blob: 54464080ad36e80f2785a722f460ded9e39cdbb5 [file] [log] [blame]
Chris Dalton419a94d2017-08-28 10:24:22 -06001/*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrCCPRGeometry.h"
9
10#include "GrTypes.h"
Chris Dalton7f578bf2017-09-05 16:46:48 -060011#include "GrPathUtils.h"
Chris Dalton419a94d2017-08-28 10:24:22 -060012#include <algorithm>
13#include <cmath>
14#include <cstdlib>
15
16// We convert between SkPoint and Sk2f freely throughout this file.
17GR_STATIC_ASSERT(SK_SCALAR_IS_FLOAT);
18GR_STATIC_ASSERT(2 * sizeof(float) == sizeof(SkPoint));
19GR_STATIC_ASSERT(0 == offsetof(SkPoint, fX));
20
Chris Daltonc1e59632017-09-05 00:30:07 -060021void GrCCPRGeometry::beginPath() {
22 SkASSERT(!fBuildingContour);
23 fVerbs.push_back(Verb::kBeginPath);
24}
25
26void GrCCPRGeometry::beginContour(const SkPoint& devPt) {
27 SkASSERT(!fBuildingContour);
28
29 fCurrFanPoint = fCurrAnchorPoint = devPt;
30
31 // Store the current verb count in the fTriangles field for now. When we close the contour we
32 // will use this value to calculate the actual number of triangles in its fan.
33 fCurrContourTallies = {fVerbs.count(), 0, 0, 0};
34
35 fPoints.push_back(devPt);
36 fVerbs.push_back(Verb::kBeginContour);
37
38 SkDEBUGCODE(fBuildingContour = true;)
39}
40
41void GrCCPRGeometry::lineTo(const SkPoint& devPt) {
42 SkASSERT(fBuildingContour);
Chris Dalton900cd052017-09-07 10:36:51 -060043 SkASSERT(fCurrFanPoint == fPoints.back());
Chris Daltonc1e59632017-09-05 00:30:07 -060044 fCurrFanPoint = devPt;
45 fPoints.push_back(devPt);
46 fVerbs.push_back(Verb::kLineTo);
47}
48
Chris Dalton419a94d2017-08-28 10:24:22 -060049static inline Sk2f normalize(const Sk2f& n) {
50 Sk2f nn = n*n;
51 return n * (nn + SkNx_shuffle<1,0>(nn)).rsqrt();
52}
53
54static inline float dot(const Sk2f& a, const Sk2f& b) {
55 float product[2];
56 (a * b).store(product);
57 return product[0] + product[1];
58}
59
Chris Dalton900cd052017-09-07 10:36:51 -060060static inline bool are_collinear(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) {
61 static constexpr float kFlatnessTolerance = 16; // 1/16 of a pixel.
62
63 // Area (times 2) of the triangle.
64 Sk2f a = (p0 - p1) * SkNx_shuffle<1,0>(p1 - p2);
65 a = (a - SkNx_shuffle<1,0>(a)).abs();
66
67 // Bounding box of the triangle.
68 Sk2f bbox0 = Sk2f::Min(Sk2f::Min(p0, p1), p2);
69 Sk2f bbox1 = Sk2f::Max(Sk2f::Max(p0, p1), p2);
70
71 // The triangle is linear if its area is within a fraction of the largest bounding box
72 // dimension, or else if its area is within a fraction of a pixel.
73 return (a * (kFlatnessTolerance/2) < Sk2f::Max(bbox1 - bbox0, 1)).anyTrue();
74}
75
Chris Dalton419a94d2017-08-28 10:24:22 -060076// Returns whether the (convex) curve segment is monotonic with respect to [endPt - startPt].
77static inline bool is_convex_curve_monotonic(const Sk2f& startPt, const Sk2f& startTan,
78 const Sk2f& endPt, const Sk2f& endTan) {
79 Sk2f v = endPt - startPt;
80 float dot0 = dot(startTan, v);
81 float dot1 = dot(endTan, v);
82
83 // A small, negative tolerance handles floating-point error in the case when one tangent
84 // approaches 0 length, meaning the (convex) curve segment is effectively a flat line.
85 float tolerance = -std::max(std::abs(dot0), std::abs(dot1)) * SK_ScalarNearlyZero;
86 return dot0 >= tolerance && dot1 >= tolerance;
87}
88
89static inline Sk2f lerp(const Sk2f& a, const Sk2f& b, const Sk2f& t) {
90 return SkNx_fma(t, b - a, a);
91}
92
Chris Daltonc1e59632017-09-05 00:30:07 -060093void GrCCPRGeometry::quadraticTo(const SkPoint& devP0, const SkPoint& devP1) {
94 SkASSERT(fBuildingContour);
Chris Dalton900cd052017-09-07 10:36:51 -060095 SkASSERT(fCurrFanPoint == fPoints.back());
Chris Daltonc1e59632017-09-05 00:30:07 -060096
97 Sk2f p0 = Sk2f::Load(&fCurrFanPoint);
98 Sk2f p1 = Sk2f::Load(&devP0);
99 Sk2f p2 = Sk2f::Load(&devP1);
100 fCurrFanPoint = devP1;
Chris Dalton419a94d2017-08-28 10:24:22 -0600101
Chris Dalton900cd052017-09-07 10:36:51 -0600102 // Don't send curves to the GPU if we know they are flat (or just very small).
103 if (are_collinear(p0, p1, p2)) {
104 p2.store(&fPoints.push_back());
105 fVerbs.push_back(Verb::kLineTo);
106 return;
107 }
108
Chris Dalton419a94d2017-08-28 10:24:22 -0600109 Sk2f tan0 = p1 - p0;
110 Sk2f tan1 = p2 - p1;
111 // This should almost always be this case for well-behaved curves in the real world.
112 if (is_convex_curve_monotonic(p0, tan0, p2, tan1)) {
Chris Daltonc1e59632017-09-05 00:30:07 -0600113 this->appendMonotonicQuadratic(p1, p2);
114 return;
Chris Dalton419a94d2017-08-28 10:24:22 -0600115 }
116
117 // Chop the curve into two segments with equal curvature. To do this we find the T value whose
118 // tangent is perpendicular to the vector that bisects tan0 and -tan1.
119 Sk2f n = normalize(tan0) - normalize(tan1);
120
121 // This tangent can be found where (dQ(t) dot n) = 0:
122 //
123 // 0 = (dQ(t) dot n) = | 2*t 1 | * | p0 - 2*p1 + p2 | * | n |
124 // | -2*p0 + 2*p1 | | . |
125 //
126 // = | 2*t 1 | * | tan1 - tan0 | * | n |
127 // | 2*tan0 | | . |
128 //
129 // = 2*t * ((tan1 - tan0) dot n) + (2*tan0 dot n)
130 //
131 // t = (tan0 dot n) / ((tan0 - tan1) dot n)
132 Sk2f dQ1n = (tan0 - tan1) * n;
133 Sk2f dQ0n = tan0 * n;
134 Sk2f t = (dQ0n + SkNx_shuffle<1,0>(dQ0n)) / (dQ1n + SkNx_shuffle<1,0>(dQ1n));
135 t = Sk2f::Min(Sk2f::Max(t, 0), 1); // Clamp for FP error.
136
137 Sk2f p01 = SkNx_fma(t, tan0, p0);
138 Sk2f p12 = SkNx_fma(t, tan1, p1);
139 Sk2f p012 = lerp(p01, p12, t);
140
Chris Daltonc1e59632017-09-05 00:30:07 -0600141 this->appendMonotonicQuadratic(p01, p012);
142 this->appendMonotonicQuadratic(p12, p2);
143}
Chris Dalton419a94d2017-08-28 10:24:22 -0600144
Chris Daltonc1e59632017-09-05 00:30:07 -0600145inline void GrCCPRGeometry::appendMonotonicQuadratic(const Sk2f& p1, const Sk2f& p2) {
146 p1.store(&fPoints.push_back());
147 p2.store(&fPoints.push_back());
148 fVerbs.push_back(Verb::kMonotonicQuadraticTo);
149 ++fCurrContourTallies.fQuadratics;
150}
151
Chris Dalton7f578bf2017-09-05 16:46:48 -0600152using ExcludedTerm = GrPathUtils::ExcludedTerm;
Chris Daltonc1e59632017-09-05 00:30:07 -0600153
Chris Dalton7f578bf2017-09-05 16:46:48 -0600154// Calculates the padding to apply around inflection points, in homogeneous parametric coordinates.
155//
156// More specifically, if the inflection point lies at C(t/s), then C((t +/- returnValue) / s) will
157// be the two points on the curve at which a square box with radius "padRadius" will have a corner
158// that touches the inflection point's tangent line.
159//
160// A serpentine cubic has two inflection points, so this method takes Sk2f and computes the padding
161// for both in SIMD.
162static inline Sk2f calc_inflect_homogeneous_padding(float padRadius, const Sk2f& t, const Sk2f& s,
163 const SkMatrix& CIT, ExcludedTerm skipTerm) {
164 SkASSERT(padRadius >= 0);
Chris Daltonc1e59632017-09-05 00:30:07 -0600165
Chris Dalton7f578bf2017-09-05 16:46:48 -0600166 Sk2f Clx = s*s*s;
167 Sk2f Cly = (ExcludedTerm::kLinearTerm == skipTerm) ? s*s*t*-3 : s*t*t*3;
168
169 Sk2f Lx = CIT[0] * Clx + CIT[3] * Cly;
170 Sk2f Ly = CIT[1] * Clx + CIT[4] * Cly;
171
172 float ret[2];
173 Sk2f bloat = padRadius * (Lx.abs() + Ly.abs());
174 (bloat * s >= 0).thenElse(bloat, -bloat).store(ret);
175
176 ret[0] = cbrtf(ret[0]);
177 ret[1] = cbrtf(ret[1]);
178 return Sk2f::Load(ret);
179}
180
181static inline void swap_if_greater(float& a, float& b) {
182 if (a > b) {
183 std::swap(a, b);
184 }
185}
186
187// Calculates all parameter values for a loop at which points a square box with radius "padRadius"
188// will have a corner that touches a tangent line from the intersection.
189//
190// T2 must contain the lesser parameter value of the loop intersection in its first component, and
191// the greater in its second.
192//
193// roots[0] will be filled with 1 or 3 sorted parameter values, representing the padding points
194// around the first tangent. roots[1] will be filled with the padding points for the second tangent.
195static inline void calc_loop_intersect_padding_pts(float padRadius, const Sk2f& T2,
196 const SkMatrix& CIT, ExcludedTerm skipTerm,
197 SkSTArray<3, float, true> roots[2]) {
198 SkASSERT(padRadius >= 0);
199 SkASSERT(T2[0] <= T2[1]);
200 SkASSERT(roots[0].empty());
201 SkASSERT(roots[1].empty());
202
203 Sk2f T1 = SkNx_shuffle<1,0>(T2);
204 Sk2f Cl = (ExcludedTerm::kLinearTerm == skipTerm) ? T2*-2 - T1 : T2*T2 + T2*T1*2;
205 Sk2f Lx = Cl * CIT[3] + CIT[0];
206 Sk2f Ly = Cl * CIT[4] + CIT[1];
207
208 Sk2f bloat = Sk2f(+.5f * padRadius, -.5f * padRadius) * (Lx.abs() + Ly.abs());
209 Sk2f q = (1.f/3) * (T2 - T1);
210
211 Sk2f qqq = q*q*q;
212 Sk2f discr = qqq*bloat*2 + bloat*bloat;
213
214 float numRoots[2], D[2];
215 (discr < 0).thenElse(3, 1).store(numRoots);
216 (T2 - q).store(D);
217
218 // Values for calculating one root.
219 float R[2], QQ[2];
220 if ((discr >= 0).anyTrue()) {
221 Sk2f r = qqq + bloat;
222 Sk2f s = r.abs() + discr.sqrt();
223 (r > 0).thenElse(-s, s).store(R);
224 (q*q).store(QQ);
Chris Daltonc1e59632017-09-05 00:30:07 -0600225 }
226
Chris Dalton7f578bf2017-09-05 16:46:48 -0600227 // Values for calculating three roots.
228 float P[2], cosTheta3[2];
229 if ((discr < 0).anyTrue()) {
230 (q.abs() * -2).store(P);
231 ((q >= 0).thenElse(1, -1) + bloat / qqq.abs()).store(cosTheta3);
Chris Daltonc1e59632017-09-05 00:30:07 -0600232 }
233
Chris Dalton7f578bf2017-09-05 16:46:48 -0600234 for (int i = 0; i < 2; ++i) {
235 if (1 == numRoots[i]) {
236 float A = cbrtf(R[i]);
237 float B = A != 0 ? QQ[i]/A : 0;
238 roots[i].push_back(A + B + D[i]);
Chris Daltonc1e59632017-09-05 00:30:07 -0600239 continue;
240 }
241
Chris Dalton7f578bf2017-09-05 16:46:48 -0600242 static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3;
243 float theta = std::acos(cosTheta3[i]) * (1.f/3);
244 roots[i].push_back(P[i] * std::cos(theta) + D[i]);
245 roots[i].push_back(P[i] * std::cos(theta + k2PiOver3) + D[i]);
246 roots[i].push_back(P[i] * std::cos(theta - k2PiOver3) + D[i]);
Chris Daltonc1e59632017-09-05 00:30:07 -0600247
Chris Dalton7f578bf2017-09-05 16:46:48 -0600248 // Sort the three roots.
249 swap_if_greater(roots[i][0], roots[i][1]);
250 swap_if_greater(roots[i][1], roots[i][2]);
251 swap_if_greater(roots[i][0], roots[i][1]);
252 }
253}
254
255void GrCCPRGeometry::cubicTo(const SkPoint& devP1, const SkPoint& devP2, const SkPoint& devP3,
256 float inflectPad, float loopIntersectPad) {
257 SkASSERT(fBuildingContour);
Chris Dalton900cd052017-09-07 10:36:51 -0600258 SkASSERT(fCurrFanPoint == fPoints.back());
Chris Dalton7f578bf2017-09-05 16:46:48 -0600259
260 SkPoint devPts[4] = {fCurrFanPoint, devP1, devP2, devP3};
261 Sk2f p0 = Sk2f::Load(&fCurrFanPoint);
262 Sk2f p1 = Sk2f::Load(&devP1);
263 Sk2f p2 = Sk2f::Load(&devP2);
264 Sk2f p3 = Sk2f::Load(&devP3);
265 fCurrFanPoint = devP3;
266
Chris Dalton900cd052017-09-07 10:36:51 -0600267 // Don't crunch on the curve and inflate geometry if it is already flat (or just very small).
268 if (are_collinear(p0, p1, p2) &&
269 are_collinear(p1, p2, p3) &&
270 are_collinear(p0, (p1 + p2) * .5f, p3)) {
271 p3.store(&fPoints.push_back());
272 fVerbs.push_back(Verb::kLineTo);
273 return;
274 }
275
Chris Dalton7f578bf2017-09-05 16:46:48 -0600276 double tt[2], ss[2];
277 fCurrCubicType = SkClassifyCubic(devPts, tt, ss);
278 if (SkCubicIsDegenerate(fCurrCubicType)) {
279 // Allow one subdivision in case the curve is quadratic, but not monotonic.
280 this->appendCubicApproximation(p0, p1, p2, p3, /*maxSubdivisions=*/1);
281 return;
282 }
283
284 SkMatrix CIT;
285 ExcludedTerm skipTerm = GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(devPts, &CIT);
286 if (ExcludedTerm::kNonInvertible == skipTerm) {
287 // This could technically also happen if the curve were a quadratic, but SkClassifyCubic
288 // should have detected that case already with tolerance.
Chris Dalton900cd052017-09-07 10:36:51 -0600289 p3.store(&fPoints.push_back());
290 fVerbs.push_back(Verb::kLineTo);
Chris Dalton7f578bf2017-09-05 16:46:48 -0600291 return;
292 }
293 SkASSERT(0 == CIT[6]);
294 SkASSERT(0 == CIT[7]);
295 SkASSERT(1 == CIT[8]);
296
297 // Each cubic has five different sections (not always inside t=[0..1]):
298 //
299 // 1. The section before the first inflection or loop intersection point, with padding.
300 // 2. The section that passes through the first inflection/intersection (aka the K,L
301 // intersection point or T=tt[0]/ss[0]).
302 // 3. The section between the two inflections/intersections, with padding.
303 // 4. The section that passes through the second inflection/intersection (aka the K,M
304 // intersection point or T=tt[1]/ss[1]).
305 // 5. The section after the second inflection/intersection, with padding.
306 //
307 // Sections 1,3,5 can be rendered directly using the CCPR cubic shader.
308 //
309 // Sections 2 & 4 must be approximated. For loop intersections we render them with
310 // quadratic(s), and when passing through an inflection point we use a plain old flat line.
311 //
312 // We find T0..T3 below to be the dividing points between these five sections.
313 float T0, T1, T2, T3;
314 if (SkCubicType::kLoop != fCurrCubicType) {
315 Sk2f t = Sk2f(static_cast<float>(tt[0]), static_cast<float>(tt[1]));
316 Sk2f s = Sk2f(static_cast<float>(ss[0]), static_cast<float>(ss[1]));
317 Sk2f pad = calc_inflect_homogeneous_padding(inflectPad, t, s, CIT, skipTerm);
318
319 float T[2];
320 ((t - pad) / s).store(T);
321 T0 = T[0];
322 T2 = T[1];
323
324 ((t + pad) / s).store(T);
325 T1 = T[0];
326 T3 = T[1];
327 } else {
328 const float T[2] = {static_cast<float>(tt[0]/ss[0]), static_cast<float>(tt[1]/ss[1])};
329 SkSTArray<3, float, true> roots[2];
330 calc_loop_intersect_padding_pts(loopIntersectPad, Sk2f::Load(T), CIT, skipTerm, roots);
331 T0 = roots[0].front();
332 if (1 == roots[0].count() || 1 == roots[1].count()) {
333 // The loop is tighter than our desired padding. Collapse the middle section to a point
334 // somewhere in the middle-ish of the loop and Sections 2 & 4 will approximate the the
335 // whole thing with quadratics.
336 T1 = T2 = (T[0] + T[1]) * .5f;
337 } else {
338 T1 = roots[0][1];
339 T2 = roots[1][1];
340 }
341 T3 = roots[1].back();
342 }
343
344 // Guarantee that T0..T3 are monotonic.
345 if (T0 > T3) {
346 // This is not a mathematically valid scenario. The only reason it would happen is if
347 // padding is very small and we have encountered FP rounding error.
348 T0 = T1 = T2 = T3 = (T0 + T3) / 2;
349 } else if (T1 > T2) {
350 // This just means padding before the middle section overlaps the padding after it. We
351 // collapse the middle section to a single point that splits the difference between the
352 // overlap in padding.
353 T1 = T2 = (T1 + T2) / 2;
354 }
355 // Clamp T1 & T2 inside T0..T3. The only reason this would be necessary is if we have
356 // encountered FP rounding error.
357 T1 = std::max(T0, std::min(T1, T3));
358 T2 = std::max(T0, std::min(T2, T3));
359
360 // Next we chop the cubic up at all T0..T3 inside 0..1 and store the resulting segments.
361 if (T1 >= 1) {
362 // Only sections 1 & 2 can be in 0..1.
363 this->chopCubic<&GrCCPRGeometry::appendMonotonicCubics,
364 &GrCCPRGeometry::appendCubicApproximation>(p0, p1, p2, p3, T0);
365 return;
366 }
367
368 if (T2 <= 0) {
369 // Only sections 4 & 5 can be in 0..1.
370 this->chopCubic<&GrCCPRGeometry::appendCubicApproximation,
371 &GrCCPRGeometry::appendMonotonicCubics>(p0, p1, p2, p3, T3);
372 return;
373 }
374
375 Sk2f midp0, midp1; // These hold the first two bezier points of the middle section, if needed.
376
377 if (T1 > 0) {
378 Sk2f T1T1 = Sk2f(T1);
379 Sk2f ab1 = lerp(p0, p1, T1T1);
380 Sk2f bc1 = lerp(p1, p2, T1T1);
381 Sk2f cd1 = lerp(p2, p3, T1T1);
382 Sk2f abc1 = lerp(ab1, bc1, T1T1);
383 Sk2f bcd1 = lerp(bc1, cd1, T1T1);
384 Sk2f abcd1 = lerp(abc1, bcd1, T1T1);
385
386 // Sections 1 & 2.
387 this->chopCubic<&GrCCPRGeometry::appendMonotonicCubics,
388 &GrCCPRGeometry::appendCubicApproximation>(p0, ab1, abc1, abcd1, T0/T1);
389
390 if (T2 >= 1) {
391 // The rest of the curve is Section 3 (middle section).
392 this->appendMonotonicCubics(abcd1, bcd1, cd1, p3);
393 return;
Chris Daltonc1e59632017-09-05 00:30:07 -0600394 }
395
Chris Dalton7f578bf2017-09-05 16:46:48 -0600396 // Now calculate the first two bezier points of the middle section. The final two will come
397 // from when we chop the other side, as that is numerically more stable.
398 midp0 = abcd1;
399 midp1 = lerp(abcd1, bcd1, Sk2f((T2 - T1) / (1 - T1)));
400 } else if (T2 >= 1) {
401 // The entire cubic is Section 3 (middle section).
402 this->appendMonotonicCubics(p0, p1, p2, p3);
403 return;
Chris Daltonc1e59632017-09-05 00:30:07 -0600404 }
405
Chris Dalton7f578bf2017-09-05 16:46:48 -0600406 SkASSERT(T2 > 0 && T2 < 1);
407
408 Sk2f T2T2 = Sk2f(T2);
409 Sk2f ab2 = lerp(p0, p1, T2T2);
410 Sk2f bc2 = lerp(p1, p2, T2T2);
411 Sk2f cd2 = lerp(p2, p3, T2T2);
412 Sk2f abc2 = lerp(ab2, bc2, T2T2);
413 Sk2f bcd2 = lerp(bc2, cd2, T2T2);
414 Sk2f abcd2 = lerp(abc2, bcd2, T2T2);
415
416 if (T1 <= 0) {
417 // The curve begins at Section 3 (middle section).
418 this->appendMonotonicCubics(p0, ab2, abc2, abcd2);
419 } else if (T2 > T1) {
420 // Section 3 (middle section).
421 Sk2f midp2 = lerp(abc2, abcd2, T1/T2);
422 this->appendMonotonicCubics(midp0, midp1, midp2, abcd2);
423 }
424
425 // Sections 4 & 5.
426 this->chopCubic<&GrCCPRGeometry::appendCubicApproximation,
427 &GrCCPRGeometry::appendMonotonicCubics>(abcd2, bcd2, cd2, p3, (T3-T2) / (1-T2));
Chris Daltonc1e59632017-09-05 00:30:07 -0600428}
429
Chris Dalton7f578bf2017-09-05 16:46:48 -0600430static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) {
431 Sk2f aa = a*a;
432 aa += SkNx_shuffle<1,0>(aa);
433 SkASSERT(aa[0] == aa[1]);
434
435 Sk2f bb = b*b;
436 bb += SkNx_shuffle<1,0>(bb);
437 SkASSERT(bb[0] == bb[1]);
438
439 return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b);
Chris Daltonc1e59632017-09-05 00:30:07 -0600440}
441
Chris Dalton7f578bf2017-09-05 16:46:48 -0600442template<GrCCPRGeometry::AppendCubicFn AppendLeftRight>
443inline void GrCCPRGeometry::chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
444 const Sk2f& p3, const Sk2f& tan0,
445 const Sk2f& tan3, int maxFutureSubdivisions) {
446 // Find the T value whose tangent is perpendicular to the vector that bisects tan0 and -tan3.
447 Sk2f n = normalize(tan0) - normalize(tan3);
448
449 float a = 3 * dot(p3 + (p1 - p2)*3 - p0, n);
450 float b = 6 * dot(p0 - p1*2 + p2, n);
451 float c = 3 * dot(p1 - p0, n);
452
453 float discr = b*b - 4*a*c;
454 if (discr < 0) {
455 // If this is the case then the cubic must be nearly flat.
456 (this->*AppendLeftRight)(p0, p1, p2, p3, maxFutureSubdivisions);
457 return;
458 }
459
460 float q = -.5f * (b + copysignf(std::sqrt(discr), b));
461 float m = .5f*q*a;
462 float T = std::abs(q*q - m) < std::abs(a*c - m) ? q/a : c/q;
463
464 this->chopCubic<AppendLeftRight, AppendLeftRight>(p0, p1, p2, p3, T, maxFutureSubdivisions);
465}
466
467template<GrCCPRGeometry::AppendCubicFn AppendLeft, GrCCPRGeometry::AppendCubicFn AppendRight>
468inline void GrCCPRGeometry::chopCubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
469 const Sk2f& p3, float T, int maxFutureSubdivisions) {
470 if (T >= 1) {
471 (this->*AppendLeft)(p0, p1, p2, p3, maxFutureSubdivisions);
472 return;
473 }
474
475 if (T <= 0) {
476 (this->*AppendRight)(p0, p1, p2, p3, maxFutureSubdivisions);
477 return;
478 }
479
480 Sk2f TT = T;
481 Sk2f ab = lerp(p0, p1, TT);
482 Sk2f bc = lerp(p1, p2, TT);
483 Sk2f cd = lerp(p2, p3, TT);
484 Sk2f abc = lerp(ab, bc, TT);
485 Sk2f bcd = lerp(bc, cd, TT);
486 Sk2f abcd = lerp(abc, bcd, TT);
487 (this->*AppendLeft)(p0, ab, abc, abcd, maxFutureSubdivisions);
488 (this->*AppendRight)(abcd, bcd, cd, p3, maxFutureSubdivisions);
489}
490
491void GrCCPRGeometry::appendMonotonicCubics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
492 const Sk2f& p3, int maxSubdivisions) {
493 if ((p0 == p3).allTrue()) {
494 return;
495 }
496
497 if (maxSubdivisions) {
498 Sk2f tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
499 Sk2f tan3 = first_unless_nearly_zero(p3 - p2, p3 - p1);
500
501 if (!is_convex_curve_monotonic(p0, tan0, p3, tan3)) {
502 this->chopCubicAtMidTangent<&GrCCPRGeometry::appendMonotonicCubics>(p0, p1, p2, p3,
503 tan0, tan3,
504 maxSubdivisions-1);
505 return;
506 }
507 }
508
509 SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
510 p1.store(&fPoints.push_back());
511 p2.store(&fPoints.push_back());
512 p3.store(&fPoints.push_back());
513 if (SkCubicType::kLoop != fCurrCubicType) {
514 fVerbs.push_back(Verb::kMonotonicSerpentineTo);
Chris Daltonc1e59632017-09-05 00:30:07 -0600515 ++fCurrContourTallies.fSerpentines;
516 } else {
Chris Dalton7f578bf2017-09-05 16:46:48 -0600517 fVerbs.push_back(Verb::kMonotonicLoopTo);
Chris Daltonc1e59632017-09-05 00:30:07 -0600518 ++fCurrContourTallies.fLoops;
519 }
520}
521
Chris Dalton7f578bf2017-09-05 16:46:48 -0600522void GrCCPRGeometry::appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
523 const Sk2f& p3, int maxSubdivisions) {
524 if ((p0 == p3).allTrue()) {
525 return;
526 }
527
528 if (SkCubicType::kLoop != fCurrCubicType && SkCubicType::kQuadratic != fCurrCubicType) {
529 // This section passes through an inflection point, so we can get away with a flat line.
530 // This can cause some curves to feel slightly more flat when inspected rigorously back and
531 // forth against another renderer, but for now this seems acceptable given the simplicity.
532 SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
533 p3.store(&fPoints.push_back());
534 fVerbs.push_back(Verb::kLineTo);
535 return;
536 }
537
538 Sk2f tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
539 Sk2f tan3 = first_unless_nearly_zero(p3 - p2, p3 - p1);
540
541 Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0);
542 Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan3, p3);
543
544 if (maxSubdivisions) {
545 bool nearlyQuadratic = ((c1 - c2).abs() <= 1).allTrue();
546
547 if (!nearlyQuadratic || !is_convex_curve_monotonic(p0, tan0, p3, tan3)) {
548 this->chopCubicAtMidTangent<&GrCCPRGeometry::appendCubicApproximation>(p0, p1, p2, p3,
549 tan0, tan3,
550 maxSubdivisions-1);
551 return;
552 }
553 }
554
555 SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
556 this->appendMonotonicQuadratic((c1 + c2) * .5f, p3);
557}
558
Chris Daltonc1e59632017-09-05 00:30:07 -0600559GrCCPRGeometry::PrimitiveTallies GrCCPRGeometry::endContour() {
560 SkASSERT(fBuildingContour);
561 SkASSERT(fVerbs.count() >= fCurrContourTallies.fTriangles);
562
563 // The fTriangles field currently contains this contour's starting verb index. We can now
564 // use it to calculate the size of the contour's fan.
565 int fanSize = fVerbs.count() - fCurrContourTallies.fTriangles;
566 if (fCurrFanPoint == fCurrAnchorPoint) {
567 --fanSize;
568 fVerbs.push_back(Verb::kEndClosedContour);
569 } else {
570 fVerbs.push_back(Verb::kEndOpenContour);
571 }
572
573 fCurrContourTallies.fTriangles = SkTMax(fanSize - 2, 0);
574
575 SkDEBUGCODE(fBuildingContour = false;)
576 return fCurrContourTallies;
Chris Dalton419a94d2017-08-28 10:24:22 -0600577}