epoger@google.com | ec3ed6a | 2011-07-28 14:26:00 +0000 | [diff] [blame] | 1 | |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 2 | /* |
epoger@google.com | ec3ed6a | 2011-07-28 14:26:00 +0000 | [diff] [blame] | 3 | * Copyright 2009 The Android Open Source Project |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 4 | * |
epoger@google.com | ec3ed6a | 2011-07-28 14:26:00 +0000 | [diff] [blame] | 5 | * Use of this source code is governed by a BSD-style license that can be |
| 6 | * found in the LICENSE file. |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 7 | */ |
| 8 | |
| 9 | |
epoger@google.com | ec3ed6a | 2011-07-28 14:26:00 +0000 | [diff] [blame] | 10 | |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 11 | //////////////////////////////////////////////////////////////////////////////// |
| 12 | // This is an implementation of the triangulation algorithm described by Alain |
| 13 | // Fournier and Delfin Montuno, in "Triangulating Simple Polygons and Equivalent |
| 14 | // Problems", in the ACM Transactions on Graphics, vol. 3, no. 2, April 1984, |
| 15 | // pp. 153-174. |
| 16 | // |
| 17 | // No new vertices are created in the triangulation: triangles are constructed |
| 18 | // only from the points in the original polygon, so there is no possibility for |
| 19 | // cracks to develop from finite precision arithmetic. |
| 20 | //////////////////////////////////////////////////////////////////////////////// |
| 21 | |
| 22 | // TODO: |
| 23 | // - RemoveDegenerateTrapezoids() was added to make the code robust, but it |
| 24 | // unfortunately introduces T-vertices. Make it robust without T-vertices. |
| 25 | // - It should be easy enough to detect whether the outer contour is right- or |
| 26 | // left-handed by looking at the top vertex, which is available in the |
| 27 | // pre-sort during trapezoidization. Use this information in angleIsConvex() |
| 28 | // to allowed either handedness outer contour. In either case, though, holes |
| 29 | // need to have the opposite orientation. |
| 30 | // - SkTHeapSort was broken, so I wrote a bubble sort so that I could make other |
| 31 | // things work. Use SkQSort() instead. |
| 32 | // - The ActiveTrapezoid array does a linear search which is O(n) inefficient. |
| 33 | // Use SkSearch to implement O(log n) binary search and insertion sort. |
| 34 | // - There is no need to use SkTDArray for everything. Use SkAutoTMalloc for |
| 35 | // everything else. |
| 36 | |
caryclark@google.com | 803eceb | 2012-06-06 12:09:34 +0000 | [diff] [blame^] | 37 | #include "SkConcaveToTriangles.h" |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 38 | #include "SkTDArray.h" |
| 39 | #include "SkGeometry.h" |
| 40 | #include "SkTSort.h" |
| 41 | |
| 42 | // This is used to prevent runaway code bugs, and can probably be removed after |
| 43 | // the code has been proven robust. |
| 44 | #define kMaxCount 1000 |
| 45 | |
| 46 | #define DEBUG |
| 47 | #ifdef DEBUG |
| 48 | //------------------------------------------------------------------------------ |
| 49 | // Debugging support |
| 50 | //------------------------------------------------------------------------------ |
| 51 | |
| 52 | #include <cstdio> |
| 53 | #include <stdarg.h> |
| 54 | |
| 55 | static int gDebugLevel = 0; // This enables debug reporting. |
| 56 | |
| 57 | static void DebugPrintf(const char *format, ...) { |
| 58 | if (gDebugLevel > 0) { |
| 59 | va_list ap; |
| 60 | va_start(ap, format); |
| 61 | vprintf(format, ap); |
| 62 | va_end(ap); |
| 63 | } |
| 64 | } |
| 65 | |
| 66 | static void FailureMessage(const char *format, ...) { |
| 67 | if (1) { |
| 68 | printf("FAILURE: "); |
| 69 | va_list ap; |
| 70 | va_start(ap, format); |
| 71 | vprintf(format, ap); |
| 72 | va_end(ap); |
| 73 | } |
| 74 | } |
| 75 | #else // !DEBUG |
| 76 | inline void DebugPrintf(const char *format, ...) {} |
| 77 | inline void FailureMessage(const char *format, ...) {} |
| 78 | #endif // DEBUG |
| 79 | |
| 80 | |
| 81 | // Forward declaration. |
| 82 | class Vertex; |
| 83 | |
| 84 | |
| 85 | //------------------------------------------------------------------------------ |
| 86 | // The Trapezoid (actually, up to two of them) is embedded into a Vertex, whose |
| 87 | // point() provides the top of the Trapezoid, whereas the bottom, and the left |
| 88 | // and right edges, are stored in the Trapezoid. The edges are represented by |
| 89 | // their tail point; the head is the successive point modulo the number of |
| 90 | // points in the polygon. Only the Y coordinate of the top and bottom are |
| 91 | // relevant. |
| 92 | //------------------------------------------------------------------------------ |
| 93 | class Trapezoid { |
| 94 | public: |
| 95 | const Vertex* left() const { return fLeft; } |
| 96 | const Vertex* right() const { return fRight; } |
| 97 | const Vertex* bottom() const { return fBottom; } |
| 98 | Vertex* left() { return fLeft; } |
| 99 | Vertex* right() { return fRight; } |
| 100 | Vertex* bottom() { return fBottom; } |
| 101 | void setLeft(Vertex *left) { fLeft = left; } |
| 102 | void setRight(Vertex *right) { fRight = right; } |
| 103 | void setBottom(Vertex *bottom) { fBottom = bottom; } |
| 104 | void nullify() { setBottom(NULL); } |
| 105 | |
| 106 | bool operator<(Trapezoid &t1) { return compare(t1) < 0; } |
| 107 | bool operator>(Trapezoid &t1) { return compare(t1) > 0; } |
| 108 | |
| 109 | private: |
| 110 | Vertex *fLeft, *fRight, *fBottom; |
| 111 | |
| 112 | // These return a number that is less than, equal to, or greater than zero |
| 113 | // depending on whether the trapezoid or point is to the left, on, or to the |
| 114 | // right. |
| 115 | SkScalar compare(const Trapezoid &t1) const; |
| 116 | SkScalar compare(const SkPoint &p) const; |
| 117 | }; |
| 118 | |
| 119 | |
| 120 | //------------------------------------------------------------------------------ |
| 121 | // The ActiveTrapezoids are a sorted list containing the currently active |
| 122 | // trapezoids, i.e. those that have the top, left, and right, but still need the |
| 123 | // bottom. This could use some optimization, to reduce search time from O(n) to |
| 124 | // O(log n). |
| 125 | //------------------------------------------------------------------------------ |
| 126 | class ActiveTrapezoids { |
| 127 | public: |
| 128 | ActiveTrapezoids() { fTrapezoids.setCount(0); } |
| 129 | |
| 130 | size_t count() const { return fTrapezoids.count(); } |
| 131 | |
| 132 | // Select an unused trapezoid from the Vertex vt, initialize it with the |
| 133 | // left and right edges, and insert it into the sorted list. |
| 134 | bool insertNewTrapezoid(Vertex *vt, Vertex *left, Vertex *right); |
| 135 | |
| 136 | // Remove the specified Trapezoids from the active list. |
| 137 | void remove(Trapezoid *t); |
| 138 | |
| 139 | // Determine whether the given point lies within any active trapezoid, and |
| 140 | // return a pointer to that Trapezoid. |
| 141 | bool withinActiveTrapezoid(const SkPoint &pt, Trapezoid **tp); |
| 142 | |
| 143 | // Find an active trapezoid that contains the given edge. |
| 144 | Trapezoid* getTrapezoidWithEdge(const Vertex *edge); |
| 145 | |
| 146 | private: |
| 147 | // Insert the specified Trapezoid into the sorted list. |
| 148 | void insert(Trapezoid *t); |
| 149 | |
| 150 | // The sorted list of active trapezoids. This is O(n), and would benefit |
| 151 | // a 2-3 tree o achieve O(log n). |
| 152 | SkTDArray<Trapezoid*> fTrapezoids; // Fournier suggests a 2-3 tree instead. |
| 153 | }; |
| 154 | |
| 155 | |
| 156 | //------------------------------------------------------------------------------ |
| 157 | // The Vertex is used to communicate information between the various phases of |
| 158 | // triangulation. |
| 159 | //------------------------------------------------------------------------------ |
| 160 | class Vertex { |
| 161 | public: |
| 162 | enum VertexType { MONOTONE, CONVEX, CONCAVE }; |
| 163 | |
| 164 | Trapezoid fTrap0; |
| 165 | Trapezoid fTrap1; |
| 166 | |
| 167 | const SkPoint &point() const { return fPoint; } |
| 168 | void setPoint(const SkPoint &point) { fPoint = point; } |
| 169 | |
| 170 | // The next and previous vertices around the polygon. |
| 171 | Vertex *next() { return fNext; } |
| 172 | Vertex *prev() { return fPrev; } |
| 173 | const Vertex *next() const { return fNext; } |
| 174 | const Vertex *prev() const { return fPrev; } |
| 175 | void setNext(Vertex *next) { fNext = next; } |
| 176 | void setPrev(Vertex *prev) { fPrev = prev; } |
| 177 | |
| 178 | void setDone(bool done) { fDone = done; } |
| 179 | bool done() const { return fDone; } |
| 180 | |
| 181 | // Trapezoid accessors return non-null for any complete trapezoids. |
| 182 | void trapezoids(Trapezoid **trap0, Trapezoid **trap1) { |
| 183 | *trap0 = (fTrap0.bottom() != NULL) ? &fTrap0 : NULL; |
| 184 | *trap1 = (fTrap1.bottom() != NULL) ? &fTrap1 : NULL; |
| 185 | } |
| 186 | |
| 187 | // Eliminate a trapezoid. |
| 188 | void nullifyTrapezoid() { |
| 189 | if (fTrap1.bottom() != NULL) { |
| 190 | DebugPrintf("Unexpected non-null second trapezoid.\n"); |
| 191 | fTrap1.nullify(); |
| 192 | return; |
| 193 | } |
| 194 | fTrap0.nullify(); |
| 195 | } |
| 196 | |
| 197 | // Determine whether the edge specified by this Vertex shares the given top |
| 198 | // and bottom. |
| 199 | bool shareEdge(Vertex *top, Vertex *bottom); |
| 200 | |
| 201 | // Determines whether the angle specified by { prev, this, next } is convex. |
| 202 | // Note that collinear is considered to be convex. |
| 203 | bool angleIsConvex(); |
| 204 | |
| 205 | // Remove this Vertex from the { prev, next } linked list. |
| 206 | void delink() { |
| 207 | Vertex *p = prev(), |
| 208 | *n = next(); |
| 209 | p->setNext(n); |
| 210 | n->setPrev(p); |
| 211 | } |
| 212 | |
| 213 | // Return a number that is less than, equal to, or greater than zero |
| 214 | // depending on whether the point is to the left, on, or to the right of the |
| 215 | // edge that has this Vertex as a base. |
| 216 | SkScalar compare(const SkPoint &pt) const; |
| 217 | |
| 218 | // Classify the vertex, and return its sorted edges. |
| 219 | VertexType classify(Vertex **e0, Vertex **e1); |
| 220 | |
| 221 | // This helps determine unimonotonicity. |
| 222 | Vertex *diagonal(); |
| 223 | |
| 224 | private: |
| 225 | SkPoint fPoint; |
| 226 | Vertex *fNext; |
| 227 | Vertex *fPrev; |
| 228 | bool fDone; |
| 229 | }; |
| 230 | |
| 231 | |
| 232 | bool Vertex::angleIsConvex() { |
| 233 | SkPoint vPrev = prev()->point() - point(), |
| 234 | vNext = next()->point() - point(); |
| 235 | // TODO(turk): There might be overflow in fixed-point. |
| 236 | return SkPoint::CrossProduct(vNext, vPrev) >= 0; |
| 237 | } |
| 238 | |
| 239 | |
| 240 | bool Vertex::shareEdge(Vertex *top, Vertex *bottom) { |
| 241 | return (((this == top) && (this->next() == bottom)) || |
| 242 | ((this == bottom) && (this->next() == top))); |
| 243 | } |
| 244 | |
| 245 | |
| 246 | SkScalar Vertex::compare(const SkPoint &pt) const { |
| 247 | SkPoint ve = next()->point() - point(), |
| 248 | vp = pt - point(); |
| 249 | SkScalar d; |
| 250 | if (ve.fY == 0) { |
| 251 | // Return twice the distance to the center of the horizontal edge. |
| 252 | d = ve.fX + pt.fX - next()->point().fX; |
| 253 | } else { |
| 254 | // Return the distance to the edge, scaled by the edge length. |
| 255 | d = SkPoint::CrossProduct(ve, vp); |
| 256 | if (ve.fY > 0) d = -d; |
| 257 | } |
| 258 | return d; |
| 259 | } |
| 260 | |
| 261 | |
| 262 | SkScalar Trapezoid::compare(const SkPoint &pt) const { |
| 263 | SkScalar d = left()->compare(pt); |
| 264 | if (d <= 0) |
| 265 | return d; // Left of the left edge. |
| 266 | d = right()->compare(pt); |
| 267 | if (d >= 0) |
| 268 | return d; // Right of the right edge. |
| 269 | return 0; // Somewhere between the left and the right edges. |
| 270 | } |
| 271 | |
| 272 | |
| 273 | |
| 274 | SkScalar Trapezoid::compare(const Trapezoid &t1) const { |
| 275 | #if 1 |
| 276 | SkScalar d = left()->compare(t1.left()->point()); |
| 277 | if (d == 0) |
| 278 | d = right()->compare(t1.right()->point()); |
| 279 | return d; |
| 280 | #else |
| 281 | SkScalar dl = left()->compare( t1.left()->point()), |
| 282 | dr = right()->compare(t1.right()->point()); |
| 283 | if (dl < 0 && dr < 0) |
| 284 | return dr; |
| 285 | if (dl > 0 && dr > 0) |
| 286 | return dl; |
| 287 | return 0; |
| 288 | #endif |
| 289 | } |
| 290 | |
| 291 | |
| 292 | Trapezoid* ActiveTrapezoids::getTrapezoidWithEdge(const Vertex *edge) { |
| 293 | DebugPrintf("Entering getTrapezoidWithEdge(): looking through %d\n", |
| 294 | fTrapezoids.count()); |
| 295 | DebugPrintf("trying to find %p: ", edge); |
| 296 | Trapezoid **tp; |
| 297 | for (tp = fTrapezoids.begin(); tp < fTrapezoids.end(); ++tp) { |
| 298 | SkASSERT(tp != NULL); |
| 299 | SkASSERT(*tp != NULL); |
| 300 | DebugPrintf("%p and %p, ", (**tp).left(), (**tp).right()); |
| 301 | if ((**tp).left() == edge || (**tp).right() == edge) { |
| 302 | DebugPrintf("\ngetTrapezoidWithEdge found the trapezoid\n"); |
| 303 | return *tp; |
| 304 | } |
| 305 | } |
| 306 | DebugPrintf("getTrapezoidWithEdge found no trapezoid\n"); |
| 307 | return NULL; |
| 308 | } |
| 309 | |
| 310 | |
| 311 | bool ActiveTrapezoids::insertNewTrapezoid(Vertex *vt, |
| 312 | Vertex *left, |
| 313 | Vertex *right) { |
| 314 | DebugPrintf("Inserting a trapezoid..."); |
| 315 | if (vt->fTrap0.left() == NULL && vt->fTrap0.right() == NULL) { |
| 316 | vt->fTrap0.setLeft(left); |
| 317 | vt->fTrap0.setRight(right); |
| 318 | insert(&vt->fTrap0); |
| 319 | } else if (vt->fTrap1.left() == NULL && vt->fTrap1.right() == NULL) { |
| 320 | DebugPrintf("a second one..."); |
| 321 | vt->fTrap1.setLeft(left); |
| 322 | vt->fTrap1.setRight(right); |
| 323 | if (vt->fTrap1 < vt->fTrap0) { // Keep trapezoids sorted. |
| 324 | remove(&vt->fTrap0); |
| 325 | Trapezoid t = vt->fTrap0; |
| 326 | vt->fTrap0 = vt->fTrap1; |
| 327 | vt->fTrap1 = t; |
| 328 | insert(&vt->fTrap0); |
| 329 | } |
| 330 | insert(&vt->fTrap1); |
| 331 | } else { |
| 332 | FailureMessage("More than 2 trapezoids requested for a vertex\n"); |
| 333 | return false; |
| 334 | } |
| 335 | DebugPrintf(" done. %d incomplete trapezoids\n", fTrapezoids.count()); |
| 336 | return true; |
| 337 | } |
| 338 | |
| 339 | |
| 340 | void ActiveTrapezoids::insert(Trapezoid *t) { |
| 341 | Trapezoid **tp; |
| 342 | for (tp = fTrapezoids.begin(); tp < fTrapezoids.end(); ++tp) |
| 343 | if (**tp > *t) |
| 344 | break; |
| 345 | fTrapezoids.insert(tp - fTrapezoids.begin(), 1, &t); |
| 346 | // SHOULD VERIFY THAT ALL TRAPEZOIDS ARE PROPERLY SORTED |
| 347 | } |
| 348 | |
| 349 | |
| 350 | void ActiveTrapezoids::remove(Trapezoid *t) { |
| 351 | DebugPrintf("Removing a trapezoid..."); |
| 352 | for (Trapezoid **tp = fTrapezoids.begin(); tp < fTrapezoids.end(); ++tp) { |
| 353 | if (*tp == t) { |
| 354 | fTrapezoids.remove(tp - fTrapezoids.begin()); |
| 355 | DebugPrintf(" done.\n"); |
| 356 | return; |
| 357 | } |
| 358 | } |
| 359 | DebugPrintf(" Arghh! Panic!\n"); |
| 360 | SkASSERT(t == 0); // Cannot find t in active trapezoid list. |
| 361 | } |
| 362 | |
| 363 | |
| 364 | bool ActiveTrapezoids::withinActiveTrapezoid(const SkPoint &pt, |
| 365 | Trapezoid **trap) { |
| 366 | DebugPrintf("Entering withinActiveTrapezoid()\n"); |
| 367 | // This is where a good search data structure would be helpful. |
| 368 | Trapezoid **t; |
| 369 | for (t = fTrapezoids.begin(); t < fTrapezoids.end(); ++t) { |
| 370 | if ((**t).left()->compare(pt) <= 0) { |
| 371 | // The point is to the left of the left edge of this trapezoid. |
| 372 | DebugPrintf("withinActiveTrapezoid: Before a trapezoid\n"); |
| 373 | *trap = *t; // Return the place where a new trapezoid would go. |
| 374 | // We have a bug with the sorting -- look through everything. |
| 375 | continue; |
| 376 | // return false; // Outside all trapezoids, since they are sorted. |
| 377 | } |
| 378 | // The point is to the right of the left edge of this trapezoid. |
| 379 | |
| 380 | if ((**t).right()->compare(pt) < 0) { |
| 381 | // The point is to the left of the right edge. |
| 382 | DebugPrintf("withinActiveTrapezoid: Within an Active Trapezoid\n"); |
| 383 | *trap = *t; |
| 384 | return true; |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | // The point is to the right of all trapezoids. |
| 389 | DebugPrintf("withinActiveTrapezoid: After all trapezoids\n"); |
| 390 | *trap = NULL; |
| 391 | return false; |
| 392 | } |
| 393 | |
| 394 | |
| 395 | Vertex* Vertex::diagonal() { |
| 396 | Vertex *diag = NULL; |
| 397 | if (fTrap0.bottom() != NULL) { |
| 398 | if (!fTrap0.left() ->shareEdge(this, fTrap0.bottom()) && |
| 399 | !fTrap0.right()->shareEdge(this, fTrap0.bottom()) |
| 400 | ) { |
| 401 | diag = fTrap0.bottom(); |
| 402 | fTrap0 = fTrap1; |
| 403 | fTrap1.nullify(); |
| 404 | } else if (fTrap1.bottom() != NULL && |
| 405 | !fTrap1.left() ->shareEdge(this, fTrap1.bottom()) && |
| 406 | !fTrap1.right()->shareEdge(this, fTrap1.bottom()) |
| 407 | ) { |
| 408 | diag = fTrap1.bottom(); |
| 409 | fTrap1.nullify(); |
| 410 | } |
| 411 | } |
| 412 | return diag; |
| 413 | } |
| 414 | |
| 415 | |
| 416 | // We use this to sort the edges vertically for a scan-conversion type of |
| 417 | // operation. |
| 418 | class VertexPtr { |
| 419 | public: |
| 420 | Vertex *vt; |
| 421 | }; |
| 422 | |
| 423 | |
caryclark@google.com | 803eceb | 2012-06-06 12:09:34 +0000 | [diff] [blame^] | 424 | static bool operator<(VertexPtr &v0, VertexPtr &v1) { |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 425 | // DebugPrintf("< %p %p\n", &v0, &v1); |
| 426 | if (v0.vt->point().fY < v1.vt->point().fY) return true; |
| 427 | if (v0.vt->point().fY > v1.vt->point().fY) return false; |
| 428 | if (v0.vt->point().fX < v1.vt->point().fX) return true; |
| 429 | else return false; |
| 430 | } |
| 431 | |
| 432 | |
caryclark@google.com | 803eceb | 2012-06-06 12:09:34 +0000 | [diff] [blame^] | 433 | #if 0 // UNUSED |
| 434 | static bool operator>(VertexPtr &v0, VertexPtr &v1) { |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 435 | // DebugPrintf("> %p %p\n", &v0, &v1); |
| 436 | if (v0.vt->point().fY > v1.vt->point().fY) return true; |
| 437 | if (v0.vt->point().fY < v1.vt->point().fY) return false; |
| 438 | if (v0.vt->point().fX > v1.vt->point().fX) return true; |
| 439 | else return false; |
| 440 | } |
caryclark@google.com | 803eceb | 2012-06-06 12:09:34 +0000 | [diff] [blame^] | 441 | #endif |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 442 | |
| 443 | static void SetVertexPoints(size_t numPts, const SkPoint *pt, Vertex *vt) { |
| 444 | for (; numPts-- != 0; ++pt, ++vt) |
| 445 | vt->setPoint(*pt); |
| 446 | } |
| 447 | |
| 448 | |
| 449 | static void InitializeVertexTopology(size_t numPts, Vertex *v1) { |
| 450 | Vertex *v0 = v1 + numPts - 1, *v_1 = v0 - 1; |
| 451 | for (; numPts-- != 0; v_1 = v0, v0 = v1++) { |
| 452 | v0->setPrev(v_1); |
| 453 | v0->setNext(v1); |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | Vertex::VertexType Vertex::classify(Vertex **e0, Vertex **e1) { |
| 458 | VertexType type; |
| 459 | SkPoint vPrev, vNext; |
| 460 | vPrev.fX = prev()->point().fX - point().fX; |
| 461 | vPrev.fY = prev()->point().fY - point().fY; |
| 462 | vNext.fX = next()->point().fX - point().fX; |
| 463 | vNext.fY = next()->point().fY - point().fY; |
| 464 | |
| 465 | // This can probably be simplified, but there are enough potential bugs, |
| 466 | // we will leave it expanded until all cases are tested appropriately. |
| 467 | if (vPrev.fY < 0) { |
| 468 | if (vNext.fY > 0) { |
| 469 | // Prev comes from above, Next goes below. |
| 470 | type = MONOTONE; |
| 471 | *e0 = prev(); |
| 472 | *e1 = this; |
| 473 | } else if (vNext.fY < 0) { |
| 474 | // The are both above: sort so that e0 is on the left. |
| 475 | type = CONCAVE; |
| 476 | if (SkPoint::CrossProduct(vPrev, vNext) <= 0) { |
| 477 | *e0 = this; |
| 478 | *e1 = prev(); |
| 479 | } else { |
| 480 | *e0 = prev(); |
| 481 | *e1 = this; |
| 482 | } |
| 483 | } else { |
| 484 | DebugPrintf("### py < 0, ny = 0\n"); |
| 485 | if (vNext.fX < 0) { |
| 486 | type = CONCAVE; |
| 487 | *e0 = this; // flat to the left |
| 488 | *e1 = prev(); // concave on the right |
| 489 | } else { |
| 490 | type = CONCAVE; |
| 491 | *e0 = prev(); // concave to the left |
| 492 | *e1 = this; // flat to the right |
| 493 | } |
| 494 | } |
| 495 | } else if (vPrev.fY > 0) { |
| 496 | if (vNext.fY < 0) { |
| 497 | // Next comes from above, Prev goes below. |
| 498 | type = MONOTONE; |
| 499 | *e0 = this; |
| 500 | *e1 = prev(); |
| 501 | } else if (vNext.fY > 0) { |
| 502 | // They are both below: sort so that e0 is on the left. |
| 503 | type = CONVEX; |
| 504 | if (SkPoint::CrossProduct(vPrev, vNext) <= 0) { |
| 505 | *e0 = prev(); |
| 506 | *e1 = this; |
| 507 | } else { |
| 508 | *e0 = this; |
| 509 | *e1 = prev(); |
| 510 | } |
| 511 | } else { |
| 512 | DebugPrintf("### py > 0, ny = 0\n"); |
| 513 | if (vNext.fX < 0) { |
| 514 | type = MONOTONE; |
| 515 | *e0 = this; // flat to the left |
| 516 | *e1 = prev(); // convex on the right - try monotone first |
| 517 | } else { |
| 518 | type = MONOTONE; |
| 519 | *e0 = prev(); // convex to the left - try monotone first |
| 520 | *e1 = this; // flat to the right |
| 521 | } |
| 522 | } |
| 523 | } else { // vPrev.fY == 0 |
| 524 | if (vNext.fY < 0) { |
| 525 | DebugPrintf("### py = 0, ny < 0\n"); |
| 526 | if (vPrev.fX < 0) { |
| 527 | type = CONCAVE; |
| 528 | *e0 = prev(); // flat to the left |
| 529 | *e1 = this; // concave on the right |
| 530 | } else { |
| 531 | type = CONCAVE; |
| 532 | *e0 = this; // concave on the left - defer |
| 533 | *e1 = prev(); // flat to the right |
| 534 | } |
| 535 | } else if (vNext.fY > 0) { |
| 536 | DebugPrintf("### py = 0, ny > 0\n"); |
| 537 | if (vPrev.fX < 0) { |
| 538 | type = MONOTONE; |
| 539 | *e0 = prev(); // flat to the left |
| 540 | *e1 = this; // convex on the right - try monotone first |
| 541 | } else { |
| 542 | type = MONOTONE; |
| 543 | *e0 = this; // convex to the left - try monotone first |
| 544 | *e1 = prev(); // flat to the right |
| 545 | } |
| 546 | } else { |
| 547 | DebugPrintf("### py = 0, ny = 0\n"); |
| 548 | // First we try concave, then monotone, then convex. |
| 549 | if (vPrev.fX <= vNext.fX) { |
| 550 | type = CONCAVE; |
| 551 | *e0 = prev(); // flat to the left |
| 552 | *e1 = this; // flat to the right |
| 553 | } else { |
| 554 | type = CONCAVE; |
| 555 | *e0 = this; // flat to the left |
| 556 | *e1 = prev(); // flat to the right |
| 557 | } |
| 558 | } |
| 559 | } |
| 560 | return type; |
| 561 | } |
| 562 | |
| 563 | |
| 564 | #ifdef DEBUG |
| 565 | static const char* GetVertexTypeString(Vertex::VertexType type) { |
| 566 | const char *typeStr = NULL; |
| 567 | switch (type) { |
| 568 | case Vertex::MONOTONE: |
| 569 | typeStr = "MONOTONE"; |
| 570 | break; |
| 571 | case Vertex::CONCAVE: |
| 572 | typeStr = "CONCAVE"; |
| 573 | break; |
| 574 | case Vertex::CONVEX: |
| 575 | typeStr = "CONVEX"; |
| 576 | break; |
| 577 | } |
| 578 | return typeStr; |
| 579 | } |
| 580 | |
| 581 | |
| 582 | static void PrintVertices(size_t numPts, Vertex *vt) { |
| 583 | DebugPrintf("\nVertices:\n"); |
reed@android.com | 04225dc | 2009-03-20 04:59:37 +0000 | [diff] [blame] | 584 | for (size_t i = 0; i < numPts; i++) { |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 585 | Vertex *e0, *e1; |
| 586 | Vertex::VertexType type = vt[i].classify(&e0, &e1); |
| 587 | DebugPrintf("%2d: (%.7g, %.7g), prev(%d), next(%d), " |
| 588 | "type(%s), left(%d), right(%d)", |
| 589 | i, vt[i].point().fX, vt[i].point().fY, |
| 590 | vt[i].prev() - vt, vt[i].next() - vt, |
| 591 | GetVertexTypeString(type), e0 - vt, e1 - vt); |
| 592 | Trapezoid *trap[2]; |
| 593 | vt[i].trapezoids(trap, trap+1); |
reed@android.com | 04225dc | 2009-03-20 04:59:37 +0000 | [diff] [blame] | 594 | for (int j = 0; j < 2; ++j) { |
| 595 | if (trap[j] != NULL) { |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 596 | DebugPrintf(", trap(L=%d, R=%d, B=%d)", |
reed@android.com | 04225dc | 2009-03-20 04:59:37 +0000 | [diff] [blame] | 597 | trap[j]->left() - vt, |
| 598 | trap[j]->right() - vt, |
| 599 | trap[j]->bottom() - vt); |
| 600 | } |
| 601 | } |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 602 | DebugPrintf("\n"); |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | |
| 607 | static void PrintVertexPtrs(size_t numPts, VertexPtr *vp, Vertex *vtBase) { |
| 608 | DebugPrintf("\nSorted Vertices:\n"); |
reed@android.com | 04225dc | 2009-03-20 04:59:37 +0000 | [diff] [blame] | 609 | for (size_t i = 0; i < numPts; i++) { |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 610 | Vertex *e0, *e1; |
| 611 | Vertex *vt = vp[i].vt; |
| 612 | Vertex::VertexType type = vt->classify(&e0, &e1); |
| 613 | DebugPrintf("%2d: %2d: (%.7g, %.7g), prev(%d), next(%d), " |
| 614 | "type(%s), left(%d), right(%d)", |
| 615 | i, vt - vtBase, vt->point().fX, vt->point().fY, |
| 616 | vt->prev() - vtBase, vt->next() - vtBase, |
| 617 | GetVertexTypeString(type), e0 - vtBase, e1 - vtBase); |
| 618 | Trapezoid *trap[2]; |
| 619 | vt->trapezoids(trap, trap+1); |
reed@android.com | 04225dc | 2009-03-20 04:59:37 +0000 | [diff] [blame] | 620 | for (int j = 0; j < 2; ++j) { |
| 621 | if (trap[j] != NULL) { |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 622 | DebugPrintf(", trap(L=%d, R=%d, B=%d)", |
reed@android.com | 04225dc | 2009-03-20 04:59:37 +0000 | [diff] [blame] | 623 | trap[j]->left() - vtBase, |
| 624 | trap[j]->right() - vtBase, |
| 625 | trap[j]->bottom() - vtBase); |
| 626 | } |
| 627 | } |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 628 | DebugPrintf("\n"); |
| 629 | } |
| 630 | } |
| 631 | #else // !DEBUG |
| 632 | inline void PrintVertices(size_t numPts, Vertex *vt) {} |
| 633 | inline void PrintVertexPtrs(size_t numPts, VertexPtr *vp, Vertex *vtBase) {} |
| 634 | #endif // !DEBUG |
| 635 | |
| 636 | |
| 637 | // SkTHeapSort is broken, so we use a bubble sort in the meantime. |
| 638 | template <typename T> |
| 639 | void BubbleSort(T *array, size_t count) { |
| 640 | bool sorted; |
| 641 | size_t count_1 = count - 1; |
| 642 | do { |
| 643 | sorted = true; |
reed@android.com | 04225dc | 2009-03-20 04:59:37 +0000 | [diff] [blame] | 644 | for (size_t i = 0; i < count_1; ++i) { |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 645 | if (array[i + 1] < array[i]) { |
| 646 | T t = array[i]; |
| 647 | array[i] = array[i + 1]; |
| 648 | array[i + 1] = t; |
| 649 | sorted = false; |
| 650 | } |
| 651 | } |
| 652 | } while (!sorted); |
| 653 | } |
| 654 | |
| 655 | |
| 656 | // Remove zero-height trapezoids. |
| 657 | static void RemoveDegenerateTrapezoids(size_t numVt, Vertex *vt) { |
| 658 | for (; numVt-- != 0; vt++) { |
| 659 | Trapezoid *traps[2]; |
| 660 | vt->trapezoids(traps, traps+1); |
| 661 | if (traps[1] != NULL && |
| 662 | vt->point().fY >= traps[1]->bottom()->point().fY) { |
| 663 | traps[1]->nullify(); |
| 664 | traps[1] = NULL; |
| 665 | } |
| 666 | if (traps[0] != NULL && |
| 667 | vt->point().fY >= traps[0]->bottom()->point().fY) { |
| 668 | if (traps[1] != NULL) { |
| 669 | *traps[0] = *traps[1]; |
| 670 | traps[1]->nullify(); |
| 671 | } else { |
| 672 | traps[0]->nullify(); |
| 673 | } |
| 674 | } |
| 675 | } |
| 676 | } |
| 677 | |
| 678 | |
| 679 | // Enhance the polygon with trapezoids. |
caryclark@google.com | 803eceb | 2012-06-06 12:09:34 +0000 | [diff] [blame^] | 680 | static bool ConvertPointsToVertices(size_t numPts, const SkPoint *pts, Vertex *vta) { |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 681 | DebugPrintf("ConvertPointsToVertices()\n"); |
| 682 | |
| 683 | // Clear everything. |
| 684 | DebugPrintf("Zeroing vertices\n"); |
reed@android.com | 4516f47 | 2009-06-29 16:25:36 +0000 | [diff] [blame] | 685 | sk_bzero(vta, numPts * sizeof(*vta)); |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 686 | |
| 687 | // Initialize vertices. |
| 688 | DebugPrintf("Initializing vertices\n"); |
| 689 | SetVertexPoints(numPts, pts, vta); |
| 690 | InitializeVertexTopology(numPts, vta); |
| 691 | |
| 692 | PrintVertices(numPts, vta); |
| 693 | |
| 694 | SkTDArray<VertexPtr> vtptr; |
| 695 | vtptr.setCount(numPts); |
| 696 | for (int i = numPts; i-- != 0;) |
| 697 | vtptr[i].vt = vta + i; |
| 698 | PrintVertexPtrs(vtptr.count(), vtptr.begin(), vta); |
| 699 | DebugPrintf("Sorting vertrap ptr array [%d] %p %p\n", vtptr.count(), |
| 700 | &vtptr[0], &vtptr[vtptr.count() - 1] |
| 701 | ); |
| 702 | // SkTHeapSort(vtptr.begin(), vtptr.count()); |
| 703 | BubbleSort(vtptr.begin(), vtptr.count()); |
| 704 | DebugPrintf("Done sorting\n"); |
| 705 | PrintVertexPtrs(vtptr.count(), vtptr.begin(), vta); |
| 706 | |
| 707 | DebugPrintf("Traversing sorted vertrap ptrs\n"); |
| 708 | ActiveTrapezoids incompleteTrapezoids; |
| 709 | for (VertexPtr *vtpp = vtptr.begin(); vtpp < vtptr.end(); ++vtpp) { |
| 710 | DebugPrintf("%d: sorted vertrap %d\n", |
| 711 | vtpp - vtptr.begin(), vtpp->vt - vta); |
| 712 | Vertex *vt = vtpp->vt; |
| 713 | Vertex *e0, *e1; |
| 714 | Trapezoid *t; |
| 715 | switch (vt->classify(&e0, &e1)) { |
| 716 | case Vertex::MONOTONE: |
| 717 | monotone: |
| 718 | DebugPrintf("MONOTONE %d %d\n", e0 - vta, e1 - vta); |
| 719 | // We should find one edge. |
| 720 | t = incompleteTrapezoids.getTrapezoidWithEdge(e0); |
| 721 | if (t == NULL) { // One of the edges is flat. |
| 722 | DebugPrintf("Monotone: cannot find a trapezoid with e0: " |
| 723 | "trying convex\n"); |
| 724 | goto convex; |
| 725 | } |
| 726 | t->setBottom(vt); // This trapezoid is now complete. |
| 727 | incompleteTrapezoids.remove(t); |
| 728 | |
| 729 | if (e0 == t->left()) // Replace the left edge. |
| 730 | incompleteTrapezoids.insertNewTrapezoid(vt, e1, t->right()); |
| 731 | else // Replace the right edge. |
| 732 | incompleteTrapezoids.insertNewTrapezoid(vt, t->left(), e1); |
| 733 | break; |
| 734 | |
| 735 | case Vertex::CONVEX: // Start of a new trapezoid. |
| 736 | convex: |
| 737 | // We don't expect to find any edges. |
| 738 | DebugPrintf("CONVEX %d %d\n", e0 - vta, e1 - vta); |
| 739 | if (incompleteTrapezoids.withinActiveTrapezoid( |
| 740 | vt->point(), &t)) { |
| 741 | // Complete trapezoid. |
| 742 | SkASSERT(t != NULL); |
| 743 | t->setBottom(vt); |
| 744 | incompleteTrapezoids.remove(t); |
| 745 | // Introduce two new trapezoids. |
| 746 | incompleteTrapezoids.insertNewTrapezoid(vt, t->left(), e0); |
| 747 | incompleteTrapezoids.insertNewTrapezoid(vt, e1, t->right()); |
| 748 | } else { |
| 749 | // Insert a new trapezoid. |
| 750 | incompleteTrapezoids.insertNewTrapezoid(vt, e0, e1); |
| 751 | } |
| 752 | break; |
| 753 | |
| 754 | case Vertex::CONCAVE: // End of a trapezoid. |
| 755 | DebugPrintf("CONCAVE %d %d\n", e0 - vta, e1 - vta); |
| 756 | // We should find two edges. |
| 757 | t = incompleteTrapezoids.getTrapezoidWithEdge(e0); |
| 758 | if (t == NULL) { |
| 759 | DebugPrintf("Concave: cannot find a trapezoid with e0: " |
| 760 | " trying monotone\n"); |
| 761 | goto monotone; |
| 762 | } |
| 763 | SkASSERT(t != NULL); |
| 764 | if (e0 == t->left() && e1 == t->right()) { |
| 765 | DebugPrintf( |
| 766 | "Concave edges belong to the same trapezoid.\n"); |
| 767 | // Edges belong to the same trapezoid. |
| 768 | // Complete trapezoid & transfer it from the active list. |
| 769 | t->setBottom(vt); |
| 770 | incompleteTrapezoids.remove(t); |
| 771 | } else { // Edges belong to different trapezoids |
| 772 | DebugPrintf( |
| 773 | "Concave edges belong to different trapezoids.\n"); |
| 774 | // Complete left and right trapezoids. |
| 775 | Trapezoid *s = incompleteTrapezoids.getTrapezoidWithEdge( |
| 776 | e1); |
| 777 | if (s == NULL) { |
| 778 | DebugPrintf( |
| 779 | "Concave: cannot find a trapezoid with e1: " |
| 780 | " trying monotone\n"); |
| 781 | goto monotone; |
| 782 | } |
| 783 | t->setBottom(vt); |
| 784 | s->setBottom(vt); |
| 785 | incompleteTrapezoids.remove(t); |
| 786 | incompleteTrapezoids.remove(s); |
| 787 | |
| 788 | // Merge the two trapezoids into one below this vertex. |
| 789 | incompleteTrapezoids.insertNewTrapezoid(vt, t->left(), |
| 790 | s->right()); |
| 791 | } |
| 792 | break; |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | RemoveDegenerateTrapezoids(numPts, vta); |
| 797 | |
| 798 | DebugPrintf("Done making trapezoids\n"); |
| 799 | PrintVertexPtrs(vtptr.count(), vtptr.begin(), vta); |
| 800 | |
| 801 | size_t k = incompleteTrapezoids.count(); |
| 802 | if (k > 0) { |
| 803 | FailureMessage("%d incomplete trapezoids\n", k); |
| 804 | return false; |
| 805 | } |
| 806 | return true; |
| 807 | } |
| 808 | |
| 809 | |
| 810 | inline void appendTriangleAtVertex(const Vertex *v, |
| 811 | SkTDArray<SkPoint> *triangles) { |
| 812 | SkPoint *p = triangles->append(3); |
| 813 | p[0] = v->prev()->point(); |
| 814 | p[1] = v->point(); |
| 815 | p[2] = v->next()->point(); |
| 816 | DebugPrintf( |
| 817 | "Appending triangle: { (%.7g, %.7g), (%.7g, %.7g), (%.7g, %.7g) }\n", |
| 818 | p[0].fX, p[0].fY, |
| 819 | p[1].fX, p[1].fY, |
| 820 | p[2].fX, p[2].fY |
| 821 | ); |
| 822 | } |
| 823 | |
| 824 | |
| 825 | static size_t CountVertices(const Vertex *first, const Vertex *last) { |
| 826 | DebugPrintf("Counting vertices: "); |
| 827 | size_t count = 1; |
| 828 | for (; first != last; first = first->next()) { |
| 829 | ++count; |
| 830 | SkASSERT(count <= kMaxCount); |
| 831 | if (count >= kMaxCount) { |
| 832 | FailureMessage("Vertices do not seem to be in a linked chain\n"); |
| 833 | break; |
| 834 | } |
| 835 | } |
| 836 | return count; |
| 837 | } |
| 838 | |
| 839 | |
caryclark@google.com | 803eceb | 2012-06-06 12:09:34 +0000 | [diff] [blame^] | 840 | static bool operator<(const SkPoint &p0, const SkPoint &p1) { |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 841 | if (p0.fY < p1.fY) return true; |
| 842 | if (p0.fY > p1.fY) return false; |
| 843 | if (p0.fX < p1.fX) return true; |
| 844 | else return false; |
| 845 | } |
| 846 | |
| 847 | |
| 848 | static void PrintLinkedVertices(size_t n, Vertex *vertices) { |
| 849 | DebugPrintf("%d vertices:\n", n); |
| 850 | Vertex *v; |
| 851 | for (v = vertices; n-- != 0; v = v->next()) |
| 852 | DebugPrintf(" (%.7g, %.7g)\n", v->point().fX, v->point().fY); |
| 853 | if (v != vertices) |
| 854 | FailureMessage("Vertices are not in a linked chain\n"); |
| 855 | } |
| 856 | |
| 857 | |
| 858 | // Triangulate an unimonotone chain. |
caryclark@google.com | 803eceb | 2012-06-06 12:09:34 +0000 | [diff] [blame^] | 859 | static bool TriangulateMonotone(Vertex *first, Vertex *last, |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 860 | SkTDArray<SkPoint> *triangles) { |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 861 | DebugPrintf("TriangulateMonotone()\n"); |
| 862 | |
| 863 | size_t numVertices = CountVertices(first, last); |
| 864 | if (numVertices == kMaxCount) { |
| 865 | FailureMessage("Way too many vertices: %d:\n", numVertices); |
| 866 | PrintLinkedVertices(numVertices, first); |
| 867 | return false; |
| 868 | } |
| 869 | |
| 870 | Vertex *start = first; |
| 871 | // First find the point with the smallest Y. |
| 872 | DebugPrintf("TriangulateMonotone: finding bottom\n"); |
| 873 | int count = kMaxCount; // Maximum number of vertices. |
| 874 | for (Vertex *v = first->next(); v != first && count-- > 0; v = v->next()) |
| 875 | if (v->point() < start->point()) |
| 876 | start = v; |
| 877 | if (count <= 0) { |
| 878 | FailureMessage("TriangulateMonotone() was given disjoint chain\n"); |
| 879 | return false; // Something went wrong. |
| 880 | } |
| 881 | |
| 882 | // Start at the far end of the long edge. |
| 883 | if (start->prev()->point() < start->next()->point()) |
| 884 | start = start->next(); |
| 885 | |
| 886 | Vertex *current = start->next(); |
| 887 | while (numVertices >= 3) { |
| 888 | if (current->angleIsConvex()) { |
| 889 | DebugPrintf("Angle %p is convex\n", current); |
| 890 | // Print the vertices |
| 891 | PrintLinkedVertices(numVertices, start); |
| 892 | |
| 893 | appendTriangleAtVertex(current, triangles); |
| 894 | if (triangles->count() > kMaxCount * 3) { |
| 895 | FailureMessage("An extraordinarily large number of triangles " |
| 896 | "were generated\n"); |
| 897 | return false; |
| 898 | } |
| 899 | Vertex *save = current->prev(); |
| 900 | current->delink(); |
| 901 | current = (save == start || save == start->prev()) ? start->next() |
| 902 | : save; |
| 903 | --numVertices; |
| 904 | } else { |
| 905 | if (numVertices == 3) { |
| 906 | FailureMessage("Convexity error in TriangulateMonotone()\n"); |
| 907 | appendTriangleAtVertex(current, triangles); |
| 908 | return false; |
| 909 | } |
| 910 | DebugPrintf("Angle %p is concave\n", current); |
| 911 | current = current->next(); |
| 912 | } |
| 913 | } |
| 914 | return true; |
| 915 | } |
| 916 | |
| 917 | |
| 918 | // Split the polygon into sets of unimonotone chains, and eventually call |
| 919 | // TriangulateMonotone() to convert them into triangles. |
caryclark@google.com | 803eceb | 2012-06-06 12:09:34 +0000 | [diff] [blame^] | 920 | static bool Triangulate(Vertex *first, Vertex *last, SkTDArray<SkPoint> *triangles) { |
turk@google.com | 6f8491b | 2009-03-13 22:05:46 +0000 | [diff] [blame] | 921 | DebugPrintf("Triangulate()\n"); |
| 922 | Vertex *currentVertex = first; |
| 923 | while (!currentVertex->done()) { |
| 924 | currentVertex->setDone(true); |
| 925 | Vertex *bottomVertex = currentVertex->diagonal(); |
| 926 | if (bottomVertex != NULL) { |
| 927 | Vertex *saveNext = currentVertex->next(); |
| 928 | Vertex *savePrev = bottomVertex->prev(); |
| 929 | currentVertex->setNext(bottomVertex); |
| 930 | bottomVertex->setPrev(currentVertex); |
| 931 | currentVertex->nullifyTrapezoid(); |
| 932 | bool success = Triangulate(bottomVertex, currentVertex, triangles); |
| 933 | currentVertex->setDone(false); |
| 934 | bottomVertex->setDone(false); |
| 935 | currentVertex->setNext(saveNext); |
| 936 | bottomVertex->setPrev(savePrev); |
| 937 | bottomVertex->setNext(currentVertex); |
| 938 | currentVertex->setPrev(bottomVertex); |
| 939 | return Triangulate(currentVertex, bottomVertex, triangles) |
| 940 | && success; |
| 941 | } else { |
| 942 | currentVertex = currentVertex->next(); |
| 943 | } |
| 944 | } |
| 945 | return TriangulateMonotone(first, last, triangles); |
| 946 | } |
| 947 | |
| 948 | |
| 949 | bool SkConcaveToTriangles(size_t numPts, |
| 950 | const SkPoint pts[], |
| 951 | SkTDArray<SkPoint> *triangles) { |
| 952 | DebugPrintf("SkConcaveToTriangles()\n"); |
| 953 | |
| 954 | SkTDArray<Vertex> vertices; |
| 955 | vertices.setCount(numPts); |
| 956 | if (!ConvertPointsToVertices(numPts, pts, vertices.begin())) |
| 957 | return false; |
| 958 | |
| 959 | triangles->setReserve(numPts); |
| 960 | triangles->setCount(0); |
| 961 | return Triangulate(vertices.begin(), vertices.end() - 1, triangles); |
| 962 | } |