blob: 7480b3ee2f04cb5c90fca1b13b12c8ec8fd9fa68 [file] [log] [blame]
Chris Dalton6a3dbee2017-10-16 10:44:41 -06001/*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
Chris Dalton383a2ef2018-01-08 17:21:41 -05008#include "GrCCCubicShader.h"
Chris Dalton6a3dbee2017-10-16 10:44:41 -06009
10#include "glsl/GrGLSLFragmentShaderBuilder.h"
Chris Dalton7c7ff032018-03-28 20:09:58 -060011#include "glsl/GrGLSLProgramBuilder.h"
Chris Dalton1fbdb612017-12-12 12:48:47 -070012#include "glsl/GrGLSLVertexGeoBuilder.h"
Chris Dalton6a3dbee2017-10-16 10:44:41 -060013
Chris Dalton383a2ef2018-01-08 17:21:41 -050014using Shader = GrCCCoverageProcessor::Shader;
Chris Daltonde5a8142017-12-18 10:05:15 -070015
Chris Dalton84d36cd2019-04-17 14:47:17 -060016void GrCCCubicShader::emitSetupCode(
17 GrGLSLVertexGeoBuilder* s, const char* pts, const char** /*outHull4*/) const {
Chris Dalton6a3dbee2017-10-16 10:44:41 -060018 // Find the cubic's power basis coefficients.
19 s->codeAppendf("float2x4 C = float4x4(-1, 3, -3, 1, "
20 " 3, -6, 3, 0, "
21 "-3, 3, 0, 0, "
22 " 1, 0, 0, 0) * transpose(%s);", pts);
23
24 // Find the cubic's inflection function.
25 s->codeAppend ("float D3 = +determinant(float2x2(C[0].yz, C[1].yz));");
26 s->codeAppend ("float D2 = -determinant(float2x2(C[0].xz, C[1].xz));");
27 s->codeAppend ("float D1 = +determinant(float2x2(C));");
28
Chris Dalton6fdbf612018-04-15 21:58:19 -060029 // Shift the exponents in D so the largest magnitude falls somewhere in 1..2. This protects us
30 // from overflow while solving for roots and KLM functionals.
31 s->codeAppend ("float Dmax = max(max(abs(D1), abs(D2)), abs(D3));");
32 s->codeAppend ("float norm;");
33 if (s->getProgramBuilder()->shaderCaps()->fpManipulationSupport()) {
34 s->codeAppend ("int exp;");
35 s->codeAppend ("frexp(Dmax, exp);");
36 s->codeAppend ("norm = ldexp(1, 1 - exp);");
37 } else {
38 s->codeAppend ("norm = 1/Dmax;"); // Dmax will not be 0 because we cull line cubics on CPU.
39 }
40 s->codeAppend ("D3 *= norm;");
41 s->codeAppend ("D2 *= norm;");
42 s->codeAppend ("D1 *= norm;");
43
Chris Dalton6a3dbee2017-10-16 10:44:41 -060044 // Calculate the KLM matrix.
45 s->declareGlobal(fKLMMatrix);
Chris Dalton6a3dbee2017-10-16 10:44:41 -060046 s->codeAppend ("float discr = 3*D2*D2 - 4*D1*D3;");
Chris Daltonbe4ffab2017-12-08 10:59:58 -070047 s->codeAppend ("float x = discr >= 0 ? 3 : 1;");
48 s->codeAppend ("float q = sqrt(x * abs(discr));");
49 s->codeAppend ("q = x*D2 + (D2 >= 0 ? q : -q);");
50
51 s->codeAppend ("float2 l, m;");
Chris Dalton6fdbf612018-04-15 21:58:19 -060052 s->codeAppend ("l.ts = float2(q, 2*x * D1);");
53 s->codeAppend ("m.ts = float2(2, q) * (discr >= 0 ? float2(D3, 1) "
54 ": float2(D2*D2 - D3*D1, D1));");
Chris Daltonbe4ffab2017-12-08 10:59:58 -070055
56 s->codeAppend ("float4 K;");
57 s->codeAppend ("float4 lm = l.sstt * m.stst;");
58 s->codeAppend ("K = float4(0, lm.x, -lm.y - lm.z, lm.w);");
59
60 s->codeAppend ("float4 L, M;");
61 s->codeAppend ("lm.yz += 2*lm.zy;");
62 s->codeAppend ("L = float4(-1,x,-x,1) * l.sstt * (discr >= 0 ? l.ssst * l.sttt : lm);");
63 s->codeAppend ("M = float4(-1,x,-x,1) * m.sstt * (discr >= 0 ? m.ssst * m.sttt : lm.xzyw);");
64
Chris Dalton7c7ff032018-03-28 20:09:58 -060065 s->codeAppend ("int middlerow = abs(D2) > abs(D1) ? 2 : 1;");
Chris Dalton6a3dbee2017-10-16 10:44:41 -060066 s->codeAppend ("float3x3 CI = inverse(float3x3(C[0][0], C[0][middlerow], C[0][3], "
67 "C[1][0], C[1][middlerow], C[1][3], "
68 " 0, 0, 1));");
69 s->codeAppendf("%s = CI * float3x3(K[0], K[middlerow], K[3], "
70 "L[0], L[middlerow], L[3], "
71 "M[0], M[middlerow], M[3]);", fKLMMatrix.c_str());
72
Chris Dalton1fbdb612017-12-12 12:48:47 -070073 // Evaluate the cubic at T=.5 for a mid-ish point.
74 s->codeAppendf("float2 midpoint = %s * float4(.125, .375, .375, .125);", pts);
75
Chris Dalton21ba5512018-03-21 17:20:21 -060076 // Orient the KLM matrix so L & M are both positive on the side of the curve we wish to fill.
Chris Dalton6a3dbee2017-10-16 10:44:41 -060077 s->codeAppendf("float2 orientation = sign(float3(midpoint, 1) * float2x3(%s[1], %s[2]));",
78 fKLMMatrix.c_str(), fKLMMatrix.c_str());
79 s->codeAppendf("%s *= float3x3(orientation[0] * orientation[1], 0, 0, "
Chris Dalton21ba5512018-03-21 17:20:21 -060080 "0, orientation[0], 0, "
81 "0, 0, orientation[1]);", fKLMMatrix.c_str());
Chris Dalton6a3dbee2017-10-16 10:44:41 -060082}
83
Chris Dalton84d36cd2019-04-17 14:47:17 -060084void GrCCCubicShader::onEmitVaryings(
85 GrGLSLVaryingHandler* varyingHandler, GrGLSLVarying::Scope scope, SkString* code,
86 const char* position, const char* coverage, const char* cornerCoverage, const char* wind) {
87 code->appendf("float3 klm = float3(%s, 1) * %s;", position, fKLMMatrix.c_str());
Chris Dalton4c239342018-04-05 18:43:40 -060088 fKLM_fEdge.reset(kFloat4_GrSLType, scope);
89 varyingHandler->addVarying("klm_and_edge", &fKLM_fEdge);
Chris Dalton84d36cd2019-04-17 14:47:17 -060090 // Give L&M both the same sign as wind, in order to pass this value to the fragment shader.
91 // (Cubics are pre-chopped such that L&M do not change sign within any individual segment.)
92 code->appendf("%s.xyz = klm * float3(1, %s, %s);", OutName(fKLM_fEdge), wind, wind);
93 // Flat edge opposite the curve.
94 code->appendf("%s.w = %s;", OutName(fKLM_fEdge), coverage);
Chris Dalton6a3dbee2017-10-16 10:44:41 -060095
Chris Daltonba37e5b2018-04-26 09:19:52 -060096 fGradMatrix.reset(kFloat4_GrSLType, scope);
Chris Dalton21ba5512018-03-21 17:20:21 -060097 varyingHandler->addVarying("grad_matrix", &fGradMatrix);
Chris Daltonba37e5b2018-04-26 09:19:52 -060098 code->appendf("%s.xy = 2*bloat * 3 * klm[0] * %s[0].xy;",
Chris Dalton21ba5512018-03-21 17:20:21 -060099 OutName(fGradMatrix), fKLMMatrix.c_str());
Chris Daltonba37e5b2018-04-26 09:19:52 -0600100 code->appendf("%s.zw = -2*bloat * (klm[1] * %s[2].xy + klm[2] * %s[1].xy);",
Chris Dalton21ba5512018-03-21 17:20:21 -0600101 OutName(fGradMatrix), fKLMMatrix.c_str(), fKLMMatrix.c_str());
102
Chris Dalton4c239342018-04-05 18:43:40 -0600103 if (cornerCoverage) {
Chris Dalton84d36cd2019-04-17 14:47:17 -0600104 SkASSERT(coverage);
Chris Dalton4c239342018-04-05 18:43:40 -0600105 code->appendf("half hull_coverage; {");
106 this->calcHullCoverage(code, OutName(fKLM_fEdge), OutName(fGradMatrix), "hull_coverage");
107 code->appendf("}");
Chris Dalton21ba5512018-03-21 17:20:21 -0600108 fCornerCoverage.reset(kHalf2_GrSLType, scope);
109 varyingHandler->addVarying("corner_coverage", &fCornerCoverage);
Chris Dalton4c239342018-04-05 18:43:40 -0600110 code->appendf("%s = half2(hull_coverage, 1) * %s;",
111 OutName(fCornerCoverage), cornerCoverage);
Chris Dalton21ba5512018-03-21 17:20:21 -0600112 }
Chris Daltonbaf3e782018-03-08 15:55:58 +0000113}
Chris Daltonf510e262018-01-30 16:42:37 -0700114
Chris Dalton84d36cd2019-04-17 14:47:17 -0600115void GrCCCubicShader::onEmitFragmentCode(
116 GrGLSLFPFragmentBuilder* f, const char* outputCoverage) const {
117 this->calcHullCoverage(
118 &AccessCodeString(f), fKLM_fEdge.fsIn(), fGradMatrix.fsIn(), outputCoverage);
Chris Daltonbaf3e782018-03-08 15:55:58 +0000119
Chris Daltonbaf3e782018-03-08 15:55:58 +0000120 // Wind is the sign of both L and/or M. Take the sign of whichever has the larger magnitude.
121 // (In reality, either would be fine because we chop cubics with more than a half pixel of
122 // padding around the L & M lines, so neither should approach zero.)
Ethan Nicholase1f55022019-02-05 17:17:40 -0500123 f->codeAppend ("half wind = sign(half(l + m));");
Chris Dalton4c239342018-04-05 18:43:40 -0600124 f->codeAppendf("%s *= wind;", outputCoverage);
Chris Daltonbaf3e782018-03-08 15:55:58 +0000125
Chris Dalton21ba5512018-03-21 17:20:21 -0600126 if (fCornerCoverage.fsIn()) {
127 f->codeAppendf("%s = %s.x * %s.y + %s;", // Attenuated corner coverage.
128 outputCoverage, fCornerCoverage.fsIn(), fCornerCoverage.fsIn(),
129 outputCoverage);
130 }
Chris Dalton6a3dbee2017-10-16 10:44:41 -0600131}
Chris Dalton4c239342018-04-05 18:43:40 -0600132
133void GrCCCubicShader::calcHullCoverage(SkString* code, const char* klmAndEdge,
134 const char* gradMatrix, const char* outputCoverage) const {
135 code->appendf("float k = %s.x, l = %s.y, m = %s.z;", klmAndEdge, klmAndEdge, klmAndEdge);
136 code->append ("float f = k*k*k - l*m;");
Chris Daltonba37e5b2018-04-26 09:19:52 -0600137 code->appendf("float2 grad = %s.xy * k + %s.zw;", gradMatrix, gradMatrix);
Chris Dalton4c239342018-04-05 18:43:40 -0600138 code->append ("float fwidth = abs(grad.x) + abs(grad.y);");
Ethan Nicholase1f55022019-02-05 17:17:40 -0500139 code->appendf("float curve_coverage = min(0.5 - f/fwidth, 1);");
140 // Flat edge opposite the curve.
141 code->appendf("float edge_coverage = min(%s.w, 0);", klmAndEdge);
142 // Total hull coverage.
143 code->appendf("%s = max(half(curve_coverage + edge_coverage), 0);", outputCoverage);
Chris Dalton4c239342018-04-05 18:43:40 -0600144}