tomhudson@google.com | 95ad155 | 2012-02-14 18:28:54 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2012 The Android Open Source Project |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include <tmmintrin.h> // SSSE3 |
| 9 | #include "SkBitmapProcState_opts_SSSE3.h" |
| 10 | #include "SkUtils.h" |
| 11 | |
| 12 | // adding anonymous namespace seemed to force gcc to inline directly the |
| 13 | // instantiation, instead of creating the functions |
| 14 | // S32_generic_D32_filter_DX_SSSE3<true> and |
| 15 | // S32_generic_D32_filter_DX_SSSE3<false> which were then called by the |
| 16 | // external functions. |
| 17 | namespace { |
| 18 | // In this file, variations for alpha and non alpha versions are implemented |
| 19 | // with a template, as it makes the code more compact and a bit easier to |
| 20 | // maintain, while making the compiler generate the same exact code as with |
| 21 | // two functions that only differ by a few lines. |
| 22 | |
| 23 | |
| 24 | // Prepare all necessary constants for a round of processing for two pixel |
| 25 | // pairs. |
| 26 | // @param xy is the location where the xy parameters for four pixels should be |
| 27 | // read from. It is identical in concept with argument two of |
| 28 | // S32_{opaque}_D32_filter_DX methods. |
| 29 | // @param mask_3FFF vector of 32 bit constants containing 3FFF, |
| 30 | // suitable to mask the bottom 14 bits of a XY value. |
| 31 | // @param mask_000F vector of 32 bit constants containing 000F, |
| 32 | // suitable to mask the bottom 4 bits of a XY value. |
| 33 | // @param sixteen_8bit vector of 8 bit components containing the value 16. |
| 34 | // @param mask_dist_select vector of 8 bit components containing the shuffling |
| 35 | // parameters to reorder x[0-3] parameters. |
| 36 | // @param all_x_result vector of 8 bit components that will contain the |
| 37 | // (4x(x3), 4x(x2), 4x(x1), 4x(x0)) upon return. |
| 38 | // @param sixteen_minus_x vector of 8 bit components, containing |
| 39 | // (4x(16 - x3), 4x(16 - x2), 4x(16 - x1), 4x(16 - x0)) |
| 40 | inline void PrepareConstantsTwoPixelPairs(const uint32_t* xy, |
| 41 | __m128i mask_3FFF, |
| 42 | __m128i mask_000F, |
| 43 | __m128i sixteen_8bit, |
| 44 | __m128i mask_dist_select, |
| 45 | __m128i* all_x_result, |
| 46 | __m128i* sixteen_minus_x, |
| 47 | int* x0, |
| 48 | int* x1) { |
| 49 | const __m128i xx = _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy)); |
| 50 | |
| 51 | // 4 delta X |
| 52 | // (x03, x02, x01, x00) |
| 53 | const __m128i x0_wide = _mm_srli_epi32(xx, 18); |
| 54 | // (x13, x12, x11, x10) |
| 55 | const __m128i x1_wide = _mm_and_si128(xx, mask_3FFF); |
| 56 | |
| 57 | _mm_storeu_si128(reinterpret_cast<__m128i *>(x0), x0_wide); |
| 58 | _mm_storeu_si128(reinterpret_cast<__m128i *>(x1), x1_wide); |
| 59 | |
| 60 | __m128i all_x = _mm_and_si128(_mm_srli_epi32(xx, 14), mask_000F); |
| 61 | |
| 62 | // (4x(x3), 4x(x2), 4x(x1), 4x(x0)) |
| 63 | all_x = _mm_shuffle_epi8(all_x, mask_dist_select); |
| 64 | |
| 65 | *all_x_result = all_x; |
| 66 | // (4x(16-x3), 4x(16-x2), 4x(16-x1), 4x(16-x0)) |
| 67 | *sixteen_minus_x = _mm_sub_epi8(sixteen_8bit, all_x); |
| 68 | } |
| 69 | |
| 70 | // Helper function used when processing one pixel pair. |
| 71 | // @param pixel0..3 are the four input pixels |
| 72 | // @param scale_x vector of 8 bit components to multiply the pixel[0:3]. This |
| 73 | // will contain (4x(x1, 16-x1), 4x(x0, 16-x0)) |
| 74 | // or (4x(x3, 16-x3), 4x(x2, 16-x2)) |
| 75 | // @return a vector of 16 bit components containing: |
| 76 | // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) |
| 77 | inline __m128i ProcessPixelPairHelper(uint32_t pixel0, |
| 78 | uint32_t pixel1, |
| 79 | uint32_t pixel2, |
| 80 | uint32_t pixel3, |
| 81 | __m128i scale_x) { |
| 82 | __m128i a0, a1, a2, a3; |
| 83 | // Load 2 pairs of pixels |
| 84 | a0 = _mm_cvtsi32_si128(pixel0); |
| 85 | a1 = _mm_cvtsi32_si128(pixel1); |
| 86 | |
| 87 | // Interleave pixels. |
| 88 | // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) |
| 89 | a0 = _mm_unpacklo_epi8(a0, a1); |
| 90 | |
| 91 | a2 = _mm_cvtsi32_si128(pixel2); |
| 92 | a3 = _mm_cvtsi32_si128(pixel3); |
| 93 | // (0, 0, 0, 0, 0, 0, 0, 0, Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2) |
| 94 | a2 = _mm_unpacklo_epi8(a2, a3); |
| 95 | |
| 96 | // two pairs of pixel pairs, interleaved. |
| 97 | // (Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2, |
| 98 | // Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) |
| 99 | a0 = _mm_unpacklo_epi64(a0, a2); |
| 100 | |
| 101 | // multiply and sum to 16 bit components. |
| 102 | // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) |
| 103 | // At that point, we use up a bit less than 12 bits for each 16 bit |
| 104 | // component: |
| 105 | // All components are less than 255. So, |
| 106 | // C0 * (16 - x) + C1 * x <= 255 * (16 - x) + 255 * x = 255 * 16. |
| 107 | return _mm_maddubs_epi16(a0, scale_x); |
| 108 | } |
| 109 | |
| 110 | // Scale back the results after multiplications to the [0:255] range, and scale |
| 111 | // by alpha when has_alpha is true. |
| 112 | // Depending on whether one set or two sets of multiplications had been applied, |
| 113 | // the results have to be shifted by four places (dividing by 16), or shifted |
| 114 | // by eight places (dividing by 256), since each multiplication is by a quantity |
| 115 | // in the range [0:16]. |
| 116 | template<bool has_alpha, int scale> |
| 117 | inline __m128i ScaleFourPixels(__m128i pixels, |
| 118 | __m128i alpha) { |
| 119 | // Divide each 16 bit component by 16 (or 256 depending on scale). |
| 120 | pixels = _mm_srli_epi16(pixels, scale); |
| 121 | |
| 122 | if (has_alpha) { |
| 123 | // Multiply by alpha. |
| 124 | pixels = _mm_mullo_epi16(pixels, alpha); |
| 125 | |
| 126 | // Divide each 16 bit component by 256. |
| 127 | pixels = _mm_srli_epi16(pixels, 8); |
| 128 | } |
| 129 | return pixels; |
| 130 | } |
| 131 | |
| 132 | // Wrapper to calculate two output pixels from four input pixels. The |
| 133 | // arguments are the same as ProcessPixelPairHelper. Technically, there are |
| 134 | // eight input pixels, but since sub_y == 0, the factors applied to half of the |
| 135 | // pixels is zero (sub_y), and are therefore omitted here to save on some |
| 136 | // processing. |
| 137 | // @param alpha when has_alpha is true, scale all resulting components by this |
| 138 | // value. |
| 139 | // @return a vector of 16 bit components containing: |
| 140 | // ((Aa2 * (16 - x1) + Aa3 * x1) * alpha, ..., |
| 141 | // (Ra0 * (16 - x0) + Ra1 * x0) * alpha) (when has_alpha is true) |
| 142 | // otherwise |
| 143 | // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) |
| 144 | // In both cases, the results are renormalized (divided by 16) to match the |
| 145 | // expected formats when storing back the results into memory. |
| 146 | template<bool has_alpha> |
| 147 | inline __m128i ProcessPixelPairZeroSubY(uint32_t pixel0, |
| 148 | uint32_t pixel1, |
| 149 | uint32_t pixel2, |
| 150 | uint32_t pixel3, |
| 151 | __m128i scale_x, |
| 152 | __m128i alpha) { |
| 153 | __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3, |
| 154 | scale_x); |
| 155 | return ScaleFourPixels<has_alpha, 4>(sum, alpha); |
| 156 | } |
| 157 | |
| 158 | // Same as ProcessPixelPairZeroSubY, expect processing one output pixel at a |
| 159 | // time instead of two. As in the above function, only two pixels are needed |
| 160 | // to generate a single pixel since sub_y == 0. |
| 161 | // @return same as ProcessPixelPairZeroSubY, except that only the bottom 4 |
| 162 | // 16 bit components are set. |
| 163 | template<bool has_alpha> |
| 164 | inline __m128i ProcessOnePixelZeroSubY(uint32_t pixel0, |
| 165 | uint32_t pixel1, |
| 166 | __m128i scale_x, |
| 167 | __m128i alpha) { |
| 168 | __m128i a0 = _mm_cvtsi32_si128(pixel0); |
| 169 | __m128i a1 = _mm_cvtsi32_si128(pixel1); |
| 170 | |
| 171 | // Interleave |
| 172 | a0 = _mm_unpacklo_epi8(a0, a1); |
| 173 | |
| 174 | // (a0 * (16-x) + a1 * x) |
| 175 | __m128i sum = _mm_maddubs_epi16(a0, scale_x); |
| 176 | |
| 177 | return ScaleFourPixels<has_alpha, 4>(sum, alpha); |
| 178 | } |
| 179 | |
| 180 | // Methods when sub_y != 0 |
| 181 | |
| 182 | |
| 183 | // Same as ProcessPixelPairHelper, except that the values are scaled by y. |
| 184 | // @param y vector of 16 bit components containing 'y' values. There are two |
| 185 | // cases in practice, where y will contain the sub_y constant, or will |
| 186 | // contain the 16 - sub_y constant. |
| 187 | // @return vector of 16 bit components containing: |
| 188 | // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , y * (Ra0 * (16 - x0) + Ra1 * x0)) |
| 189 | inline __m128i ProcessPixelPair(uint32_t pixel0, |
| 190 | uint32_t pixel1, |
| 191 | uint32_t pixel2, |
| 192 | uint32_t pixel3, |
| 193 | __m128i scale_x, |
| 194 | __m128i y) { |
| 195 | __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3, |
| 196 | scale_x); |
| 197 | |
| 198 | // first row times 16-y or y depending on whether 'y' represents one or |
| 199 | // the other. |
| 200 | // Values will be up to 255 * 16 * 16 = 65280. |
| 201 | // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , |
| 202 | // y * (Ra0 * (16 - x0) + Ra1 * x0)) |
| 203 | sum = _mm_mullo_epi16(sum, y); |
| 204 | |
| 205 | return sum; |
| 206 | } |
| 207 | |
| 208 | // Process two pixel pairs out of eight input pixels. |
| 209 | // In other methods, the distinct pixels are passed one by one, but in this |
| 210 | // case, the rows, and index offsets to the pixels into the row are passed |
| 211 | // to generate the 8 pixels. |
| 212 | // @param row0..1 top and bottom row where to find input pixels. |
| 213 | // @param x0..1 offsets into the row for all eight input pixels. |
| 214 | // @param all_y vector of 16 bit components containing the constant sub_y |
| 215 | // @param neg_y vector of 16 bit components containing the constant 16 - sub_y |
| 216 | // @param alpha vector of 16 bit components containing the alpha value to scale |
| 217 | // the results by, when has_alpha is true. |
| 218 | // @return |
| 219 | // (alpha * ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) + |
| 220 | // y * (Aa2' * (16-x1) + Aa3' * x1)), |
| 221 | // ... |
| 222 | // alpha * ((16-y) * (Ra0 * (16-x0) + Ra1 * x0) + |
| 223 | // y * (Ra0' * (16-x0) + Ra1' * x0)) |
| 224 | // With the factor alpha removed when has_alpha is false. |
| 225 | // The values are scaled back to 16 bit components, but with only the bottom |
| 226 | // 8 bits being set. |
| 227 | template<bool has_alpha> |
| 228 | inline __m128i ProcessTwoPixelPairs(const uint32_t* row0, |
| 229 | const uint32_t* row1, |
| 230 | const int* x0, |
| 231 | const int* x1, |
| 232 | __m128i scale_x, |
| 233 | __m128i all_y, |
| 234 | __m128i neg_y, |
| 235 | __m128i alpha) { |
| 236 | __m128i sum0 = ProcessPixelPair( |
| 237 | row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]], |
| 238 | scale_x, neg_y); |
| 239 | __m128i sum1 = ProcessPixelPair( |
| 240 | row1[x0[0]], row1[x1[0]], row1[x0[1]], row1[x1[1]], |
| 241 | scale_x, all_y); |
| 242 | |
| 243 | // 2 samples fully summed. |
| 244 | // ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) + |
| 245 | // y * (Aa2' * (16-x1) + Aa3' * x1), |
| 246 | // ... |
| 247 | // (16-y) * (Ra0 * (16 - x0) + Ra1 * x0)) + |
| 248 | // y * (Ra0' * (16-x0) + Ra1' * x0)) |
| 249 | // Each component, again can be at most 256 * 255 = 65280, so no overflow. |
| 250 | sum0 = _mm_add_epi16(sum0, sum1); |
| 251 | |
| 252 | return ScaleFourPixels<has_alpha, 8>(sum0, alpha); |
| 253 | } |
| 254 | |
| 255 | |
| 256 | // Same as ProcessPixelPair, except that performing the math one output pixel |
| 257 | // at a time. This means that only the bottom four 16 bit components are set. |
| 258 | inline __m128i ProcessOnePixel(uint32_t pixel0, uint32_t pixel1, |
| 259 | __m128i scale_x, __m128i y) { |
| 260 | __m128i a0 = _mm_cvtsi32_si128(pixel0); |
| 261 | __m128i a1 = _mm_cvtsi32_si128(pixel1); |
| 262 | |
| 263 | // Interleave |
| 264 | // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) |
| 265 | a0 = _mm_unpacklo_epi8(a0, a1); |
| 266 | |
| 267 | // (a0 * (16-x) + a1 * x) |
| 268 | a0 = _mm_maddubs_epi16(a0, scale_x); |
| 269 | |
| 270 | // scale row by y |
| 271 | return _mm_mullo_epi16(a0, y); |
| 272 | } |
| 273 | |
| 274 | // Notes about the various tricks that are used in this implementation: |
| 275 | // - specialization for sub_y == 0. |
| 276 | // Statistically, 1/16th of the samples will have sub_y == 0. When this |
| 277 | // happens, the math goes from: |
| 278 | // (16 - x)*(16 - y)*a00 + x*(16 - y)*a01 + (16 - x)*y*a10 + x*y*a11 |
| 279 | // to: |
| 280 | // (16 - x)*a00 + 16*x*a01 |
| 281 | // much simpler. The simplification makes for an easy boost in performance. |
| 282 | // - calculating 4 output pixels at a time. |
| 283 | // This allows loading the coefficients x0 and x1 and shuffling them to the |
| 284 | // optimum location only once per loop, instead of twice per loop. |
| 285 | // This also allows us to store the four pixels with a single store. |
| 286 | // - Use of 2 special SSSE3 instructions (comparatively to the SSE2 instruction |
| 287 | // version): |
| 288 | // _mm_shuffle_epi8 : this allows us to spread the coefficients x[0-3] loaded |
| 289 | // in 32 bit values to 8 bit values repeated four times. |
| 290 | // _mm_maddubs_epi16 : this allows us to perform multiplications and additions |
| 291 | // in one swoop of 8bit values storing the results in 16 bit values. This |
| 292 | // instruction is actually crucial for the speed of the implementation since |
| 293 | // as one can see in the SSE2 implementation, all inputs have to be used as |
| 294 | // 16 bits because the results are 16 bits. This basically allows us to process |
| 295 | // twice as many pixel components per iteration. |
| 296 | // |
| 297 | // As a result, this method behaves faster than the traditional SSE2. The actual |
| 298 | // boost varies greatly on the underlying architecture. |
| 299 | template<bool has_alpha> |
| 300 | void S32_generic_D32_filter_DX_SSSE3(const SkBitmapProcState& s, |
| 301 | const uint32_t* xy, |
| 302 | int count, uint32_t* colors) { |
| 303 | SkASSERT(count > 0 && colors != NULL); |
| 304 | SkASSERT(s.fDoFilter); |
| 305 | SkASSERT(s.fBitmap->config() == SkBitmap::kARGB_8888_Config); |
| 306 | if (has_alpha) { |
| 307 | SkASSERT(s.fAlphaScale < 256); |
| 308 | } else { |
| 309 | SkASSERT(s.fAlphaScale == 256); |
| 310 | } |
| 311 | |
| 312 | const uint8_t* src_addr = |
| 313 | static_cast<const uint8_t*>(s.fBitmap->getPixels()); |
| 314 | const unsigned rb = s.fBitmap->rowBytes(); |
| 315 | const uint32_t XY = *xy++; |
| 316 | const unsigned y0 = XY >> 14; |
| 317 | const uint32_t* row0 = |
| 318 | reinterpret_cast<const uint32_t*>(src_addr + (y0 >> 4) * rb); |
| 319 | const uint32_t* row1 = |
| 320 | reinterpret_cast<const uint32_t*>(src_addr + (XY & 0x3FFF) * rb); |
| 321 | const unsigned sub_y = y0 & 0xF; |
| 322 | |
| 323 | // vector constants |
| 324 | const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12, |
| 325 | 8, 8, 8, 8, |
| 326 | 4, 4, 4, 4, |
| 327 | 0, 0, 0, 0); |
| 328 | const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF); |
| 329 | const __m128i mask_000F = _mm_set1_epi32(0x000F); |
| 330 | const __m128i sixteen_8bit = _mm_set1_epi8(16); |
| 331 | // (0, 0, 0, 0, 0, 0, 0, 0) |
| 332 | const __m128i zero = _mm_setzero_si128(); |
| 333 | |
| 334 | __m128i alpha; |
| 335 | if (has_alpha) |
| 336 | // 8x(alpha) |
| 337 | alpha = _mm_set1_epi16(s.fAlphaScale); |
| 338 | |
| 339 | if (sub_y == 0) { |
| 340 | // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small) |
| 341 | while (count > 3) { |
| 342 | count -= 4; |
| 343 | |
| 344 | int x0[4]; |
| 345 | int x1[4]; |
| 346 | __m128i all_x, sixteen_minus_x; |
| 347 | PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F, |
| 348 | sixteen_8bit, mask_dist_select, |
| 349 | &all_x, &sixteen_minus_x, x0, x1); |
| 350 | xy += 4; |
| 351 | |
| 352 | // First pair of pixel pairs. |
| 353 | // (4x(x1, 16-x1), 4x(x0, 16-x0)) |
| 354 | __m128i scale_x; |
| 355 | scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x); |
| 356 | |
| 357 | __m128i sum0 = ProcessPixelPairZeroSubY<has_alpha>( |
| 358 | row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]], |
| 359 | scale_x, alpha); |
| 360 | |
| 361 | // second pair of pixel pairs |
| 362 | // (4x (x3, 16-x3), 4x (16-x2, x2)) |
| 363 | scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x); |
| 364 | |
| 365 | __m128i sum1 = ProcessPixelPairZeroSubY<has_alpha>( |
| 366 | row0[x0[2]], row0[x1[2]], row0[x0[3]], row0[x1[3]], |
| 367 | scale_x, alpha); |
| 368 | |
| 369 | // Pack lower 4 16 bit values of sum into lower 4 bytes. |
| 370 | sum0 = _mm_packus_epi16(sum0, sum1); |
| 371 | |
| 372 | // Extract low int and store. |
| 373 | _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0); |
| 374 | |
| 375 | colors += 4; |
| 376 | } |
| 377 | |
| 378 | // handle remainder |
| 379 | while (count-- > 0) { |
| 380 | uint32_t xx = *xy++; // x0:14 | 4 | x1:14 |
| 381 | unsigned x0 = xx >> 18; |
| 382 | unsigned x1 = xx & 0x3FFF; |
| 383 | |
| 384 | // 16x(x) |
| 385 | const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F); |
| 386 | |
| 387 | // (16x(16-x)) |
| 388 | __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); |
| 389 | |
| 390 | scale_x = _mm_unpacklo_epi8(scale_x, all_x); |
| 391 | |
| 392 | __m128i sum = ProcessOnePixelZeroSubY<has_alpha>( |
| 393 | row0[x0], row0[x1], |
| 394 | scale_x, alpha); |
| 395 | |
| 396 | // Pack lower 4 16 bit values of sum into lower 4 bytes. |
| 397 | sum = _mm_packus_epi16(sum, zero); |
| 398 | |
| 399 | // Extract low int and store. |
| 400 | *colors++ = _mm_cvtsi128_si32(sum); |
| 401 | } |
| 402 | } else { // more general case, y != 0 |
| 403 | // 8x(16) |
| 404 | const __m128i sixteen_16bit = _mm_set1_epi16(16); |
| 405 | |
| 406 | // 8x (y) |
| 407 | const __m128i all_y = _mm_set1_epi16(sub_y); |
| 408 | |
| 409 | // 8x (16-y) |
| 410 | const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y); |
| 411 | |
| 412 | // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small) |
| 413 | while (count > 3) { |
| 414 | count -= 4; |
| 415 | |
| 416 | int x0[4]; |
| 417 | int x1[4]; |
| 418 | __m128i all_x, sixteen_minus_x; |
| 419 | PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F, |
| 420 | sixteen_8bit, mask_dist_select, |
| 421 | &all_x, &sixteen_minus_x, x0, x1); |
| 422 | xy += 4; |
| 423 | |
| 424 | // First pair of pixel pairs |
| 425 | // (4x(x1, 16-x1), 4x(x0, 16-x0)) |
| 426 | __m128i scale_x; |
| 427 | scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x); |
| 428 | |
| 429 | __m128i sum0 = ProcessTwoPixelPairs<has_alpha>( |
| 430 | row0, row1, x0, x1, |
| 431 | scale_x, all_y, neg_y, alpha); |
| 432 | |
| 433 | // second pair of pixel pairs |
| 434 | // (4x (x3, 16-x3), 4x (16-x2, x2)) |
| 435 | scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x); |
| 436 | |
| 437 | __m128i sum1 = ProcessTwoPixelPairs<has_alpha>( |
| 438 | row0, row1, x0 + 2, x1 + 2, |
| 439 | scale_x, all_y, neg_y, alpha); |
| 440 | |
| 441 | // Do the final packing of the two results |
| 442 | |
| 443 | // Pack lower 4 16 bit values of sum into lower 4 bytes. |
| 444 | sum0 = _mm_packus_epi16(sum0, sum1); |
| 445 | |
| 446 | // Extract low int and store. |
| 447 | _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0); |
| 448 | |
| 449 | colors += 4; |
| 450 | } |
| 451 | |
| 452 | // Left over. |
| 453 | while (count-- > 0) { |
| 454 | const uint32_t xx = *xy++; // x0:14 | 4 | x1:14 |
| 455 | const unsigned x0 = xx >> 18; |
| 456 | const unsigned x1 = xx & 0x3FFF; |
| 457 | |
| 458 | // 16x(x) |
| 459 | const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F); |
| 460 | |
| 461 | // 16x (16-x) |
| 462 | __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); |
| 463 | |
| 464 | // (8x (x, 16-x)) |
| 465 | scale_x = _mm_unpacklo_epi8(scale_x, all_x); |
| 466 | |
| 467 | // first row. |
| 468 | __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y); |
| 469 | // second row. |
| 470 | __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y); |
| 471 | |
| 472 | // Add both rows for full sample |
| 473 | sum0 = _mm_add_epi16(sum0, sum1); |
| 474 | |
| 475 | sum0 = ScaleFourPixels<has_alpha, 8>(sum0, alpha); |
| 476 | |
| 477 | // Pack lower 4 16 bit values of sum into lower 4 bytes. |
| 478 | sum0 = _mm_packus_epi16(sum0, zero); |
| 479 | |
| 480 | // Extract low int and store. |
| 481 | *colors++ = _mm_cvtsi128_si32(sum0); |
| 482 | } |
| 483 | } |
| 484 | } |
| 485 | } // namepace |
| 486 | |
| 487 | void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s, |
| 488 | const uint32_t* xy, |
| 489 | int count, uint32_t* colors) { |
| 490 | S32_generic_D32_filter_DX_SSSE3<false>(s, xy, count, colors); |
| 491 | } |
| 492 | |
| 493 | void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s, |
| 494 | const uint32_t* xy, |
| 495 | int count, uint32_t* colors) { |
| 496 | S32_generic_D32_filter_DX_SSSE3<true>(s, xy, count, colors); |
| 497 | } |