're blitting, or it's exactly the next scan row |
| 766 | // since the last row that we blit. This is to ensure that when |
| 767 | // we go to flush the runs, that they are all the same four |
| 768 | // runs. |
| 769 | if (fNextRun > 0 && |
| 770 | ((x != fBufferedRuns[fNextRun-1].fX) || |
| 771 | (y-1 != fBufferedRuns[fNextRun-1].fY))) { |
| 772 | this->flushRuns(); |
| 773 | } |
| 774 | |
| 775 | // Align the rows to a block boundary. If we receive rows that |
| 776 | // are not on a block boundary, then fill in the preceding runs |
| 777 | // with zeros. We do this by producing a single RLE that says |
| 778 | // that we have 0x7FFE pixels of zero (0x7FFE = 32766). |
| 779 | const int row = y & ~3; |
| 780 | while ((row + fNextRun) < y) { |
| 781 | fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha; |
| 782 | fBufferedRuns[fNextRun].fRuns = &kLongestRun; |
| 783 | fBufferedRuns[fNextRun].fX = 0; |
| 784 | fBufferedRuns[fNextRun].fY = row + fNextRun; |
| 785 | ++fNextRun; |
| 786 | } |
| 787 | |
| 788 | // Make sure that our assumptions aren't violated... |
| 789 | SkASSERT(fNextRun == (y & 3)); |
| 790 | SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y); |
| 791 | |
| 792 | // Set the values of the next run |
| 793 | fBufferedRuns[fNextRun].fAlphas = antialias; |
| 794 | fBufferedRuns[fNextRun].fRuns = runs; |
| 795 | fBufferedRuns[fNextRun].fX = x; |
| 796 | fBufferedRuns[fNextRun].fY = y; |
| 797 | |
| 798 | // If we've output four scanlines in a row that don't violate our |
| 799 | // assumptions, then it's time to flush them... |
| 800 | if (4 == ++fNextRun) { |
| 801 | this->flushRuns(); |
| 802 | } |
| 803 | } |
| 804 | |
| 805 | void R11_EACBlitter::flushRuns() { |
| 806 | |
| 807 | // If we don't have any runs, then just return. |
| 808 | if (0 == fNextRun) { |
| 809 | return; |
| 810 | } |
| 811 | |
| 812 | #ifndef NDEBUG |
| 813 | // Make sure that if we have any runs, they all match |
| 814 | for (int i = 1; i < fNextRun; ++i) { |
| 815 | SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1); |
| 816 | SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX); |
| 817 | } |
| 818 | #endif |
| 819 | |
| 820 | // If we dont have as many runs as we have rows, fill in the remaining |
| 821 | // runs with constant zeros. |
| 822 | for (int i = fNextRun; i < kR11_EACBlockSz; ++i) { |
| 823 | fBufferedRuns[i].fY = fBufferedRuns[0].fY + i; |
| 824 | fBufferedRuns[i].fX = fBufferedRuns[0].fX; |
| 825 | fBufferedRuns[i].fAlphas = &kZeroAlpha; |
| 826 | fBufferedRuns[i].fRuns = &kLongestRun; |
| 827 | } |
| 828 | |
| 829 | // Make sure that our assumptions aren't violated. |
| 830 | SkASSERT(fNextRun > 0 && fNextRun <= 4); |
| 831 | SkASSERT((fBufferedRuns[0].fY & 3) == 0); |
| 832 | |
| 833 | // The following logic walks four rows at a time and outputs compressed |
| 834 | // blocks to the buffer passed into the constructor. |
| 835 | // We do the following: |
| 836 | // |
| 837 | // c1 c2 c3 c4 |
| 838 | // ----------------------------------------------------------------------- |
| 839 | // ... | | | | | ----> fBufferedRuns[0] |
| 840 | // ----------------------------------------------------------------------- |
| 841 | // ... | | | | | ----> fBufferedRuns[1] |
| 842 | // ----------------------------------------------------------------------- |
| 843 | // ... | | | | | ----> fBufferedRuns[2] |
| 844 | // ----------------------------------------------------------------------- |
| 845 | // ... | | | | | ----> fBufferedRuns[3] |
| 846 | // ----------------------------------------------------------------------- |
| 847 | // |
| 848 | // curX -- the macro X value that we've gotten to. |
| 849 | // c1, c2, c3, c4 -- the integers that represent the columns of the current block |
| 850 | // that we're operating on |
| 851 | // curAlphaColumn -- integer containing the column of alpha values from fBufferedRuns. |
| 852 | // nextX -- for each run, the next point at which we need to update curAlphaColumn |
| 853 | // after the value of curX. |
| 854 | // finalX -- the minimum of all the nextX values. |
| 855 | // |
| 856 | // curX advances to finalX outputting any blocks that it passes along |
| 857 | // the way. Since finalX will not change when we reach the end of a |
| 858 | // run, the termination criteria will be whenever curX == finalX at the |
| 859 | // end of a loop. |
| 860 | |
| 861 | // Setup: |
| 862 | uint32_t c[4] = { 0, 0, 0, 0 }; |
| 863 | uint32_t curAlphaColumn = 0; |
| 864 | SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn); |
| 865 | |
| 866 | int nextX[kR11_EACBlockSz]; |
| 867 | for (int i = 0; i < kR11_EACBlockSz; ++i) { |
| 868 | nextX[i] = 0x7FFFFF; |
| 869 | } |
| 870 | |
| 871 | uint64_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY); |
| 872 | |
| 873 | // Populate the first set of runs and figure out how far we need to |
| 874 | // advance on the first step |
| 875 | int curX = 0; |
| 876 | int finalX = 0xFFFFF; |
| 877 | for (int i = 0; i < kR11_EACBlockSz; ++i) { |
| 878 | nextX[i] = *(fBufferedRuns[i].fRuns); |
| 879 | curAlpha[i] = *(fBufferedRuns[i].fAlphas); |
| 880 | |
| 881 | finalX = SkMin32(nextX[i], finalX); |
| 882 | } |
| 883 | |
| 884 | // Make sure that we have a valid right-bound X value |
| 885 | SkASSERT(finalX < 0xFFFFF); |
| 886 | |
| 887 | // Run the blitter... |
| 888 | while (curX != finalX) { |
| 889 | SkASSERT(finalX >= curX); |
| 890 | |
| 891 | // Do we need to populate the rest of the block? |
| 892 | if ((finalX - (curX & ~3)) >= kR11_EACBlockSz) { |
| 893 | const int col = curX & 3; |
| 894 | const int colsLeft = 4 - col; |
| 895 | SkASSERT(curX + colsLeft <= finalX); |
| 896 | |
| 897 | update_block_columns(c, col, colsLeft, curAlphaColumn); |
| 898 | |
| 899 | // Write this block |
| 900 | *outPtr = compress_block_vertical(c[0], c[1], c[2], c[3]); |
| 901 | ++outPtr; |
| 902 | curX += colsLeft; |
| 903 | } |
| 904 | |
| 905 | // If we can advance even further, then just keep memsetting the block |
| 906 | if ((finalX - curX) >= kR11_EACBlockSz) { |
| 907 | SkASSERT((curX & 3) == 0); |
| 908 | |
| 909 | const int col = 0; |
| 910 | const int colsLeft = kR11_EACBlockSz; |
| 911 | |
| 912 | update_block_columns(c, col, colsLeft, curAlphaColumn); |
| 913 | |
| 914 | // While we can keep advancing, just keep writing the block. |
| 915 | uint64_t lastBlock = compress_block_vertical(c[0], c[1], c[2], c[3]); |
| 916 | while((finalX - curX) >= kR11_EACBlockSz) { |
| 917 | *outPtr = lastBlock; |
| 918 | ++outPtr; |
| 919 | curX += kR11_EACBlockSz; |
| 920 | } |
| 921 | } |
| 922 | |
| 923 | // If we haven't advanced within the block then do so. |
| 924 | if (curX < finalX) { |
| 925 | const int col = curX & 3; |
| 926 | const int colsLeft = finalX - curX; |
| 927 | |
| 928 | update_block_columns(c, col, colsLeft, curAlphaColumn); |
| 929 | |
| 930 | curX += colsLeft; |
| 931 | } |
| 932 | |
| 933 | SkASSERT(curX == finalX); |
| 934 | |
| 935 | // Figure out what the next advancement is... |
| 936 | for (int i = 0; i < kR11_EACBlockSz; ++i) { |
| 937 | if (nextX[i] == finalX) { |
| 938 | const int16_t run = *(fBufferedRuns[i].fRuns); |
| 939 | fBufferedRuns[i].fRuns += run; |
| 940 | fBufferedRuns[i].fAlphas += run; |
| 941 | curAlpha[i] = *(fBufferedRuns[i].fAlphas); |
| 942 | nextX[i] += *(fBufferedRuns[i].fRuns); |
| 943 | } |
| 944 | } |
| 945 | |
| 946 | finalX = 0xFFFFF; |
| 947 | for (int i = 0; i < kR11_EACBlockSz; ++i) { |
| 948 | finalX = SkMin32(nextX[i], finalX); |
| 949 | } |
| 950 | } |
| 951 | |
| 952 | // If we didn't land on a block boundary, output the block... |
| 953 | if ((curX & 3) > 1) { |
| 954 | *outPtr = compress_block_vertical(c[0], c[1], c[2], c[3]); |
| 955 | } |
| 956 | |
| 957 | fNextRun = 0; |
| 958 | } |
| 959 | |
| 960 | SkBlitter* CreateR11EACBlitter(int width, int height, void* outputBuffer) { |
| 961 | return new R11_EACBlitter(width, height, outputBuffer); |
| 962 | } |
| 963 | |
| 964 | } // namespace SkTextureCompressor |