blob: f0561a69c641b059975a7af1224a8ae965a37e35 [file] [log] [blame]
mtklein8317a182015-07-30 07:30:16 -07001/*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "SkOpts.h"
Mike Klein8caa5af2015-08-04 16:48:43 -04009
mtkleinb2a32702015-08-18 10:00:29 -070010#define SK_OPTS_NS sk_sse41
mtkleindce5ce42015-08-04 08:49:21 -070011#include "SkBlurImageFilter_opts.h"
mtkleinb4a7dc92016-03-23 06:29:12 -070012#include "SkBlitRow_opts.h"
herbcc49e592016-05-17 09:57:34 -070013#include "SkBlend_opts.h"
mtklein8317a182015-07-30 07:30:16 -070014
mtklein78e0aef2015-12-16 11:15:56 -080015#ifndef SK_SUPPORT_LEGACY_X86_BLITS
16
mtkleinb4a7dc92016-03-23 06:29:12 -070017namespace sk_sse41_new {
mtklein78e0aef2015-12-16 11:15:56 -080018
mtklein20473342016-01-25 09:26:54 -080019// An SSE register holding at most 64 bits of useful data in the low lanes.
20struct m64i {
21 __m128i v;
22 /*implicit*/ m64i(__m128i v) : v(v) {}
23 operator __m128i() const { return v; }
24};
mtklein78e0aef2015-12-16 11:15:56 -080025
mtklein20473342016-01-25 09:26:54 -080026// Load 4, 2, or 1 constant pixels or coverages (4x replicated).
27static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); }
28static m64i next2(uint32_t val) { return _mm_set1_epi32(val); }
29static m64i next1(uint32_t val) { return _mm_set1_epi32(val); }
mtklein78e0aef2015-12-16 11:15:56 -080030
mtklein20473342016-01-25 09:26:54 -080031static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); }
32static m64i next2(uint8_t val) { return _mm_set1_epi8(val); }
33static m64i next1(uint8_t val) { return _mm_set1_epi8(val); }
mtklein78e0aef2015-12-16 11:15:56 -080034
mtklein20473342016-01-25 09:26:54 -080035// Load 4, 2, or 1 variable pixels or coverages (4x replicated),
36// incrementing the pointer past what we read.
37static __m128i next4(const uint32_t*& ptr) {
38 auto r = _mm_loadu_si128((const __m128i*)ptr);
msarett0dfffbe2016-01-25 08:54:50 -080039 ptr += 4;
mtklein20473342016-01-25 09:26:54 -080040 return r;
msarett0dfffbe2016-01-25 08:54:50 -080041}
mtklein20473342016-01-25 09:26:54 -080042static m64i next2(const uint32_t*& ptr) {
43 auto r = _mm_loadl_epi64((const __m128i*)ptr);
mtklein78e0aef2015-12-16 11:15:56 -080044 ptr += 2;
45 return r;
46}
mtklein20473342016-01-25 09:26:54 -080047static m64i next1(const uint32_t*& ptr) {
48 auto r = _mm_cvtsi32_si128(*ptr);
49 ptr += 1;
50 return r;
51}
52
53// xyzw -> xxxx yyyy zzzz wwww
54static __m128i replicate_coverage(__m128i xyzw) {
marco.diigaf8ee67e2016-03-21 06:04:43 -070055 return _mm_shuffle_epi8(xyzw, _mm_setr_epi8(0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3));
mtklein20473342016-01-25 09:26:54 -080056}
57
58static __m128i next4(const uint8_t*& ptr) {
59 auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr));
mtklein78e0aef2015-12-16 11:15:56 -080060 ptr += 4;
mtklein20473342016-01-25 09:26:54 -080061 return r;
mtklein78e0aef2015-12-16 11:15:56 -080062}
mtklein20473342016-01-25 09:26:54 -080063static m64i next2(const uint8_t*& ptr) {
64 auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr));
65 ptr += 2;
66 return r;
mtklein78e0aef2015-12-16 11:15:56 -080067}
mtklein20473342016-01-25 09:26:54 -080068static m64i next1(const uint8_t*& ptr) {
69 auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr));
70 ptr += 1;
71 return r;
mtklein78e0aef2015-12-16 11:15:56 -080072}
73
74// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays.
75template <typename Dst, typename Src, typename Cov, typename Fn>
mtklein20473342016-01-25 09:26:54 -080076static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
mtklein78e0aef2015-12-16 11:15:56 -080077 // We don't want to muck with the callers' pointers, so we make them const and copy here.
78 Dst d = dst;
79 Src s = src;
80 Cov c = cov;
81
82 // Writing this as a single while-loop helps hoist loop invariants from fn.
83 while (n) {
84 if (n >= 4) {
mtklein20473342016-01-25 09:26:54 -080085 _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c)));
mtklein78e0aef2015-12-16 11:15:56 -080086 t += 4;
87 n -= 4;
88 continue;
89 }
90 if (n & 2) {
mtklein20473342016-01-25 09:26:54 -080091 _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c)));
mtklein78e0aef2015-12-16 11:15:56 -080092 t += 2;
93 }
94 if (n & 1) {
mtklein20473342016-01-25 09:26:54 -080095 *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c)));
mtklein78e0aef2015-12-16 11:15:56 -080096 }
97 return;
98 }
99}
100
mtklein20473342016-01-25 09:26:54 -0800101// packed
102// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
103// unpacked
104
105// Everything on the packed side of the squiggly line deals with densely packed 8-bit data,
106// e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage.
107//
108// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data,
109// e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for coverage,
110// where _ is a zero byte.
111//
112// Adapt<Fn> / adapt(fn) allow the two sides to interoperate,
113// by unpacking arguments, calling fn, then packing the results.
114//
115// This lets us write most of our code in terms of unpacked inputs (considerably simpler)
116// and all the packing and unpacking is handled automatically.
117
118template <typename Fn>
119struct Adapt {
120 Fn fn;
121
122 __m128i operator()(__m128i d, __m128i s, __m128i c) {
123 auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
124 auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); };
125 return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)),
126 fn(hi(d), hi(s), hi(c)));
127 }
128
129 m64i operator()(const m64i& d, const m64i& s, const m64i& c) {
130 auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
131 auto r = fn(lo(d), lo(s), lo(c));
132 return _mm_packus_epi16(r, r);
133 }
134};
135
136template <typename Fn>
137static Adapt<Fn> adapt(Fn&& fn) { return { fn }; }
138
139// These helpers all work exclusively with unpacked 8-bit values,
140// except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the reverse.
141
142// Divide by 255 with rounding.
143// (x+127)/255 == ((x+128)*257)>>16.
144// Sometimes we can be more efficient by breaking this into two parts.
145static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); }
146static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); }
147static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
148
149// (x*y+127)/255, a byte multiply.
150static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)); }
151
152// (255 * x).
153static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x); }
154
155// (255 - x).
156static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); }
157
158// ARGB argb -> AAAA aaaa
159static __m128i alphas(__m128i px) {
160 const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
161 const int _ = ~0;
162 return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_));
163}
mtklein78e0aef2015-12-16 11:15:56 -0800164
165// SrcOver, with a constant source and full coverage.
166static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) {
167 // We want to calculate s + (d * inv(alphas(s)) + 127)/255.
168 // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16.
169
170 // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16.
171 // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop.
mtklein20473342016-01-25 09:26:54 -0800172 __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()),
173 s_255_128 = div255_part1(mul255(s)),
mtklein78e0aef2015-12-16 11:15:56 -0800174 A = inv(alphas(s));
175
176 const uint8_t cov = 0xff;
mtklein20473342016-01-25 09:26:54 -0800177 loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) {
mtklein78e0aef2015-12-16 11:15:56 -0800178 return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A)));
mtklein20473342016-01-25 09:26:54 -0800179 }));
mtklein78e0aef2015-12-16 11:15:56 -0800180}
181
182// SrcOver, with a constant source and variable coverage.
183// If the source is opaque, SrcOver becomes Src.
184static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
185 const SkAlpha* cov, size_t covRB,
186 SkColor color, int w, int h) {
187 if (SkColorGetA(color) == 0xFF) {
188 const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color);
189 while (h --> 0) {
mtklein20473342016-01-25 09:26:54 -0800190 loop(w, dst, (const SkPMColor*)dst, src, cov,
191 adapt([](__m128i d, __m128i s, __m128i c) {
mtklein78e0aef2015-12-16 11:15:56 -0800192 // Src blend mode: a simple lerp from d to s by c.
193 // TODO: try a pmaddubsw version?
mtklein20473342016-01-25 09:26:54 -0800194 return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d),
195 _mm_mullo_epi16( c ,s)));
196 }));
mtklein78e0aef2015-12-16 11:15:56 -0800197 dst += dstRB / sizeof(*dst);
198 cov += covRB / sizeof(*cov);
199 }
200 } else {
201 const SkPMColor src = SkPreMultiplyColor(color);
202 while (h --> 0) {
mtklein20473342016-01-25 09:26:54 -0800203 loop(w, dst, (const SkPMColor*)dst, src, cov,
204 adapt([](__m128i d, __m128i s, __m128i c) {
mtklein78e0aef2015-12-16 11:15:56 -0800205 // SrcOver blend mode, with coverage folded into source alpha.
206 __m128i sc = scale(s,c),
207 AC = inv(alphas(sc));
208 return _mm_add_epi16(sc, scale(d,AC));
mtklein20473342016-01-25 09:26:54 -0800209 }));
mtklein78e0aef2015-12-16 11:15:56 -0800210 dst += dstRB / sizeof(*dst);
211 cov += covRB / sizeof(*cov);
212 }
213 }
214}
mtkleinb4a7dc92016-03-23 06:29:12 -0700215} // namespace sk_sse41_new
mtklein20473342016-01-25 09:26:54 -0800216
mtklein78e0aef2015-12-16 11:15:56 -0800217#endif
218
mtklein8317a182015-07-30 07:30:16 -0700219namespace SkOpts {
220 void Init_sse41() {
herbcc49e592016-05-17 09:57:34 -0700221 box_blur_xx = sk_sse41::box_blur_xx;
222 box_blur_xy = sk_sse41::box_blur_xy;
223 box_blur_yx = sk_sse41::box_blur_yx;
224 srcover_srgb_srgb = sk_sse41::srcover_srgb_srgb;
mtklein78e0aef2015-12-16 11:15:56 -0800225
226 #ifndef SK_SUPPORT_LEGACY_X86_BLITS
mtkleinb4a7dc92016-03-23 06:29:12 -0700227 blit_row_color32 = sk_sse41_new::blit_row_color32;
228 blit_mask_d32_a8 = sk_sse41_new::blit_mask_d32_a8;
mtklein78e0aef2015-12-16 11:15:56 -0800229 #endif
mtkleinb4a7dc92016-03-23 06:29:12 -0700230 blit_row_s32a_opaque = sk_sse41::blit_row_s32a_opaque;
mtklein8317a182015-07-30 07:30:16 -0700231 }
232}