blob: 81dc103e0242a0ae7dea0a2f25a5eb84a40974df [file] [log] [blame]
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +00001/*
epoger@google.comec3ed6a2011-07-28 14:26:00 +00002 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +00006 */
7
8#include "GrPathUtils.h"
commit-bot@chromium.orgfd03d4a2013-07-17 21:39:42 +00009
robertphillipsd5373412014-06-02 10:20:14 -070010#include "GrTypes.h"
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +000011#include "SkGeometry.h"
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000012
bsalomon@google.com81712882012-11-01 17:12:34 +000013SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
bsalomon@google.comb9086a02012-11-01 18:02:54 +000014 const SkMatrix& viewM,
commit-bot@chromium.orgfd03d4a2013-07-17 21:39:42 +000015 const SkRect& pathBounds) {
bsalomon@google.com181e9bd2011-09-07 18:42:30 +000016 // In order to tesselate the path we get a bound on how much the matrix can
commit-bot@chromium.org18786512014-05-20 14:53:45 +000017 // scale when mapping to screen coordinates.
18 SkScalar stretch = viewM.getMaxScale();
bsalomon@google.com81712882012-11-01 17:12:34 +000019 SkScalar srcTol = devTol;
bsalomon@google.com181e9bd2011-09-07 18:42:30 +000020
21 if (stretch < 0) {
bsalomon@google.com38396322011-09-09 19:32:04 +000022 // take worst case mapRadius amoung four corners.
23 // (less than perfect)
24 for (int i = 0; i < 4; ++i) {
bsalomon@google.comb9086a02012-11-01 18:02:54 +000025 SkMatrix mat;
bsalomon@google.com38396322011-09-09 19:32:04 +000026 mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
27 (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
28 mat.postConcat(viewM);
29 stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
30 }
bsalomon@google.com181e9bd2011-09-07 18:42:30 +000031 }
bsalomon@google.com81712882012-11-01 17:12:34 +000032 srcTol = SkScalarDiv(srcTol, stretch);
bsalomon@google.com181e9bd2011-09-07 18:42:30 +000033 return srcTol;
34}
35
bsalomon@google.comb5b31682011-06-16 18:05:35 +000036static const int MAX_POINTS_PER_CURVE = 1 << 10;
commit-bot@chromium.org4b413c82013-11-25 19:44:07 +000037static const SkScalar gMinCurveTol = 0.0001f;
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000038
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +000039uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[],
bsalomon@google.com81712882012-11-01 17:12:34 +000040 SkScalar tol) {
tomhudson@google.comc10a8882011-06-28 15:19:32 +000041 if (tol < gMinCurveTol) {
tomhudson@google.comafec7ba2011-06-30 14:47:55 +000042 tol = gMinCurveTol;
tomhudson@google.comc10a8882011-06-28 15:19:32 +000043 }
tfarina@chromium.orgf6de4752013-08-17 00:02:59 +000044 SkASSERT(tol > 0);
tomhudson@google.comc10a8882011-06-28 15:19:32 +000045
bsalomon@google.com81712882012-11-01 17:12:34 +000046 SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
tomhudson@google.comc10a8882011-06-28 15:19:32 +000047 if (d <= tol) {
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000048 return 1;
49 } else {
50 // Each time we subdivide, d should be cut in 4. So we need to
51 // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
52 // points.
53 // 2^(log4(x)) = sqrt(x);
reed@google.come1ca7052013-12-17 19:22:07 +000054 int temp = SkScalarCeilToInt(SkScalarSqrt(SkScalarDiv(d, tol)));
bsalomon@google.com61f3bde2011-06-17 20:06:49 +000055 int pow2 = GrNextPow2(temp);
56 // Because of NaNs & INFs we can wind up with a degenerate temp
57 // such that pow2 comes out negative. Also, our point generator
58 // will always output at least one pt.
59 if (pow2 < 1) {
60 pow2 = 1;
61 }
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +000062 return SkTMin(pow2, MAX_POINTS_PER_CURVE);
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000063 }
64}
65
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +000066uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
67 const SkPoint& p1,
68 const SkPoint& p2,
bsalomon@google.com81712882012-11-01 17:12:34 +000069 SkScalar tolSqd,
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +000070 SkPoint** points,
tomhudson@google.comc10a8882011-06-28 15:19:32 +000071 uint32_t pointsLeft) {
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000072 if (pointsLeft < 2 ||
73 (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
74 (*points)[0] = p2;
75 *points += 1;
76 return 1;
77 }
78
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +000079 SkPoint q[] = {
bsalomon@google.com81712882012-11-01 17:12:34 +000080 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
81 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000082 };
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +000083 SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +000084
85 pointsLeft >>= 1;
86 uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
87 uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
88 return a + b;
89}
90
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +000091uint32_t GrPathUtils::cubicPointCount(const SkPoint points[],
bsalomon@google.com81712882012-11-01 17:12:34 +000092 SkScalar tol) {
tomhudson@google.comc10a8882011-06-28 15:19:32 +000093 if (tol < gMinCurveTol) {
tomhudson@google.comafec7ba2011-06-30 14:47:55 +000094 tol = gMinCurveTol;
tomhudson@google.comc10a8882011-06-28 15:19:32 +000095 }
tfarina@chromium.orgf6de4752013-08-17 00:02:59 +000096 SkASSERT(tol > 0);
tomhudson@google.comc10a8882011-06-28 15:19:32 +000097
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +000098 SkScalar d = SkTMax(
tomhudson@google.comc10a8882011-06-28 15:19:32 +000099 points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
100 points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
epoger@google.com2047f002011-05-17 17:36:59 +0000101 d = SkScalarSqrt(d);
tomhudson@google.comc10a8882011-06-28 15:19:32 +0000102 if (d <= tol) {
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000103 return 1;
104 } else {
reed@google.come1ca7052013-12-17 19:22:07 +0000105 int temp = SkScalarCeilToInt(SkScalarSqrt(SkScalarDiv(d, tol)));
bsalomon@google.com61f3bde2011-06-17 20:06:49 +0000106 int pow2 = GrNextPow2(temp);
107 // Because of NaNs & INFs we can wind up with a degenerate temp
108 // such that pow2 comes out negative. Also, our point generator
109 // will always output at least one pt.
110 if (pow2 < 1) {
111 pow2 = 1;
112 }
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +0000113 return SkTMin(pow2, MAX_POINTS_PER_CURVE);
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000114 }
115}
116
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +0000117uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
118 const SkPoint& p1,
119 const SkPoint& p2,
120 const SkPoint& p3,
bsalomon@google.com81712882012-11-01 17:12:34 +0000121 SkScalar tolSqd,
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +0000122 SkPoint** points,
tomhudson@google.comc10a8882011-06-28 15:19:32 +0000123 uint32_t pointsLeft) {
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000124 if (pointsLeft < 2 ||
125 (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
126 p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
127 (*points)[0] = p3;
128 *points += 1;
129 return 1;
130 }
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +0000131 SkPoint q[] = {
bsalomon@google.com81712882012-11-01 17:12:34 +0000132 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
133 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
134 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000135 };
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +0000136 SkPoint r[] = {
bsalomon@google.com81712882012-11-01 17:12:34 +0000137 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
138 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000139 };
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +0000140 SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000141 pointsLeft >>= 1;
142 uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
143 uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
144 return a + b;
145}
146
bsalomon@google.com8d033a12012-04-27 15:52:53 +0000147int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
bsalomon@google.com81712882012-11-01 17:12:34 +0000148 SkScalar tol) {
tomhudson@google.comc10a8882011-06-28 15:19:32 +0000149 if (tol < gMinCurveTol) {
tomhudson@google.comafec7ba2011-06-30 14:47:55 +0000150 tol = gMinCurveTol;
tomhudson@google.comc10a8882011-06-28 15:19:32 +0000151 }
tfarina@chromium.orgf6de4752013-08-17 00:02:59 +0000152 SkASSERT(tol > 0);
tomhudson@google.comc10a8882011-06-28 15:19:32 +0000153
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000154 int pointCount = 0;
155 *subpaths = 1;
156
157 bool first = true;
158
senorblanco@chromium.org129b8e32011-06-15 17:52:09 +0000159 SkPath::Iter iter(path, false);
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000160 SkPath::Verb verb;
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000161
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +0000162 SkPoint pts[4];
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000163 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000164
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000165 switch (verb) {
166 case SkPath::kLine_Verb:
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000167 pointCount += 1;
168 break;
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000169 case SkPath::kQuad_Verb:
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000170 pointCount += quadraticPointCount(pts, tol);
171 break;
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000172 case SkPath::kCubic_Verb:
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000173 pointCount += cubicPointCount(pts, tol);
174 break;
bsalomon@google.com94b284d2013-05-10 17:14:06 +0000175 case SkPath::kMove_Verb:
senorblanco@chromium.org9d18b782011-03-28 20:47:09 +0000176 pointCount += 1;
177 if (!first) {
178 ++(*subpaths);
179 }
180 break;
181 default:
182 break;
183 }
184 first = false;
185 }
186 return pointCount;
187}
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000188
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +0000189void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
bsalomon@google.com19713172012-03-15 13:51:08 +0000190 SkMatrix m;
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000191 // We want M such that M * xy_pt = uv_pt
192 // We know M * control_pts = [0 1/2 1]
193 // [0 0 1]
194 // [1 1 1]
commit-bot@chromium.orgf543fd92013-12-04 21:33:08 +0000195 // And control_pts = [x0 x1 x2]
196 // [y0 y1 y2]
197 // [1 1 1 ]
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000198 // We invert the control pt matrix and post concat to both sides to get M.
commit-bot@chromium.orgf543fd92013-12-04 21:33:08 +0000199 // Using the known form of the control point matrix and the result, we can
200 // optimize and improve precision.
201
202 double x0 = qPts[0].fX;
203 double y0 = qPts[0].fY;
204 double x1 = qPts[1].fX;
205 double y1 = qPts[1].fY;
206 double x2 = qPts[2].fX;
207 double y2 = qPts[2].fY;
208 double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
209
skia.committer@gmail.com8491d242013-12-05 07:02:16 +0000210 if (!sk_float_isfinite(det)
commit-bot@chromium.orgf543fd92013-12-04 21:33:08 +0000211 || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000212 // The quad is degenerate. Hopefully this is rare. Find the pts that are
213 // farthest apart to compute a line (unless it is really a pt).
214 SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
215 int maxEdge = 0;
216 SkScalar d = qPts[1].distanceToSqd(qPts[2]);
217 if (d > maxD) {
218 maxD = d;
219 maxEdge = 1;
220 }
221 d = qPts[2].distanceToSqd(qPts[0]);
222 if (d > maxD) {
223 maxD = d;
224 maxEdge = 2;
225 }
226 // We could have a tolerance here, not sure if it would improve anything
227 if (maxD > 0) {
228 // Set the matrix to give (u = 0, v = distance_to_line)
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +0000229 SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
bsalomon@google.com20e542e2012-02-15 18:49:41 +0000230 // when looking from the point 0 down the line we want positive
231 // distances to be to the left. This matches the non-degenerate
232 // case.
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +0000233 lineVec.setOrthog(lineVec, SkPoint::kLeft_Side);
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000234 lineVec.dot(qPts[0]);
bsalomon@google.com19713172012-03-15 13:51:08 +0000235 // first row
236 fM[0] = 0;
237 fM[1] = 0;
238 fM[2] = 0;
239 // second row
240 fM[3] = lineVec.fX;
241 fM[4] = lineVec.fY;
242 fM[5] = -lineVec.dot(qPts[maxEdge]);
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000243 } else {
244 // It's a point. It should cover zero area. Just set the matrix such
245 // that (u, v) will always be far away from the quad.
bsalomon@google.com19713172012-03-15 13:51:08 +0000246 fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
247 fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000248 }
249 } else {
commit-bot@chromium.orgf543fd92013-12-04 21:33:08 +0000250 double scale = 1.0/det;
251
252 // compute adjugate matrix
253 double a0, a1, a2, a3, a4, a5, a6, a7, a8;
254 a0 = y1-y2;
255 a1 = x2-x1;
256 a2 = x1*y2-x2*y1;
257
258 a3 = y2-y0;
259 a4 = x0-x2;
260 a5 = x2*y0-x0*y2;
261
262 a6 = y0-y1;
263 a7 = x1-x0;
264 a8 = x0*y1-x1*y0;
265
skia.committer@gmail.com8491d242013-12-05 07:02:16 +0000266 // this performs the uv_pts*adjugate(control_pts) multiply,
commit-bot@chromium.orgf543fd92013-12-04 21:33:08 +0000267 // then does the scale by 1/det afterwards to improve precision
268 m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
269 m[SkMatrix::kMSkewX] = (float)((0.5*a4 + a7)*scale);
270 m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
271
272 m[SkMatrix::kMSkewY] = (float)(a6*scale);
273 m[SkMatrix::kMScaleY] = (float)(a7*scale);
274 m[SkMatrix::kMTransY] = (float)(a8*scale);
275
276 m[SkMatrix::kMPersp0] = (float)((a0 + a3 + a6)*scale);
277 m[SkMatrix::kMPersp1] = (float)((a1 + a4 + a7)*scale);
278 m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
bsalomon@google.com19713172012-03-15 13:51:08 +0000279
280 // The matrix should not have perspective.
commit-bot@chromium.org4b413c82013-11-25 19:44:07 +0000281 SkDEBUGCODE(static const SkScalar gTOL = 1.f / 100.f);
tfarina@chromium.orgf6de4752013-08-17 00:02:59 +0000282 SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL);
283 SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL);
bsalomon@google.com19713172012-03-15 13:51:08 +0000284
285 // It may not be normalized to have 1.0 in the bottom right
286 float m33 = m.get(SkMatrix::kMPersp2);
287 if (1.f != m33) {
288 m33 = 1.f / m33;
289 fM[0] = m33 * m.get(SkMatrix::kMScaleX);
290 fM[1] = m33 * m.get(SkMatrix::kMSkewX);
291 fM[2] = m33 * m.get(SkMatrix::kMTransX);
292 fM[3] = m33 * m.get(SkMatrix::kMSkewY);
293 fM[4] = m33 * m.get(SkMatrix::kMScaleY);
294 fM[5] = m33 * m.get(SkMatrix::kMTransY);
295 } else {
296 fM[0] = m.get(SkMatrix::kMScaleX);
297 fM[1] = m.get(SkMatrix::kMSkewX);
298 fM[2] = m.get(SkMatrix::kMTransX);
299 fM[3] = m.get(SkMatrix::kMSkewY);
300 fM[4] = m.get(SkMatrix::kMScaleY);
301 fM[5] = m.get(SkMatrix::kMTransY);
302 }
bsalomon@google.comdc3c7802012-01-31 20:46:32 +0000303 }
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000304}
305
commit-bot@chromium.org13948402013-08-20 17:55:43 +0000306////////////////////////////////////////////////////////////////////////////////
307
308// k = (y2 - y0, x0 - x2, (x2 - x0)*y0 - (y2 - y0)*x0 )
309// l = (2*w * (y1 - y0), 2*w * (x0 - x1), 2*w * (x1*y0 - x0*y1))
310// m = (2*w * (y2 - y1), 2*w * (x1 - x2), 2*w * (x2*y1 - x1*y2))
311void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]) {
312 const SkScalar w2 = 2.f * weight;
313 klm[0] = p[2].fY - p[0].fY;
314 klm[1] = p[0].fX - p[2].fX;
315 klm[2] = (p[2].fX - p[0].fX) * p[0].fY - (p[2].fY - p[0].fY) * p[0].fX;
316
317 klm[3] = w2 * (p[1].fY - p[0].fY);
318 klm[4] = w2 * (p[0].fX - p[1].fX);
319 klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
320
321 klm[6] = w2 * (p[2].fY - p[1].fY);
322 klm[7] = w2 * (p[1].fX - p[2].fX);
323 klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
324
325 // scale the max absolute value of coeffs to 10
326 SkScalar scale = 0.f;
327 for (int i = 0; i < 9; ++i) {
328 scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
329 }
330 SkASSERT(scale > 0.f);
331 scale = 10.f / scale;
332 for (int i = 0; i < 9; ++i) {
333 klm[i] *= scale;
334 }
335}
336
337////////////////////////////////////////////////////////////////////////////////
338
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000339namespace {
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000340
341// a is the first control point of the cubic.
342// ab is the vector from a to the second control point.
343// dc is the vector from the fourth to the third control point.
344// d is the fourth control point.
345// p is the candidate quadratic control point.
346// this assumes that the cubic doesn't inflect and is simple
347bool is_point_within_cubic_tangents(const SkPoint& a,
348 const SkVector& ab,
349 const SkVector& dc,
350 const SkPoint& d,
351 SkPath::Direction dir,
352 const SkPoint p) {
353 SkVector ap = p - a;
354 SkScalar apXab = ap.cross(ab);
355 if (SkPath::kCW_Direction == dir) {
356 if (apXab > 0) {
357 return false;
358 }
359 } else {
tfarina@chromium.orgf6de4752013-08-17 00:02:59 +0000360 SkASSERT(SkPath::kCCW_Direction == dir);
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000361 if (apXab < 0) {
362 return false;
363 }
364 }
365
366 SkVector dp = p - d;
367 SkScalar dpXdc = dp.cross(dc);
368 if (SkPath::kCW_Direction == dir) {
369 if (dpXdc < 0) {
370 return false;
371 }
372 } else {
tfarina@chromium.orgf6de4752013-08-17 00:02:59 +0000373 SkASSERT(SkPath::kCCW_Direction == dir);
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000374 if (dpXdc > 0) {
375 return false;
376 }
377 }
378 return true;
379}
380
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000381void convert_noninflect_cubic_to_quads(const SkPoint p[4],
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000382 SkScalar toleranceSqd,
383 bool constrainWithinTangents,
384 SkPath::Direction dir,
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000385 SkTArray<SkPoint, true>* quads,
386 int sublevel = 0) {
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000387
388 // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
389 // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
390
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000391 SkVector ab = p[1] - p[0];
392 SkVector dc = p[2] - p[3];
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000393
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000394 if (ab.isZero()) {
395 if (dc.isZero()) {
396 SkPoint* degQuad = quads->push_back_n(3);
397 degQuad[0] = p[0];
398 degQuad[1] = p[0];
399 degQuad[2] = p[3];
400 return;
401 }
402 ab = p[2] - p[0];
403 }
404 if (dc.isZero()) {
405 dc = p[1] - p[3];
406 }
407
bsalomon3935a7b2014-06-19 12:33:08 -0700408 // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
409 // constraint that the quad point falls between the tangents becomes hard to enforce and we are
410 // likely to hit the max subdivision count. However, in this case the cubic is approaching a
411 // line and the accuracy of the quad point isn't so important. We check if the two middle cubic
412 // control points are very close to the baseline vector. If so then we just pick quadratic
413 // points on the control polygon.
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000414
415 if (constrainWithinTangents) {
416 SkVector da = p[0] - p[3];
bsalomon3935a7b2014-06-19 12:33:08 -0700417 bool doQuads = dc.lengthSqd() < SK_ScalarNearlyZero ||
418 ab.lengthSqd() < SK_ScalarNearlyZero;
419 if (!doQuads) {
420 SkScalar invDALengthSqd = da.lengthSqd();
421 if (invDALengthSqd > SK_ScalarNearlyZero) {
422 invDALengthSqd = SkScalarInvert(invDALengthSqd);
423 // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
424 // same goes for point c using vector cd.
425 SkScalar detABSqd = ab.cross(da);
426 detABSqd = SkScalarSquare(detABSqd);
427 SkScalar detDCSqd = dc.cross(da);
428 detDCSqd = SkScalarSquare(detDCSqd);
429 if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd &&
430 SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) {
431 doQuads = true;
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000432 }
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000433 }
434 }
bsalomon3935a7b2014-06-19 12:33:08 -0700435 if (doQuads) {
436 SkPoint b = p[0] + ab;
437 SkPoint c = p[3] + dc;
438 SkPoint mid = b + c;
439 mid.scale(SK_ScalarHalf);
440 // Insert two quadratics to cover the case when ab points away from d and/or dc
441 // points away from a.
442 if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
443 SkPoint* qpts = quads->push_back_n(6);
444 qpts[0] = p[0];
445 qpts[1] = b;
446 qpts[2] = mid;
447 qpts[3] = mid;
448 qpts[4] = c;
449 qpts[5] = p[3];
450 } else {
451 SkPoint* qpts = quads->push_back_n(3);
452 qpts[0] = p[0];
453 qpts[1] = mid;
454 qpts[2] = p[3];
455 }
456 return;
457 }
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000458 }
459
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000460 static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000461 static const int kMaxSubdivs = 10;
462
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000463 ab.scale(kLengthScale);
464 dc.scale(kLengthScale);
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000465
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000466 // e0 and e1 are extrapolations along vectors ab and dc.
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000467 SkVector c0 = p[0];
468 c0 += ab;
469 SkVector c1 = p[3];
470 c1 += dc;
471
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000472 SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000473 if (dSqd < toleranceSqd) {
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000474 SkPoint cAvg = c0;
475 cAvg += c1;
476 cAvg.scale(SK_ScalarHalf);
477
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000478 bool subdivide = false;
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000479
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000480 if (constrainWithinTangents &&
481 !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000482 // choose a new cAvg that is the intersection of the two tangent lines.
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000483 ab.setOrthog(ab);
484 SkScalar z0 = -ab.dot(p[0]);
485 dc.setOrthog(dc);
486 SkScalar z1 = -dc.dot(p[3]);
487 cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY);
488 cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1);
489 SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX);
490 z = SkScalarInvert(z);
491 cAvg.fX *= z;
492 cAvg.fY *= z;
493 if (sublevel <= kMaxSubdivs) {
494 SkScalar d0Sqd = c0.distanceToSqd(cAvg);
495 SkScalar d1Sqd = c1.distanceToSqd(cAvg);
bsalomon@google.com54ad8512012-08-02 14:55:45 +0000496 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
497 // the distances and tolerance can't be negative.
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000498 // (d0 + d1)^2 > toleranceSqd
499 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
500 SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd));
501 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
502 }
503 }
504 if (!subdivide) {
505 SkPoint* pts = quads->push_back_n(3);
506 pts[0] = p[0];
507 pts[1] = cAvg;
508 pts[2] = p[3];
509 return;
510 }
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000511 }
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000512 SkPoint choppedPts[7];
513 SkChopCubicAtHalf(p, choppedPts);
514 convert_noninflect_cubic_to_quads(choppedPts + 0,
515 toleranceSqd,
516 constrainWithinTangents,
517 dir,
518 quads,
519 sublevel + 1);
520 convert_noninflect_cubic_to_quads(choppedPts + 3,
521 toleranceSqd,
522 constrainWithinTangents,
523 dir,
524 quads,
525 sublevel + 1);
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000526}
527}
528
commit-bot@chromium.org972f9cd2014-03-28 17:58:28 +0000529void GrPathUtils::convertCubicToQuads(const SkPoint p[4],
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000530 SkScalar tolScale,
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000531 bool constrainWithinTangents,
532 SkPath::Direction dir,
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000533 SkTArray<SkPoint, true>* quads) {
534 SkPoint chopped[10];
535 int count = SkChopCubicAtInflections(p, chopped);
536
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000537 // base tolerance is 1 pixel.
538 static const SkScalar kTolerance = SK_Scalar1;
539 const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance));
540
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000541 for (int i = 0; i < count; ++i) {
542 SkPoint* cubic = chopped + 3*i;
bsalomon@google.coma51ab842012-07-10 19:53:34 +0000543 convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads);
bsalomon@google.com69cc6ad2012-01-17 14:25:10 +0000544 }
545
546}
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000547
548////////////////////////////////////////////////////////////////////////////////
549
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000550// Solves linear system to extract klm
551// P.K = k (similarly for l, m)
552// Where P is matrix of control points
553// K is coefficients for the line K
554// k is vector of values of K evaluated at the control points
555// Solving for K, thus K = P^(-1) . k
556static void calc_cubic_klm(const SkPoint p[4], const SkScalar controlK[4],
557 const SkScalar controlL[4], const SkScalar controlM[4],
558 SkScalar k[3], SkScalar l[3], SkScalar m[3]) {
559 SkMatrix matrix;
560 matrix.setAll(p[0].fX, p[0].fY, 1.f,
561 p[1].fX, p[1].fY, 1.f,
562 p[2].fX, p[2].fY, 1.f);
563 SkMatrix inverse;
564 if (matrix.invert(&inverse)) {
565 inverse.mapHomogeneousPoints(k, controlK, 1);
566 inverse.mapHomogeneousPoints(l, controlL, 1);
567 inverse.mapHomogeneousPoints(m, controlM, 1);
568 }
569
570}
571
572static void set_serp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
573 SkScalar tempSqrt = SkScalarSqrt(9.f * d[1] * d[1] - 12.f * d[0] * d[2]);
574 SkScalar ls = 3.f * d[1] - tempSqrt;
575 SkScalar lt = 6.f * d[0];
576 SkScalar ms = 3.f * d[1] + tempSqrt;
577 SkScalar mt = 6.f * d[0];
578
579 k[0] = ls * ms;
580 k[1] = (3.f * ls * ms - ls * mt - lt * ms) / 3.f;
581 k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
582 k[3] = (lt - ls) * (mt - ms);
583
584 l[0] = ls * ls * ls;
585 const SkScalar lt_ls = lt - ls;
586 l[1] = ls * ls * lt_ls * -1.f;
587 l[2] = lt_ls * lt_ls * ls;
588 l[3] = -1.f * lt_ls * lt_ls * lt_ls;
589
590 m[0] = ms * ms * ms;
591 const SkScalar mt_ms = mt - ms;
592 m[1] = ms * ms * mt_ms * -1.f;
593 m[2] = mt_ms * mt_ms * ms;
594 m[3] = -1.f * mt_ms * mt_ms * mt_ms;
595
596 // If d0 < 0 we need to flip the orientation of our curve
597 // This is done by negating the k and l values
598 // We want negative distance values to be on the inside
599 if ( d[0] > 0) {
600 for (int i = 0; i < 4; ++i) {
601 k[i] = -k[i];
602 l[i] = -l[i];
603 }
604 }
605}
606
607static void set_loop_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
608 SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
609 SkScalar ls = d[1] - tempSqrt;
610 SkScalar lt = 2.f * d[0];
611 SkScalar ms = d[1] + tempSqrt;
612 SkScalar mt = 2.f * d[0];
613
614 k[0] = ls * ms;
615 k[1] = (3.f * ls*ms - ls * mt - lt * ms) / 3.f;
616 k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
617 k[3] = (lt - ls) * (mt - ms);
618
619 l[0] = ls * ls * ms;
620 l[1] = (ls * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/-3.f;
621 l[2] = ((lt - ls) * (ls * (2.f * mt - 3.f * ms) + lt * ms))/3.f;
622 l[3] = -1.f * (lt - ls) * (lt - ls) * (mt - ms);
623
624 m[0] = ls * ms * ms;
625 m[1] = (ms * (ls * (2.f * mt - 3.f * ms) + lt * ms))/-3.f;
626 m[2] = ((mt - ms) * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/3.f;
627 m[3] = -1.f * (lt - ls) * (mt - ms) * (mt - ms);
628
629
630 // If (d0 < 0 && sign(k1) > 0) || (d0 > 0 && sign(k1) < 0),
631 // we need to flip the orientation of our curve.
632 // This is done by negating the k and l values
commit-bot@chromium.org07e1c3f2013-08-22 20:41:15 +0000633 if ( (d[0] < 0 && k[1] > 0) || (d[0] > 0 && k[1] < 0)) {
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000634 for (int i = 0; i < 4; ++i) {
635 k[i] = -k[i];
636 l[i] = -l[i];
637 }
638 }
639}
640
641static void set_cusp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
642 const SkScalar ls = d[2];
643 const SkScalar lt = 3.f * d[1];
644
645 k[0] = ls;
646 k[1] = ls - lt / 3.f;
647 k[2] = ls - 2.f * lt / 3.f;
648 k[3] = ls - lt;
649
650 l[0] = ls * ls * ls;
651 const SkScalar ls_lt = ls - lt;
652 l[1] = ls * ls * ls_lt;
653 l[2] = ls_lt * ls_lt * ls;
654 l[3] = ls_lt * ls_lt * ls_lt;
655
656 m[0] = 1.f;
657 m[1] = 1.f;
658 m[2] = 1.f;
659 m[3] = 1.f;
660}
661
662// For the case when a cubic is actually a quadratic
663// M =
664// 0 0 0
665// 1/3 0 1/3
666// 2/3 1/3 2/3
667// 1 1 1
668static void set_quadratic_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
669 k[0] = 0.f;
670 k[1] = 1.f/3.f;
671 k[2] = 2.f/3.f;
672 k[3] = 1.f;
673
674 l[0] = 0.f;
675 l[1] = 0.f;
676 l[2] = 1.f/3.f;
677 l[3] = 1.f;
678
679 m[0] = 0.f;
680 m[1] = 1.f/3.f;
681 m[2] = 2.f/3.f;
682 m[3] = 1.f;
683
684 // If d2 < 0 we need to flip the orientation of our curve
685 // This is done by negating the k and l values
686 if ( d[2] > 0) {
687 for (int i = 0; i < 4; ++i) {
688 k[i] = -k[i];
689 l[i] = -l[i];
690 }
691 }
692}
693
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000694int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkScalar klm[9],
695 SkScalar klm_rev[3]) {
696 // Variable to store the two parametric values at the loop double point
697 SkScalar smallS = 0.f;
698 SkScalar largeS = 0.f;
699
700 SkScalar d[3];
caryclark8dd31cf2014-12-12 09:11:23 -0800701 SkCubicType cType = SkClassifyCubic(src, d);
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000702
703 int chop_count = 0;
caryclark8dd31cf2014-12-12 09:11:23 -0800704 if (kLoop_SkCubicType == cType) {
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000705 SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
706 SkScalar ls = d[1] - tempSqrt;
707 SkScalar lt = 2.f * d[0];
708 SkScalar ms = d[1] + tempSqrt;
709 SkScalar mt = 2.f * d[0];
710 ls = ls / lt;
711 ms = ms / mt;
712 // need to have t values sorted since this is what is expected by SkChopCubicAt
713 if (ls <= ms) {
714 smallS = ls;
715 largeS = ms;
716 } else {
717 smallS = ms;
718 largeS = ls;
719 }
720
721 SkScalar chop_ts[2];
722 if (smallS > 0.f && smallS < 1.f) {
723 chop_ts[chop_count++] = smallS;
724 }
725 if (largeS > 0.f && largeS < 1.f) {
726 chop_ts[chop_count++] = largeS;
727 }
728 if(dst) {
729 SkChopCubicAt(src, dst, chop_ts, chop_count);
730 }
731 } else {
732 if (dst) {
733 memcpy(dst, src, sizeof(SkPoint) * 4);
734 }
735 }
736
737 if (klm && klm_rev) {
738 // Set klm_rev to to match the sub_section of cubic that needs to have its orientation
739 // flipped. This will always be the section that is the "loop"
740 if (2 == chop_count) {
741 klm_rev[0] = 1.f;
742 klm_rev[1] = -1.f;
743 klm_rev[2] = 1.f;
744 } else if (1 == chop_count) {
745 if (smallS < 0.f) {
746 klm_rev[0] = -1.f;
747 klm_rev[1] = 1.f;
748 } else {
749 klm_rev[0] = 1.f;
750 klm_rev[1] = -1.f;
751 }
752 } else {
753 if (smallS < 0.f && largeS > 1.f) {
754 klm_rev[0] = -1.f;
755 } else {
756 klm_rev[0] = 1.f;
757 }
758 }
759 SkScalar controlK[4];
760 SkScalar controlL[4];
761 SkScalar controlM[4];
762
caryclark8dd31cf2014-12-12 09:11:23 -0800763 if (kSerpentine_SkCubicType == cType || (kCusp_SkCubicType == cType && 0.f != d[0])) {
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000764 set_serp_klm(d, controlK, controlL, controlM);
caryclark8dd31cf2014-12-12 09:11:23 -0800765 } else if (kLoop_SkCubicType == cType) {
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000766 set_loop_klm(d, controlK, controlL, controlM);
caryclark8dd31cf2014-12-12 09:11:23 -0800767 } else if (kCusp_SkCubicType == cType) {
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000768 SkASSERT(0.f == d[0]);
769 set_cusp_klm(d, controlK, controlL, controlM);
caryclark8dd31cf2014-12-12 09:11:23 -0800770 } else if (kQuadratic_SkCubicType == cType) {
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000771 set_quadratic_klm(d, controlK, controlL, controlM);
772 }
773
774 calc_cubic_klm(src, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
775 }
776 return chop_count + 1;
777}
778
779void GrPathUtils::getCubicKLM(const SkPoint p[4], SkScalar klm[9]) {
780 SkScalar d[3];
caryclark8dd31cf2014-12-12 09:11:23 -0800781 SkCubicType cType = SkClassifyCubic(p, d);
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000782
783 SkScalar controlK[4];
784 SkScalar controlL[4];
785 SkScalar controlM[4];
786
caryclark8dd31cf2014-12-12 09:11:23 -0800787 if (kSerpentine_SkCubicType == cType || (kCusp_SkCubicType == cType && 0.f != d[0])) {
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000788 set_serp_klm(d, controlK, controlL, controlM);
caryclark8dd31cf2014-12-12 09:11:23 -0800789 } else if (kLoop_SkCubicType == cType) {
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000790 set_loop_klm(d, controlK, controlL, controlM);
caryclark8dd31cf2014-12-12 09:11:23 -0800791 } else if (kCusp_SkCubicType == cType) {
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000792 SkASSERT(0.f == d[0]);
793 set_cusp_klm(d, controlK, controlL, controlM);
caryclark8dd31cf2014-12-12 09:11:23 -0800794 } else if (kQuadratic_SkCubicType == cType) {
commit-bot@chromium.org858638d2013-08-20 14:45:45 +0000795 set_quadratic_klm(d, controlK, controlL, controlM);
796 }
797
798 calc_cubic_klm(p, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
799}