mtklein | 7ba39cb | 2014-11-24 12:39:59 -0800 | [diff] [blame^] | 1 | #!/usr/bin/env python |
| 2 | |
| 3 | import sys |
| 4 | from scipy.stats import mannwhitneyu |
| 5 | |
| 6 | SIGNIFICANCE_THRESHOLD = 0.0001 |
| 7 | |
| 8 | a,b = {},{} |
| 9 | for (path, d) in [(sys.argv[1], a), (sys.argv[2], b)]: |
| 10 | for line in open(path): |
| 11 | try: |
| 12 | tokens = line.split() |
| 13 | samples = tokens[:-1] |
| 14 | label = tokens[-1] |
| 15 | d[label] = map(float, samples) |
| 16 | except: |
| 17 | pass |
| 18 | |
| 19 | common = set(a.keys()).intersection(b.keys()) |
| 20 | |
| 21 | ps = [] |
| 22 | for key in common: |
| 23 | _, p = mannwhitneyu(a[key], b[key]) # Non-parametric t-test. Doesn't assume normal dist. |
| 24 | am, bm = min(a[key]), min(b[key]) |
| 25 | ps.append((bm/am, p, key, am, bm)) |
| 26 | ps.sort(reverse=True) |
| 27 | |
| 28 | def humanize(ns): |
| 29 | for threshold, suffix in [(1e9, 's'), (1e6, 'ms'), (1e3, 'us'), (1e0, 'ns')]: |
| 30 | if ns > threshold: |
| 31 | return "%.3g%s" % (ns/threshold, suffix) |
| 32 | |
| 33 | maxlen = max(map(len, common)) |
| 34 | |
| 35 | # We print only signficant changes in benchmark timing distribution. |
| 36 | bonferroni = SIGNIFICANCE_THRESHOLD / len(ps) # Adjust for the fact we've run multiple tests. |
| 37 | for ratio, p, key, am, bm in ps: |
| 38 | if p < bonferroni: |
| 39 | print '%*s\t%6s -> %6s\t%.2gx' % (maxlen, key, humanize(am), humanize(bm), ratio) |