blob: e9997e45dddd4a805dfe4006a57cd178192cc314 [file] [log] [blame]
caryclark@google.com07393ca2013-04-08 11:47:37 +00001/*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7#include "SkIntersections.h"
8#include "SkPathOpsCubic.h"
9#include "SkPathOpsLine.h"
10
11/*
12Find the interection of a line and cubic by solving for valid t values.
13
14Analogous to line-quadratic intersection, solve line-cubic intersection by
15representing the cubic as:
16 x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
17 y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
18and the line as:
19 y = i*x + j (if the line is more horizontal)
20or:
21 x = i*y + j (if the line is more vertical)
22
23Then using Mathematica, solve for the values of t where the cubic intersects the
24line:
25
26 (in) Resultant[
27 a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
28 e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
29 (out) -e + j +
30 3 e t - 3 f t -
31 3 e t^2 + 6 f t^2 - 3 g t^2 +
32 e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
33 i ( a -
34 3 a t + 3 b t +
35 3 a t^2 - 6 b t^2 + 3 c t^2 -
36 a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
37
38if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
39
40 (in) Resultant[
41 a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
42 e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
43 (out) a - j -
44 3 a t + 3 b t +
45 3 a t^2 - 6 b t^2 + 3 c t^2 -
46 a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
47 i ( e -
48 3 e t + 3 f t +
49 3 e t^2 - 6 f t^2 + 3 g t^2 -
50 e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
51
52Solving this with Mathematica produces an expression with hundreds of terms;
53instead, use Numeric Solutions recipe to solve the cubic.
54
55The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
56 A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) )
57 B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) )
58 C = 3*(-(-e + f ) + i*(-a + b ) )
59 D = (-( e ) + i*( a ) + j )
60
61The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
62 A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) )
63 B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) )
64 C = 3*( (-a + b ) - i*(-e + f ) )
65 D = ( ( a ) - i*( e ) - j )
66
67For horizontal lines:
68(in) Resultant[
69 a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
70 e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
71(out) e - j -
72 3 e t + 3 f t +
73 3 e t^2 - 6 f t^2 + 3 g t^2 -
74 e t^3 + 3 f t^3 - 3 g t^3 + h t^3
75 */
76
77class LineCubicIntersections {
78public:
caryclark@google.com4fdbb222013-07-23 15:27:41 +000079 enum PinTPoint {
80 kPointUninitialized,
81 kPointInitialized
82 };
caryclark@google.com07393ca2013-04-08 11:47:37 +000083
caryclark@google.com4fdbb222013-07-23 15:27:41 +000084 LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections* i)
85 : fCubic(c)
86 , fLine(l)
87 , fIntersections(i)
88 , fAllowNear(true) {
caryclark@google.com7eaa53d2013-10-02 14:49:34 +000089 i->setMax(3);
caryclark@google.com07393ca2013-04-08 11:47:37 +000090 }
caryclark@google.com07393ca2013-04-08 11:47:37 +000091
caryclark@google.com4fdbb222013-07-23 15:27:41 +000092 void allowNear(bool allow) {
93 fAllowNear = allow;
94 }
95
96 // see parallel routine in line quadratic intersections
97 int intersectRay(double roots[3]) {
98 double adj = fLine[1].fX - fLine[0].fX;
99 double opp = fLine[1].fY - fLine[0].fY;
100 SkDCubic r;
101 for (int n = 0; n < 4; ++n) {
102 r[n].fX = (fCubic[n].fY - fLine[0].fY) * adj - (fCubic[n].fX - fLine[0].fX) * opp;
103 }
104 double A, B, C, D;
105 SkDCubic::Coefficients(&r[0].fX, &A, &B, &C, &D);
106 return SkDCubic::RootsValidT(A, B, C, D, roots);
107 }
108
109 int intersect() {
110 addExactEndPoints();
caryclark@google.com570863f2013-09-16 15:55:01 +0000111 if (fAllowNear) {
112 addNearEndPoints();
113 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000114 double rootVals[3];
115 int roots = intersectRay(rootVals);
116 for (int index = 0; index < roots; ++index) {
117 double cubicT = rootVals[index];
118 double lineT = findLineT(cubicT);
119 SkDPoint pt;
120 if (pinTs(&cubicT, &lineT, &pt, kPointUninitialized)) {
121 #if ONE_OFF_DEBUG
122 SkDPoint cPt = fCubic.ptAtT(cubicT);
123 SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY,
124 cPt.fX, cPt.fY);
125 #endif
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000126 for (int inner = 0; inner < fIntersections->used(); ++inner) {
127 if (fIntersections->pt(inner) != pt) {
128 continue;
129 }
130 double existingCubicT = (*fIntersections)[0][inner];
131 if (cubicT == existingCubicT) {
132 goto skipInsert;
133 }
134 // check if midway on cubic is also same point. If so, discard this
135 double cubicMidT = (existingCubicT + cubicT) / 2;
136 SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT);
137 if (cubicMidPt.approximatelyEqual(pt)) {
138 goto skipInsert;
139 }
140 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000141 fIntersections->insert(cubicT, lineT, pt);
caryclark@google.com7eaa53d2013-10-02 14:49:34 +0000142 skipInsert:
143 ;
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000144 }
145 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000146 return fIntersections->used();
147 }
148
149 int horizontalIntersect(double axisIntercept, double roots[3]) {
150 double A, B, C, D;
151 SkDCubic::Coefficients(&fCubic[0].fY, &A, &B, &C, &D);
152 D -= axisIntercept;
153 return SkDCubic::RootsValidT(A, B, C, D, roots);
154 }
155
156 int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
157 addExactHorizontalEndPoints(left, right, axisIntercept);
caryclark@google.com570863f2013-09-16 15:55:01 +0000158 if (fAllowNear) {
159 addNearHorizontalEndPoints(left, right, axisIntercept);
160 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000161 double rootVals[3];
162 int roots = horizontalIntersect(axisIntercept, rootVals);
163 for (int index = 0; index < roots; ++index) {
164 double cubicT = rootVals[index];
165 SkDPoint pt = fCubic.ptAtT(cubicT);
166 double lineT = (pt.fX - left) / (right - left);
167 if (pinTs(&cubicT, &lineT, &pt, kPointInitialized)) {
168 fIntersections->insert(cubicT, lineT, pt);
169 }
170 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000171 if (flipped) {
172 fIntersections->flip();
173 }
174 return fIntersections->used();
175 }
176
177 int verticalIntersect(double axisIntercept, double roots[3]) {
178 double A, B, C, D;
179 SkDCubic::Coefficients(&fCubic[0].fX, &A, &B, &C, &D);
180 D -= axisIntercept;
181 return SkDCubic::RootsValidT(A, B, C, D, roots);
182 }
183
184 int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
185 addExactVerticalEndPoints(top, bottom, axisIntercept);
caryclark@google.com570863f2013-09-16 15:55:01 +0000186 if (fAllowNear) {
187 addNearVerticalEndPoints(top, bottom, axisIntercept);
188 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000189 double rootVals[3];
190 int roots = verticalIntersect(axisIntercept, rootVals);
191 for (int index = 0; index < roots; ++index) {
192 double cubicT = rootVals[index];
193 SkDPoint pt = fCubic.ptAtT(cubicT);
194 double lineT = (pt.fY - top) / (bottom - top);
195 if (pinTs(&cubicT, &lineT, &pt, kPointInitialized)) {
196 fIntersections->insert(cubicT, lineT, pt);
197 }
198 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000199 if (flipped) {
200 fIntersections->flip();
201 }
202 return fIntersections->used();
203 }
204
205 protected:
206
207 void addExactEndPoints() {
208 for (int cIndex = 0; cIndex < 4; cIndex += 3) {
209 double lineT = fLine.exactPoint(fCubic[cIndex]);
210 if (lineT < 0) {
211 continue;
212 }
213 double cubicT = (double) (cIndex >> 1);
214 fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000215 }
216 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000217
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000218 void addNearEndPoints() {
219 for (int cIndex = 0; cIndex < 4; cIndex += 3) {
220 double cubicT = (double) (cIndex >> 1);
221 if (fIntersections->hasT(cubicT)) {
222 continue;
223 }
224 double lineT = fLine.nearPoint(fCubic[cIndex]);
225 if (lineT < 0) {
226 continue;
227 }
228 fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000229 }
230 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000231
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000232 void addExactHorizontalEndPoints(double left, double right, double y) {
233 for (int cIndex = 0; cIndex < 4; cIndex += 3) {
234 double lineT = SkDLine::ExactPointH(fCubic[cIndex], left, right, y);
235 if (lineT < 0) {
236 continue;
237 }
238 double cubicT = (double) (cIndex >> 1);
239 fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000240 }
241 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000242
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000243 void addNearHorizontalEndPoints(double left, double right, double y) {
244 for (int cIndex = 0; cIndex < 4; cIndex += 3) {
245 double cubicT = (double) (cIndex >> 1);
246 if (fIntersections->hasT(cubicT)) {
247 continue;
248 }
249 double lineT = SkDLine::NearPointH(fCubic[cIndex], left, right, y);
250 if (lineT < 0) {
251 continue;
252 }
253 fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
254 }
255 // FIXME: see if line end is nearly on cubic
256 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000257
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000258 void addExactVerticalEndPoints(double top, double bottom, double x) {
259 for (int cIndex = 0; cIndex < 4; cIndex += 3) {
260 double lineT = SkDLine::ExactPointV(fCubic[cIndex], top, bottom, x);
261 if (lineT < 0) {
262 continue;
263 }
264 double cubicT = (double) (cIndex >> 1);
265 fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
caryclark@google.com07e97fc2013-07-08 17:17:02 +0000266 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000267 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000268
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000269 void addNearVerticalEndPoints(double top, double bottom, double x) {
270 for (int cIndex = 0; cIndex < 4; cIndex += 3) {
271 double cubicT = (double) (cIndex >> 1);
272 if (fIntersections->hasT(cubicT)) {
273 continue;
274 }
275 double lineT = SkDLine::NearPointV(fCubic[cIndex], top, bottom, x);
276 if (lineT < 0) {
277 continue;
278 }
279 fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000280 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000281 // FIXME: see if line end is nearly on cubic
caryclark@google.com07393ca2013-04-08 11:47:37 +0000282 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000283
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000284 double findLineT(double t) {
285 SkDPoint xy = fCubic.ptAtT(t);
286 double dx = fLine[1].fX - fLine[0].fX;
287 double dy = fLine[1].fY - fLine[0].fY;
288 if (fabs(dx) > fabs(dy)) {
289 return (xy.fX - fLine[0].fX) / dx;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000290 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000291 return (xy.fY - fLine[0].fY) / dy;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000292 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000293
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000294 bool pinTs(double* cubicT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
295 if (!approximately_one_or_less(*lineT)) {
296 return false;
caryclark@google.comfa2aeee2013-07-15 13:29:13 +0000297 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000298 if (!approximately_zero_or_more(*lineT)) {
299 return false;
caryclark@google.comfa2aeee2013-07-15 13:29:13 +0000300 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000301 double cT = *cubicT = SkPinT(*cubicT);
302 double lT = *lineT = SkPinT(*lineT);
303 if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && cT != 0 && cT != 1)) {
304 *pt = fLine.ptAtT(lT);
305 } else if (ptSet == kPointUninitialized) {
306 *pt = fCubic.ptAtT(cT);
caryclark@google.comfa2aeee2013-07-15 13:29:13 +0000307 }
caryclark@google.com570863f2013-09-16 15:55:01 +0000308 SkPoint gridPt = pt->asSkPoint();
309 if (gridPt == fLine[0].asSkPoint()) {
310 *lineT = 0;
311 } else if (gridPt == fLine[1].asSkPoint()) {
312 *lineT = 1;
313 }
314 if (gridPt == fCubic[0].asSkPoint() && approximately_equal(*cubicT, 0)) {
315 *cubicT = 0;
316 } else if (gridPt == fCubic[3].asSkPoint() && approximately_equal(*cubicT, 1)) {
317 *cubicT = 1;
318 }
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000319 return true;
caryclark@google.comfa2aeee2013-07-15 13:29:13 +0000320 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000321
322private:
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000323 const SkDCubic& fCubic;
324 const SkDLine& fLine;
325 SkIntersections* fIntersections;
326 bool fAllowNear;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000327};
328
329int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y,
330 bool flipped) {
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000331 SkDLine line = {{{ left, y }, { right, y }}};
332 LineCubicIntersections c(cubic, line, this);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000333 return c.horizontalIntersect(y, left, right, flipped);
334}
335
336int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x,
337 bool flipped) {
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000338 SkDLine line = {{{ x, top }, { x, bottom }}};
339 LineCubicIntersections c(cubic, line, this);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000340 return c.verticalIntersect(x, top, bottom, flipped);
341}
342
343int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) {
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000344 LineCubicIntersections c(cubic, line, this);
caryclark@google.comfa2aeee2013-07-15 13:29:13 +0000345 c.allowNear(fAllowNear);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000346 return c.intersect();
347}
348
349int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) {
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000350 LineCubicIntersections c(cubic, line, this);
caryclark@google.coma5e55922013-05-07 18:51:31 +0000351 fUsed = c.intersectRay(fT[0]);
352 for (int index = 0; index < fUsed; ++index) {
caryclark@google.com4fdbb222013-07-23 15:27:41 +0000353 fPt[index] = cubic.ptAtT(fT[0][index]);
caryclark@google.coma5e55922013-05-07 18:51:31 +0000354 }
355 return fUsed;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000356}