blob: 82a16f052254686bccd1be4e6efac828ad8b0b3e [file] [log] [blame]
bungeman@google.com85669f92011-06-17 13:58:14 +00001'''
2Created on May 19, 2011
3
4@author: bungeman
5'''
6
7import re
8import math
9
10class BenchDataPoint:
11 """A single data point produced by bench.
12
13 (str, str, str, float, {str:str})"""
14 def __init__(self, bench, config, time_type, time, settings):
15 self.bench = bench
16 self.config = config
17 self.time_type = time_type
18 self.time = time
19 self.settings = settings
20
21 def __repr__(self):
22 return "BenchDataPoint(%s, %s, %s, %s, %s)" % (
23 str(self.bench),
24 str(self.config),
25 str(self.time_type),
26 str(self.time),
27 str(self.settings),
28 )
29
30class _ExtremeType(object):
31 """Instances of this class compare greater or less than other objects."""
32 def __init__(self, cmpr, rep):
33 object.__init__(self)
34 self._cmpr = cmpr
35 self._rep = rep
36
37 def __cmp__(self, other):
38 if isinstance(other, self.__class__) and other._cmpr == self._cmpr:
39 return 0
40 return self._cmpr
41
42 def __repr__(self):
43 return self._rep
44
45Max = _ExtremeType(1, "Max")
46Min = _ExtremeType(-1, "Min")
47
bensong@google.comb6204b12012-08-16 20:49:28 +000048class _ListAlgorithm(object):
49 """Algorithm for selecting the representation value from a given list.
50 representation is one of 'avg', 'min', 'med', '25th' (average, minimum,
51 median, 25th percentile)"""
52 def __init__(self, data, representation=None):
53 if not representation:
54 representation = 'avg' # default algorithm is average
55 self._data = data
56 self._len = len(data)
57 if representation == 'avg':
58 self._rep = sum(self._data) / self._len
59 else:
60 self._data.sort()
61 if representation == 'min':
62 self._rep = self._data[0]
63 else:
64 # for percentiles, we use the value below which x% of values are
65 # found, which allows for better detection of quantum behaviors.
66 if representation == 'med':
67 x = int(round(0.5 * self._len + 0.5))
68 elif representation == '25th':
69 x = int(round(0.25 * self._len + 0.5))
70 else:
71 raise Exception("invalid representation algorithm %s!" %
72 representation)
73 self._rep = self._data[x - 1]
74
75 def compute(self):
76 return self._rep
77
78def parse(settings, lines, representation='avg'):
bungeman@google.com85669f92011-06-17 13:58:14 +000079 """Parses bench output into a useful data structure.
80
bensong@google.com87348162012-08-15 17:31:46 +000081 ({str:str}, __iter__ -> str) -> [BenchDataPoint]
bensong@google.comb6204b12012-08-16 20:49:28 +000082 representation should match one of those defined in class _ListAlgorithm."""
bungeman@google.com85669f92011-06-17 13:58:14 +000083
84 benches = []
85 current_bench = None
86 setting_re = '([^\s=]+)(?:=(\S+))?'
87 settings_re = 'skia bench:((?:\s+' + setting_re + ')*)'
88 bench_re = 'running bench (?:\[\d+ \d+\] )?\s*(\S+)'
bensong@google.comaf3d79a2012-07-02 20:48:51 +000089 time_re = '(?:(\w*)msecs = )?\s*((?:\d+\.\d+)(?:,\d+\.\d+)*)'
bungeman@google.com85669f92011-06-17 13:58:14 +000090 config_re = '(\S+): ((?:' + time_re + '\s+)+)'
91
92 for line in lines:
93
94 #see if this line is a settings line
95 settingsMatch = re.search(settings_re, line)
96 if (settingsMatch):
97 settings = dict(settings)
98 for settingMatch in re.finditer(setting_re, settingsMatch.group(1)):
99 if (settingMatch.group(2)):
100 settings[settingMatch.group(1)] = settingMatch.group(2)
101 else:
102 settings[settingMatch.group(1)] = True
103
104 #see if this line starts a new bench
105 new_bench = re.search(bench_re, line)
106 if new_bench:
107 current_bench = new_bench.group(1)
108
109 #add configs on this line to the current bench
110 if current_bench:
111 for new_config in re.finditer(config_re, line):
112 current_config = new_config.group(1)
113 times = new_config.group(2)
114 for new_time in re.finditer(time_re, times):
115 current_time_type = new_time.group(1)
bensong@google.comead2b392012-07-02 21:49:30 +0000116 iters = [float(i) for i in
bensong@google.comaf3d79a2012-07-02 20:48:51 +0000117 new_time.group(2).strip().split(',')]
bungeman@google.com85669f92011-06-17 13:58:14 +0000118 benches.append(BenchDataPoint(
119 current_bench
120 , current_config
121 , current_time_type
bensong@google.comb6204b12012-08-16 20:49:28 +0000122 , _ListAlgorithm(iters, representation).compute()
bungeman@google.com85669f92011-06-17 13:58:14 +0000123 , settings))
124
125 return benches
126
127class LinearRegression:
128 """Linear regression data based on a set of data points.
129
130 ([(Number,Number)])
131 There must be at least two points for this to make sense."""
132 def __init__(self, points):
133 n = len(points)
134 max_x = Min
135 min_x = Max
136
137 Sx = 0.0
138 Sy = 0.0
139 Sxx = 0.0
140 Sxy = 0.0
141 Syy = 0.0
142 for point in points:
143 x = point[0]
144 y = point[1]
145 max_x = max(max_x, x)
146 min_x = min(min_x, x)
147
148 Sx += x
149 Sy += y
150 Sxx += x*x
151 Sxy += x*y
152 Syy += y*y
153
senorblanco@chromium.orgc5e1ed82012-09-20 19:05:33 +0000154 denom = n*Sxx - Sx*Sx
155 if (denom != 0.0):
156 B = (n*Sxy - Sx*Sy) / denom
157 else:
158 B = 0.0
bungeman@google.com85669f92011-06-17 13:58:14 +0000159 a = (1.0/n)*(Sy - B*Sx)
160
161 se2 = 0
162 sB2 = 0
163 sa2 = 0
senorblanco@chromium.orgc5e1ed82012-09-20 19:05:33 +0000164 if (n >= 3 and denom != 0.0):
165 se2 = (1.0/(n*(n-2)) * (n*Syy - Sy*Sy - B*B*denom))
166 sB2 = (n*se2) / denom
bungeman@google.com85669f92011-06-17 13:58:14 +0000167 sa2 = sB2 * (1.0/n) * Sxx
168
169
170 self.slope = B
171 self.intercept = a
172 self.serror = math.sqrt(max(0, se2))
173 self.serror_slope = math.sqrt(max(0, sB2))
174 self.serror_intercept = math.sqrt(max(0, sa2))
175 self.max_x = max_x
176 self.min_x = min_x
177
178 def __repr__(self):
179 return "LinearRegression(%s, %s, %s, %s, %s)" % (
180 str(self.slope),
181 str(self.intercept),
182 str(self.serror),
183 str(self.serror_slope),
184 str(self.serror_intercept),
185 )
186
187 def find_min_slope(self):
188 """Finds the minimal slope given one standard deviation."""
189 slope = self.slope
190 intercept = self.intercept
191 error = self.serror
192 regr_start = self.min_x
193 regr_end = self.max_x
194 regr_width = regr_end - regr_start
195
196 if slope < 0:
197 lower_left_y = slope*regr_start + intercept - error
198 upper_right_y = slope*regr_end + intercept + error
199 return min(0, (upper_right_y - lower_left_y) / regr_width)
200
201 elif slope > 0:
202 upper_left_y = slope*regr_start + intercept + error
203 lower_right_y = slope*regr_end + intercept - error
204 return max(0, (lower_right_y - upper_left_y) / regr_width)
205
206 return 0
epoger@google.comc71174d2011-08-08 17:19:23 +0000207
208def CreateRevisionLink(revision_number):
209 """Returns HTML displaying the given revision number and linking to
210 that revision's change page at code.google.com, e.g.
211 http://code.google.com/p/skia/source/detail?r=2056
212 """
213 return '<a href="http://code.google.com/p/skia/source/detail?r=%s">%s</a>'%(
214 revision_number, revision_number)
senorblanco@chromium.orgc5e1ed82012-09-20 19:05:33 +0000215
216def main():
217 foo = [[0.0, 0.0], [0.0, 1.0], [0.0, 2.0], [0.0, 3.0]]
218 LinearRegression(foo)
219
220if __name__ == "__main__":
221 main()