blob: d412b8cd9dfea373d6b6846a42a21407e47b4cd3 [file] [log] [blame]
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +00001/*
epoger@google.comec3ed6a2011-07-28 14:26:00 +00002 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +00006 */
7
8#include "GrPathUtils.h"
commit-bot@chromium.orgfd03d4a2013-07-17 21:39:42 +00009
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000010#include "GrPoint.h"
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +000011#include "SkGeometry.h"
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000012
bsalomon@google.com81712882012-11-01 17:12:34 +000013SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
bsalomon@google.comb9086a02012-11-01 18:02:54 +000014 const SkMatrix& viewM,
commit-bot@chromium.orgfd03d4a2013-07-17 21:39:42 +000015 const SkRect& pathBounds) {
bsalomon@google.com181e9bd2011-09-07 18:42:30 +000016 // In order to tesselate the path we get a bound on how much the matrix can
17 // stretch when mapping to screen coordinates.
bsalomon@google.com81712882012-11-01 17:12:34 +000018 SkScalar stretch = viewM.getMaxStretch();
19 SkScalar srcTol = devTol;
bsalomon@google.com181e9bd2011-09-07 18:42:30 +000020
21 if (stretch < 0) {
bsalomon@google.com38396322011-09-09 19:32:04 +000022 // take worst case mapRadius amoung four corners.
23 // (less than perfect)
24 for (int i = 0; i < 4; ++i) {
bsalomon@google.comb9086a02012-11-01 18:02:54 +000025 SkMatrix mat;
bsalomon@google.com38396322011-09-09 19:32:04 +000026 mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
27 (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
28 mat.postConcat(viewM);
29 stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
30 }
bsalomon@google.com181e9bd2011-09-07 18:42:30 +000031 }
bsalomon@google.com81712882012-11-01 17:12:34 +000032 srcTol = SkScalarDiv(srcTol, stretch);
bsalomon@google.com181e9bd2011-09-07 18:42:30 +000033 return srcTol;
34}
35
bsalomon@google.comb5b31682011-06-16 18:05:35 +000036static const int MAX_POINTS_PER_CURVE = 1 << 10;
bsalomon@google.com81712882012-11-01 17:12:34 +000037static const SkScalar gMinCurveTol = SkFloatToScalar(0.0001f);
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000038
39uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[],
bsalomon@google.com81712882012-11-01 17:12:34 +000040 SkScalar tol) {
tomhudson@google.comc10a8882011-06-28 15:19:32 +000041 if (tol < gMinCurveTol) {
tomhudson@google.comafec7ba2011-06-30 14:47:55 +000042 tol = gMinCurveTol;
tomhudson@google.comc10a8882011-06-28 15:19:32 +000043 }
tfarina@chromium.orgf6de4752013-08-17 00:02:59 +000044 SkASSERT(tol > 0);
tomhudson@google.comc10a8882011-06-28 15:19:32 +000045
bsalomon@google.com81712882012-11-01 17:12:34 +000046 SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
tomhudson@google.comc10a8882011-06-28 15:19:32 +000047 if (d <= tol) {
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000048 return 1;
49 } else {
50 // Each time we subdivide, d should be cut in 4. So we need to
51 // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
52 // points.
53 // 2^(log4(x)) = sqrt(x);
epoger@google.com2047f002011-05-17 17:36:59 +000054 int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
bsalomon@google.com61f3bde2011-06-17 20:06:49 +000055 int pow2 = GrNextPow2(temp);
56 // Because of NaNs & INFs we can wind up with a degenerate temp
57 // such that pow2 comes out negative. Also, our point generator
58 // will always output at least one pt.
59 if (pow2 < 1) {
60 pow2 = 1;
61 }
62 return GrMin(pow2, MAX_POINTS_PER_CURVE);
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000063 }
64}
65
66uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0,
tomhudson@google.comc10a8882011-06-28 15:19:32 +000067 const GrPoint& p1,
68 const GrPoint& p2,
bsalomon@google.com81712882012-11-01 17:12:34 +000069 SkScalar tolSqd,
tomhudson@google.comc10a8882011-06-28 15:19:32 +000070 GrPoint** points,
71 uint32_t pointsLeft) {
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000072 if (pointsLeft < 2 ||
73 (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
74 (*points)[0] = p2;
75 *points += 1;
76 return 1;
77 }
78
79 GrPoint q[] = {
bsalomon@google.com81712882012-11-01 17:12:34 +000080 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
81 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000082 };
bsalomon@google.com81712882012-11-01 17:12:34 +000083 GrPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000084
85 pointsLeft >>= 1;
86 uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
87 uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
88 return a + b;
89}
90
91uint32_t GrPathUtils::cubicPointCount(const GrPoint points[],
bsalomon@google.com81712882012-11-01 17:12:34 +000092 SkScalar tol) {
tomhudson@google.comc10a8882011-06-28 15:19:32 +000093 if (tol < gMinCurveTol) {
tomhudson@google.comafec7ba2011-06-30 14:47:55 +000094 tol = gMinCurveTol;
tomhudson@google.comc10a8882011-06-28 15:19:32 +000095 }
tfarina@chromium.orgf6de4752013-08-17 00:02:59 +000096 SkASSERT(tol > 0);
tomhudson@google.comc10a8882011-06-28 15:19:32 +000097
bsalomon@google.com81712882012-11-01 17:12:34 +000098 SkScalar d = GrMax(
tomhudson@google.comc10a8882011-06-28 15:19:32 +000099 points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
100 points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
epoger@google.com2047f002011-05-17 17:36:59 +0000101 d = SkScalarSqrt(d);
tomhudson@google.comc10a8882011-06-28 15:19:32 +0000102 if (d <= tol) {
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000103 return 1;
104 } else {
epoger@google.com2047f002011-05-17 17:36:59 +0000105 int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
bsalomon@google.com61f3bde2011-06-17 20:06:49 +0000106 int pow2 = GrNextPow2(temp);
107 // Because of NaNs & INFs we can wind up with a degenerate temp
108 // such that pow2 comes out negative. Also, our point generator
109 // will always output at least one pt.
110 if (pow2 < 1) {
111 pow2 = 1;
112 }
113 return GrMin(pow2, MAX_POINTS_PER_CURVE);
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000114 }
115}
116
117uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0,
tomhudson@google.comc10a8882011-06-28 15:19:32 +0000118 const GrPoint& p1,
119 const GrPoint& p2,
120 const GrPoint& p3,
bsalomon@google.com81712882012-11-01 17:12:34 +0000121 SkScalar tolSqd,
tomhudson@google.comc10a8882011-06-28 15:19:32 +0000122 GrPoint** points,
123 uint32_t pointsLeft) {
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000124 if (pointsLeft < 2 ||
125 (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
126 p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
127 (*points)[0] = p3;
128 *points += 1;
129 return 1;
130 }
131 GrPoint q[] = {
bsalomon@google.com81712882012-11-01 17:12:34 +0000132 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
133 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
134 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000135 };
136 GrPoint r[] = {
bsalomon@google.com81712882012-11-01 17:12:34 +0000137 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
138 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000139 };
bsalomon@google.com81712882012-11-01 17:12:34 +0000140 GrPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000141 pointsLeft >>= 1;
142 uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
143 uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
144 return a + b;
145}
146
bsalomon@google.com8d033a12012-04-27 15:52:53 +0000147int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
bsalomon@google.com81712882012-11-01 17:12:34 +0000148 SkScalar tol) {
tomhudson@google.comc10a8882011-06-28 15:19:32 +0000149 if (tol < gMinCurveTol) {
tomhudson@google.comafec7ba2011-06-30 14:47:55 +0000150 tol = gMinCurveTol;
tomhudson@google.comc10a8882011-06-28 15:19:32 +0000151 }
tfarina@chromium.orgf6de4752013-08-17 00:02:59 +0000152 SkASSERT(tol > 0);
tomhudson@google.comc10a8882011-06-28 15:19:32 +0000153
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000154 int pointCount = 0;
155 *subpaths = 1;
156
157 bool first = true;
158
senorblanco@chromium.org129b8e32011-06-15 17:52:09 +0000159 SkPath::Iter iter(path, false);
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000160 SkPath::Verb verb;
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000161
162 GrPoint pts[4];
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000163 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000164
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000165 switch (verb) {
166 case SkPath::kLine_Verb:
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000167 pointCount += 1;
168 break;
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000169 case SkPath::kQuad_Verb:
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000170 pointCount += quadraticPointCount(pts, tol);
171 break;
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000172 case SkPath::kCubic_Verb:
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000173 pointCount += cubicPointCount(pts, tol);
174 break;
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000175 case SkPath::kMove_Verb:
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000176 pointCount += 1;
177 if (!first) {
178 ++(*subpaths);
179 }
180 break;
181 default:
182 break;
183 }
184 first = false;
185 }
186 return pointCount;
187}
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000188
bsalomon@google.com19713172012-03-15 13:51:08 +0000189void GrPathUtils::QuadUVMatrix::set(const GrPoint qPts[3]) {
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000190 // can't make this static, no cons :(
191 SkMatrix UVpts;
bsalomon@google.com5e9bf822012-01-17 14:39:21 +0000192#ifndef SK_SCALAR_IS_FLOAT
193 GrCrash("Expected scalar is float.");
194#endif
bsalomon@google.com19713172012-03-15 13:51:08 +0000195 SkMatrix m;
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000196 // We want M such that M * xy_pt = uv_pt
197 // We know M * control_pts = [0 1/2 1]
198 // [0 0 1]
199 // [1 1 1]
200 // We invert the control pt matrix and post concat to both sides to get M.
bsalomon@google.com81712882012-11-01 17:12:34 +0000201 UVpts.setAll(0, SK_ScalarHalf, SK_Scalar1,
202 0, 0, SK_Scalar1,
203 SkScalarToPersp(SK_Scalar1),
204 SkScalarToPersp(SK_Scalar1),
205 SkScalarToPersp(SK_Scalar1));
bsalomon@google.com19713172012-03-15 13:51:08 +0000206 m.setAll(qPts[0].fX, qPts[1].fX, qPts[2].fX,
207 qPts[0].fY, qPts[1].fY, qPts[2].fY,
bsalomon@google.com81712882012-11-01 17:12:34 +0000208 SkScalarToPersp(SK_Scalar1),
209 SkScalarToPersp(SK_Scalar1),
210 SkScalarToPersp(SK_Scalar1));
bsalomon@google.com19713172012-03-15 13:51:08 +0000211 if (!m.invert(&m)) {
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000212 // The quad is degenerate. Hopefully this is rare. Find the pts that are
213 // farthest apart to compute a line (unless it is really a pt).
214 SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
215 int maxEdge = 0;
216 SkScalar d = qPts[1].distanceToSqd(qPts[2]);
217 if (d > maxD) {
218 maxD = d;
219 maxEdge = 1;
220 }
221 d = qPts[2].distanceToSqd(qPts[0]);
222 if (d > maxD) {
223 maxD = d;
224 maxEdge = 2;
225 }
226 // We could have a tolerance here, not sure if it would improve anything
227 if (maxD > 0) {
228 // Set the matrix to give (u = 0, v = distance_to_line)
bsalomon@google.com20e542e2012-02-15 18:49:41 +0000229 GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
230 // when looking from the point 0 down the line we want positive
231 // distances to be to the left. This matches the non-degenerate
232 // case.
233 lineVec.setOrthog(lineVec, GrPoint::kLeft_Side);
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000234 lineVec.dot(qPts[0]);
bsalomon@google.com19713172012-03-15 13:51:08 +0000235 // first row
236 fM[0] = 0;
237 fM[1] = 0;
238 fM[2] = 0;
239 // second row
240 fM[3] = lineVec.fX;
241 fM[4] = lineVec.fY;
242 fM[5] = -lineVec.dot(qPts[maxEdge]);
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000243 } else {
244 // It's a point. It should cover zero area. Just set the matrix such
245 // that (u, v) will always be far away from the quad.
bsalomon@google.com19713172012-03-15 13:51:08 +0000246 fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
247 fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000248 }
249 } else {
bsalomon@google.com19713172012-03-15 13:51:08 +0000250 m.postConcat(UVpts);
251
252 // The matrix should not have perspective.
humper@google.com0e515772013-01-07 19:54:40 +0000253 SkDEBUGCODE(static const SkScalar gTOL = SkFloatToScalar(1.f / 100.f));
tfarina@chromium.orgf6de4752013-08-17 00:02:59 +0000254 SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL);
255 SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL);
bsalomon@google.com19713172012-03-15 13:51:08 +0000256
257 // It may not be normalized to have 1.0 in the bottom right
258 float m33 = m.get(SkMatrix::kMPersp2);
259 if (1.f != m33) {
260 m33 = 1.f / m33;
261 fM[0] = m33 * m.get(SkMatrix::kMScaleX);
262 fM[1] = m33 * m.get(SkMatrix::kMSkewX);
263 fM[2] = m33 * m.get(SkMatrix::kMTransX);
264 fM[3] = m33 * m.get(SkMatrix::kMSkewY);
265 fM[4] = m33 * m.get(SkMatrix::kMScaleY);
266 fM[5] = m33 * m.get(SkMatrix::kMTransY);
267 } else {
268 fM[0] = m.get(SkMatrix::kMScaleX);
269 fM[1] = m.get(SkMatrix::kMSkewX);
270 fM[2] = m.get(SkMatrix::kMTransX);
271 fM[3] = m.get(SkMatrix::kMSkewY);
272 fM[4] = m.get(SkMatrix::kMScaleY);
273 fM[5] = m.get(SkMatrix::kMTransY);
274 }
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000275 }
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000276}
277
commit-bot@chromium.org13948402013-08-20 17:55:43 +0000278////////////////////////////////////////////////////////////////////////////////
279
280// k = (y2 - y0, x0 - x2, (x2 - x0)*y0 - (y2 - y0)*x0 )
281// l = (2*w * (y1 - y0), 2*w * (x0 - x1), 2*w * (x1*y0 - x0*y1))
282// m = (2*w * (y2 - y1), 2*w * (x1 - x2), 2*w * (x2*y1 - x1*y2))
283void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]) {
284 const SkScalar w2 = 2.f * weight;
285 klm[0] = p[2].fY - p[0].fY;
286 klm[1] = p[0].fX - p[2].fX;
287 klm[2] = (p[2].fX - p[0].fX) * p[0].fY - (p[2].fY - p[0].fY) * p[0].fX;
288
289 klm[3] = w2 * (p[1].fY - p[0].fY);
290 klm[4] = w2 * (p[0].fX - p[1].fX);
291 klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
292
293 klm[6] = w2 * (p[2].fY - p[1].fY);
294 klm[7] = w2 * (p[1].fX - p[2].fX);
295 klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
296
297 // scale the max absolute value of coeffs to 10
298 SkScalar scale = 0.f;
299 for (int i = 0; i < 9; ++i) {
300 scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
301 }
302 SkASSERT(scale > 0.f);
303 scale = 10.f / scale;
304 for (int i = 0; i < 9; ++i) {
305 klm[i] *= scale;
306 }
307}
308
309////////////////////////////////////////////////////////////////////////////////
310
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000311namespace {
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000312
313// a is the first control point of the cubic.
314// ab is the vector from a to the second control point.
315// dc is the vector from the fourth to the third control point.
316// d is the fourth control point.
317// p is the candidate quadratic control point.
318// this assumes that the cubic doesn't inflect and is simple
319bool is_point_within_cubic_tangents(const SkPoint& a,
320 const SkVector& ab,
321 const SkVector& dc,
322 const SkPoint& d,
323 SkPath::Direction dir,
324 const SkPoint p) {
325 SkVector ap = p - a;
326 SkScalar apXab = ap.cross(ab);
327 if (SkPath::kCW_Direction == dir) {
328 if (apXab > 0) {
329 return false;
330 }
331 } else {
tfarina@chromium.orgf6de4752013-08-17 00:02:59 +0000332 SkASSERT(SkPath::kCCW_Direction == dir);
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000333 if (apXab < 0) {
334 return false;
335 }
336 }
337
338 SkVector dp = p - d;
339 SkScalar dpXdc = dp.cross(dc);
340 if (SkPath::kCW_Direction == dir) {
341 if (dpXdc < 0) {
342 return false;
343 }
344 } else {
tfarina@chromium.orgf6de4752013-08-17 00:02:59 +0000345 SkASSERT(SkPath::kCCW_Direction == dir);
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000346 if (dpXdc > 0) {
347 return false;
348 }
349 }
350 return true;
351}
352
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000353void convert_noninflect_cubic_to_quads(const SkPoint p[4],
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000354 SkScalar toleranceSqd,
355 bool constrainWithinTangents,
356 SkPath::Direction dir,
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000357 SkTArray<SkPoint, true>* quads,
358 int sublevel = 0) {
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000359
360 // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
361 // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
362
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000363 SkVector ab = p[1] - p[0];
364 SkVector dc = p[2] - p[3];
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000365
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000366 if (ab.isZero()) {
367 if (dc.isZero()) {
368 SkPoint* degQuad = quads->push_back_n(3);
369 degQuad[0] = p[0];
370 degQuad[1] = p[0];
371 degQuad[2] = p[3];
372 return;
373 }
374 ab = p[2] - p[0];
375 }
376 if (dc.isZero()) {
377 dc = p[1] - p[3];
378 }
379
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000380 // When the ab and cd tangents are nearly parallel with vector from d to a the constraint that
381 // the quad point falls between the tangents becomes hard to enforce and we are likely to hit
382 // the max subdivision count. However, in this case the cubic is approaching a line and the
rmistry@google.comd6176b02012-08-23 18:14:13 +0000383 // accuracy of the quad point isn't so important. We check if the two middle cubic control
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000384 // points are very close to the baseline vector. If so then we just pick quadratic points on the
385 // control polygon.
386
387 if (constrainWithinTangents) {
388 SkVector da = p[0] - p[3];
389 SkScalar invDALengthSqd = da.lengthSqd();
390 if (invDALengthSqd > SK_ScalarNearlyZero) {
391 invDALengthSqd = SkScalarInvert(invDALengthSqd);
392 // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
393 // same goed for point c using vector cd.
394 SkScalar detABSqd = ab.cross(da);
395 detABSqd = SkScalarSquare(detABSqd);
396 SkScalar detDCSqd = dc.cross(da);
397 detDCSqd = SkScalarSquare(detDCSqd);
398 if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd &&
399 SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) {
400 SkPoint b = p[0] + ab;
401 SkPoint c = p[3] + dc;
402 SkPoint mid = b + c;
403 mid.scale(SK_ScalarHalf);
404 // Insert two quadratics to cover the case when ab points away from d and/or dc
405 // points away from a.
406 if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
407 SkPoint* qpts = quads->push_back_n(6);
408 qpts[0] = p[0];
409 qpts[1] = b;
410 qpts[2] = mid;
411 qpts[3] = mid;
412 qpts[4] = c;
413 qpts[5] = p[3];
414 } else {
415 SkPoint* qpts = quads->push_back_n(3);
416 qpts[0] = p[0];
417 qpts[1] = mid;
418 qpts[2] = p[3];
419 }
420 return;
421 }
422 }
423 }
424
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000425 static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000426 static const int kMaxSubdivs = 10;
427
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000428 ab.scale(kLengthScale);
429 dc.scale(kLengthScale);
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000430
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000431 // e0 and e1 are extrapolations along vectors ab and dc.
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000432 SkVector c0 = p[0];
433 c0 += ab;
434 SkVector c1 = p[3];
435 c1 += dc;
436
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000437 SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000438 if (dSqd < toleranceSqd) {
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000439 SkPoint cAvg = c0;
440 cAvg += c1;
441 cAvg.scale(SK_ScalarHalf);
442
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000443 bool subdivide = false;
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000444
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000445 if (constrainWithinTangents &&
446 !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000447 // choose a new cAvg that is the intersection of the two tangent lines.
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000448 ab.setOrthog(ab);
449 SkScalar z0 = -ab.dot(p[0]);
450 dc.setOrthog(dc);
451 SkScalar z1 = -dc.dot(p[3]);
452 cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY);
453 cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1);
454 SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX);
455 z = SkScalarInvert(z);
456 cAvg.fX *= z;
457 cAvg.fY *= z;
458 if (sublevel <= kMaxSubdivs) {
459 SkScalar d0Sqd = c0.distanceToSqd(cAvg);
460 SkScalar d1Sqd = c1.distanceToSqd(cAvg);
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000461 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
462 // the distances and tolerance can't be negative.
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000463 // (d0 + d1)^2 > toleranceSqd
464 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
465 SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd));
466 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
467 }
468 }
469 if (!subdivide) {
470 SkPoint* pts = quads->push_back_n(3);
471 pts[0] = p[0];
472 pts[1] = cAvg;
473 pts[2] = p[3];
474 return;
475 }
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000476 }
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000477 SkPoint choppedPts[7];
478 SkChopCubicAtHalf(p, choppedPts);
479 convert_noninflect_cubic_to_quads(choppedPts + 0,
480 toleranceSqd,
481 constrainWithinTangents,
482 dir,
483 quads,
484 sublevel + 1);
485 convert_noninflect_cubic_to_quads(choppedPts + 3,
486 toleranceSqd,
487 constrainWithinTangents,
488 dir,
489 quads,
490 sublevel + 1);
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000491}
492}
493
494void GrPathUtils::convertCubicToQuads(const GrPoint p[4],
495 SkScalar tolScale,
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000496 bool constrainWithinTangents,
497 SkPath::Direction dir,
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000498 SkTArray<SkPoint, true>* quads) {
499 SkPoint chopped[10];
500 int count = SkChopCubicAtInflections(p, chopped);
501
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000502 // base tolerance is 1 pixel.
503 static const SkScalar kTolerance = SK_Scalar1;
504 const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance));
505
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000506 for (int i = 0; i < count; ++i) {
507 SkPoint* cubic = chopped + 3*i;
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000508 convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads);
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000509 }
510
511}
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000512
513////////////////////////////////////////////////////////////////////////////////
514
515enum CubicType {
516 kSerpentine_CubicType,
517 kCusp_CubicType,
518 kLoop_CubicType,
519 kQuadratic_CubicType,
520 kLine_CubicType,
521 kPoint_CubicType
522};
523
524// discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
525// Classification:
526// discr(I) > 0 Serpentine
527// discr(I) = 0 Cusp
528// discr(I) < 0 Loop
529// d0 = d1 = 0 Quadratic
530// d0 = d1 = d2 = 0 Line
531// p0 = p1 = p2 = p3 Point
532static CubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
533 if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
534 return kPoint_CubicType;
535 }
536 const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
537 if (discr > SK_ScalarNearlyZero) {
538 return kSerpentine_CubicType;
539 } else if (discr < -SK_ScalarNearlyZero) {
540 return kLoop_CubicType;
541 } else {
542 if (0.f == d[0] && 0.f == d[1]) {
543 return (0.f == d[2] ? kLine_CubicType : kQuadratic_CubicType);
544 } else {
545 return kCusp_CubicType;
546 }
547 }
548}
549
550// Assumes the third component of points is 1.
551// Calcs p0 . (p1 x p2)
552static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
553 const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
554 const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
555 const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
556 return (xComp + yComp + wComp);
557}
558
559// Solves linear system to extract klm
560// P.K = k (similarly for l, m)
561// Where P is matrix of control points
562// K is coefficients for the line K
563// k is vector of values of K evaluated at the control points
564// Solving for K, thus K = P^(-1) . k
565static void calc_cubic_klm(const SkPoint p[4], const SkScalar controlK[4],
566 const SkScalar controlL[4], const SkScalar controlM[4],
567 SkScalar k[3], SkScalar l[3], SkScalar m[3]) {
568 SkMatrix matrix;
569 matrix.setAll(p[0].fX, p[0].fY, 1.f,
570 p[1].fX, p[1].fY, 1.f,
571 p[2].fX, p[2].fY, 1.f);
572 SkMatrix inverse;
573 if (matrix.invert(&inverse)) {
574 inverse.mapHomogeneousPoints(k, controlK, 1);
575 inverse.mapHomogeneousPoints(l, controlL, 1);
576 inverse.mapHomogeneousPoints(m, controlM, 1);
577 }
578
579}
580
581static void set_serp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
582 SkScalar tempSqrt = SkScalarSqrt(9.f * d[1] * d[1] - 12.f * d[0] * d[2]);
583 SkScalar ls = 3.f * d[1] - tempSqrt;
584 SkScalar lt = 6.f * d[0];
585 SkScalar ms = 3.f * d[1] + tempSqrt;
586 SkScalar mt = 6.f * d[0];
587
588 k[0] = ls * ms;
589 k[1] = (3.f * ls * ms - ls * mt - lt * ms) / 3.f;
590 k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
591 k[3] = (lt - ls) * (mt - ms);
592
593 l[0] = ls * ls * ls;
594 const SkScalar lt_ls = lt - ls;
595 l[1] = ls * ls * lt_ls * -1.f;
596 l[2] = lt_ls * lt_ls * ls;
597 l[3] = -1.f * lt_ls * lt_ls * lt_ls;
598
599 m[0] = ms * ms * ms;
600 const SkScalar mt_ms = mt - ms;
601 m[1] = ms * ms * mt_ms * -1.f;
602 m[2] = mt_ms * mt_ms * ms;
603 m[3] = -1.f * mt_ms * mt_ms * mt_ms;
604
605 // If d0 < 0 we need to flip the orientation of our curve
606 // This is done by negating the k and l values
607 // We want negative distance values to be on the inside
608 if ( d[0] > 0) {
609 for (int i = 0; i < 4; ++i) {
610 k[i] = -k[i];
611 l[i] = -l[i];
612 }
613 }
614}
615
616static void set_loop_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
617 SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
618 SkScalar ls = d[1] - tempSqrt;
619 SkScalar lt = 2.f * d[0];
620 SkScalar ms = d[1] + tempSqrt;
621 SkScalar mt = 2.f * d[0];
622
623 k[0] = ls * ms;
624 k[1] = (3.f * ls*ms - ls * mt - lt * ms) / 3.f;
625 k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
626 k[3] = (lt - ls) * (mt - ms);
627
628 l[0] = ls * ls * ms;
629 l[1] = (ls * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/-3.f;
630 l[2] = ((lt - ls) * (ls * (2.f * mt - 3.f * ms) + lt * ms))/3.f;
631 l[3] = -1.f * (lt - ls) * (lt - ls) * (mt - ms);
632
633 m[0] = ls * ms * ms;
634 m[1] = (ms * (ls * (2.f * mt - 3.f * ms) + lt * ms))/-3.f;
635 m[2] = ((mt - ms) * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/3.f;
636 m[3] = -1.f * (lt - ls) * (mt - ms) * (mt - ms);
637
638
639 // If (d0 < 0 && sign(k1) > 0) || (d0 > 0 && sign(k1) < 0),
640 // we need to flip the orientation of our curve.
641 // This is done by negating the k and l values
commit-bot@chromium.org07e1c3f2013-08-22 20:41:15 +0000642 if ( (d[0] < 0 && k[1] > 0) || (d[0] > 0 && k[1] < 0)) {
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000643 for (int i = 0; i < 4; ++i) {
644 k[i] = -k[i];
645 l[i] = -l[i];
646 }
647 }
648}
649
650static void set_cusp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
651 const SkScalar ls = d[2];
652 const SkScalar lt = 3.f * d[1];
653
654 k[0] = ls;
655 k[1] = ls - lt / 3.f;
656 k[2] = ls - 2.f * lt / 3.f;
657 k[3] = ls - lt;
658
659 l[0] = ls * ls * ls;
660 const SkScalar ls_lt = ls - lt;
661 l[1] = ls * ls * ls_lt;
662 l[2] = ls_lt * ls_lt * ls;
663 l[3] = ls_lt * ls_lt * ls_lt;
664
665 m[0] = 1.f;
666 m[1] = 1.f;
667 m[2] = 1.f;
668 m[3] = 1.f;
669}
670
671// For the case when a cubic is actually a quadratic
672// M =
673// 0 0 0
674// 1/3 0 1/3
675// 2/3 1/3 2/3
676// 1 1 1
677static void set_quadratic_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
678 k[0] = 0.f;
679 k[1] = 1.f/3.f;
680 k[2] = 2.f/3.f;
681 k[3] = 1.f;
682
683 l[0] = 0.f;
684 l[1] = 0.f;
685 l[2] = 1.f/3.f;
686 l[3] = 1.f;
687
688 m[0] = 0.f;
689 m[1] = 1.f/3.f;
690 m[2] = 2.f/3.f;
691 m[3] = 1.f;
692
693 // If d2 < 0 we need to flip the orientation of our curve
694 // This is done by negating the k and l values
695 if ( d[2] > 0) {
696 for (int i = 0; i < 4; ++i) {
697 k[i] = -k[i];
698 l[i] = -l[i];
699 }
700 }
701}
702
703// Calc coefficients of I(s,t) where roots of I are inflection points of curve
704// I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
705// d0 = a1 - 2*a2+3*a3
706// d1 = -a2 + 3*a3
707// d2 = 3*a3
708// a1 = p0 . (p3 x p2)
709// a2 = p1 . (p0 x p3)
710// a3 = p2 . (p1 x p0)
711// Places the values of d1, d2, d3 in array d passed in
712static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
713 SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
714 SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
715 SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
716
717 // need to scale a's or values in later calculations will grow to high
718 SkScalar max = SkScalarAbs(a1);
719 max = SkMaxScalar(max, SkScalarAbs(a2));
720 max = SkMaxScalar(max, SkScalarAbs(a3));
721 max = 1.f/max;
722 a1 = a1 * max;
723 a2 = a2 * max;
724 a3 = a3 * max;
725
726 d[2] = 3.f * a3;
727 d[1] = d[2] - a2;
728 d[0] = d[1] - a2 + a1;
729}
730
731int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkScalar klm[9],
732 SkScalar klm_rev[3]) {
733 // Variable to store the two parametric values at the loop double point
734 SkScalar smallS = 0.f;
735 SkScalar largeS = 0.f;
736
737 SkScalar d[3];
738 calc_cubic_inflection_func(src, d);
739
740 CubicType cType = classify_cubic(src, d);
741
742 int chop_count = 0;
743 if (kLoop_CubicType == cType) {
744 SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
745 SkScalar ls = d[1] - tempSqrt;
746 SkScalar lt = 2.f * d[0];
747 SkScalar ms = d[1] + tempSqrt;
748 SkScalar mt = 2.f * d[0];
749 ls = ls / lt;
750 ms = ms / mt;
751 // need to have t values sorted since this is what is expected by SkChopCubicAt
752 if (ls <= ms) {
753 smallS = ls;
754 largeS = ms;
755 } else {
756 smallS = ms;
757 largeS = ls;
758 }
759
760 SkScalar chop_ts[2];
761 if (smallS > 0.f && smallS < 1.f) {
762 chop_ts[chop_count++] = smallS;
763 }
764 if (largeS > 0.f && largeS < 1.f) {
765 chop_ts[chop_count++] = largeS;
766 }
767 if(dst) {
768 SkChopCubicAt(src, dst, chop_ts, chop_count);
769 }
770 } else {
771 if (dst) {
772 memcpy(dst, src, sizeof(SkPoint) * 4);
773 }
774 }
775
776 if (klm && klm_rev) {
777 // Set klm_rev to to match the sub_section of cubic that needs to have its orientation
778 // flipped. This will always be the section that is the "loop"
779 if (2 == chop_count) {
780 klm_rev[0] = 1.f;
781 klm_rev[1] = -1.f;
782 klm_rev[2] = 1.f;
783 } else if (1 == chop_count) {
784 if (smallS < 0.f) {
785 klm_rev[0] = -1.f;
786 klm_rev[1] = 1.f;
787 } else {
788 klm_rev[0] = 1.f;
789 klm_rev[1] = -1.f;
790 }
791 } else {
792 if (smallS < 0.f && largeS > 1.f) {
793 klm_rev[0] = -1.f;
794 } else {
795 klm_rev[0] = 1.f;
796 }
797 }
798 SkScalar controlK[4];
799 SkScalar controlL[4];
800 SkScalar controlM[4];
801
802 if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
803 set_serp_klm(d, controlK, controlL, controlM);
804 } else if (kLoop_CubicType == cType) {
805 set_loop_klm(d, controlK, controlL, controlM);
806 } else if (kCusp_CubicType == cType) {
807 SkASSERT(0.f == d[0]);
808 set_cusp_klm(d, controlK, controlL, controlM);
809 } else if (kQuadratic_CubicType == cType) {
810 set_quadratic_klm(d, controlK, controlL, controlM);
811 }
812
813 calc_cubic_klm(src, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
814 }
815 return chop_count + 1;
816}
817
818void GrPathUtils::getCubicKLM(const SkPoint p[4], SkScalar klm[9]) {
819 SkScalar d[3];
820 calc_cubic_inflection_func(p, d);
821
822 CubicType cType = classify_cubic(p, d);
823
824 SkScalar controlK[4];
825 SkScalar controlL[4];
826 SkScalar controlM[4];
827
828 if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
829 set_serp_klm(d, controlK, controlL, controlM);
830 } else if (kLoop_CubicType == cType) {
831 set_loop_klm(d, controlK, controlL, controlM);
832 } else if (kCusp_CubicType == cType) {
833 SkASSERT(0.f == d[0]);
834 set_cusp_klm(d, controlK, controlL, controlM);
835 } else if (kQuadratic_CubicType == cType) {
836 set_quadratic_klm(d, controlK, controlL, controlM);
837 }
838
839 calc_cubic_klm(p, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
840}