blob: fe489abadf660871a646f8f5029b21368cd6fb8a [file] [log] [blame]
mtklein7ba39cb2014-11-24 12:39:59 -08001#!/usr/bin/env python
2
3import sys
4from scipy.stats import mannwhitneyu
5
6SIGNIFICANCE_THRESHOLD = 0.0001
7
8a,b = {},{}
9for (path, d) in [(sys.argv[1], a), (sys.argv[2], b)]:
10 for line in open(path):
11 try:
12 tokens = line.split()
13 samples = tokens[:-1]
14 label = tokens[-1]
15 d[label] = map(float, samples)
16 except:
17 pass
18
19common = set(a.keys()).intersection(b.keys())
20
21ps = []
22for key in common:
23 _, p = mannwhitneyu(a[key], b[key]) # Non-parametric t-test. Doesn't assume normal dist.
24 am, bm = min(a[key]), min(b[key])
25 ps.append((bm/am, p, key, am, bm))
26ps.sort(reverse=True)
27
28def humanize(ns):
29 for threshold, suffix in [(1e9, 's'), (1e6, 'ms'), (1e3, 'us'), (1e0, 'ns')]:
30 if ns > threshold:
31 return "%.3g%s" % (ns/threshold, suffix)
32
33maxlen = max(map(len, common))
34
35# We print only signficant changes in benchmark timing distribution.
36bonferroni = SIGNIFICANCE_THRESHOLD / len(ps) # Adjust for the fact we've run multiple tests.
37for ratio, p, key, am, bm in ps:
38 if p < bonferroni:
39 print '%*s\t%6s -> %6s\t%.2gx' % (maxlen, key, humanize(am), humanize(bm), ratio)