Michael Ludwig | a195d10 | 2020-09-15 14:51:52 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2020 Google LLC |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/gpu/GrClipStack.h" |
| 9 | |
| 10 | #include "include/core/SkMatrix.h" |
| 11 | #include "src/core/SkRRectPriv.h" |
| 12 | #include "src/core/SkRectPriv.h" |
| 13 | #include "src/core/SkTaskGroup.h" |
| 14 | #include "src/gpu/GrClip.h" |
| 15 | #include "src/gpu/GrContextPriv.h" |
| 16 | #include "src/gpu/GrDeferredProxyUploader.h" |
| 17 | #include "src/gpu/GrProxyProvider.h" |
| 18 | #include "src/gpu/GrRecordingContextPriv.h" |
| 19 | #include "src/gpu/GrRenderTargetContextPriv.h" |
| 20 | #include "src/gpu/GrSWMaskHelper.h" |
| 21 | #include "src/gpu/GrStencilMaskHelper.h" |
| 22 | #include "src/gpu/ccpr/GrCoverageCountingPathRenderer.h" |
| 23 | #include "src/gpu/effects/GrBlendFragmentProcessor.h" |
| 24 | #include "src/gpu/effects/GrConvexPolyEffect.h" |
| 25 | #include "src/gpu/effects/GrRRectEffect.h" |
| 26 | #include "src/gpu/effects/GrTextureEffect.h" |
| 27 | #include "src/gpu/effects/generated/GrAARectEffect.h" |
| 28 | #include "src/gpu/effects/generated/GrDeviceSpaceEffect.h" |
| 29 | #include "src/gpu/geometry/GrQuadUtils.h" |
| 30 | |
| 31 | namespace { |
| 32 | |
| 33 | // This captures which of the two elements in (A op B) would be required when they are combined, |
| 34 | // where op is intersect or difference. |
| 35 | enum class ClipGeometry { |
| 36 | kEmpty, |
| 37 | kAOnly, |
| 38 | kBOnly, |
| 39 | kBoth |
| 40 | }; |
| 41 | |
| 42 | // A and B can be Element, SaveRecord, or Draw. Supported combinations are, order not mattering, |
| 43 | // (Element, Element), (Element, SaveRecord), (Element, Draw), and (SaveRecord, Draw). |
| 44 | template<typename A, typename B> |
| 45 | static ClipGeometry get_clip_geometry(const A& a, const B& b) { |
| 46 | // NOTE: SkIRect::Intersects() returns false when two rectangles touch at an edge (so the result |
| 47 | // is empty). This behavior is desired for the following clip effect policies. |
| 48 | if (a.op() == SkClipOp::kIntersect) { |
| 49 | if (b.op() == SkClipOp::kIntersect) { |
| 50 | // Intersect (A) + Intersect (B) |
| 51 | if (!SkIRect::Intersects(a.outerBounds(), b.outerBounds())) { |
| 52 | // Regions with non-zero coverage are disjoint, so intersection = empty |
| 53 | return ClipGeometry::kEmpty; |
| 54 | } else if (b.contains(a)) { |
| 55 | // B's full coverage region contains entirety of A, so intersection = A |
| 56 | return ClipGeometry::kAOnly; |
| 57 | } else if (a.contains(b)) { |
| 58 | // A's full coverage region contains entirety of B, so intersection = B |
| 59 | return ClipGeometry::kBOnly; |
| 60 | } else { |
| 61 | // The shapes intersect in some non-trivial manner |
| 62 | return ClipGeometry::kBoth; |
| 63 | } |
| 64 | } else { |
| 65 | SkASSERT(b.op() == SkClipOp::kDifference); |
| 66 | // Intersect (A) + Difference (B) |
| 67 | if (!SkIRect::Intersects(a.outerBounds(), b.outerBounds())) { |
| 68 | // A only intersects B's full coverage region, so intersection = A |
| 69 | return ClipGeometry::kAOnly; |
| 70 | } else if (b.contains(a)) { |
| 71 | // B's zero coverage region completely contains A, so intersection = empty |
| 72 | return ClipGeometry::kEmpty; |
| 73 | } else { |
| 74 | // Intersection cannot be simplified. Note that the combination of a intersect |
| 75 | // and difference op in this order cannot produce kBOnly |
| 76 | return ClipGeometry::kBoth; |
| 77 | } |
| 78 | } |
| 79 | } else { |
| 80 | SkASSERT(a.op() == SkClipOp::kDifference); |
| 81 | if (b.op() == SkClipOp::kIntersect) { |
| 82 | // Difference (A) + Intersect (B) - the mirror of Intersect(A) + Difference(B), |
| 83 | // but combining is commutative so this is equivalent barring naming. |
| 84 | if (!SkIRect::Intersects(b.outerBounds(), a.outerBounds())) { |
| 85 | // B only intersects A's full coverage region, so intersection = B |
| 86 | return ClipGeometry::kBOnly; |
| 87 | } else if (a.contains(b)) { |
| 88 | // A's zero coverage region completely contains B, so intersection = empty |
| 89 | return ClipGeometry::kEmpty; |
| 90 | } else { |
| 91 | // Cannot be simplified |
| 92 | return ClipGeometry::kBoth; |
| 93 | } |
| 94 | } else { |
| 95 | SkASSERT(b.op() == SkClipOp::kDifference); |
| 96 | // Difference (A) + Difference (B) |
| 97 | if (a.contains(b)) { |
| 98 | // A's zero coverage region contains B, so B doesn't remove any extra |
| 99 | // coverage from their intersection. |
| 100 | return ClipGeometry::kAOnly; |
| 101 | } else if (b.contains(a)) { |
| 102 | // Mirror of the above case, intersection = B instead |
| 103 | return ClipGeometry::kBOnly; |
| 104 | } else { |
| 105 | // Intersection of the two differences cannot be simplified. Note that for |
| 106 | // this op combination it is not possible to produce kEmpty. |
| 107 | return ClipGeometry::kBoth; |
| 108 | } |
| 109 | } |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | // a.contains(b) where a's local space is defined by 'aToDevice', and b's possibly separate local |
| 114 | // space is defined by 'bToDevice'. 'a' and 'b' geometry are provided in their local spaces. |
| 115 | // Automatically takes into account if the anti-aliasing policies differ. When the policies match, |
| 116 | // we assume that coverage AA or GPU's non-AA rasterization will apply to A and B equivalently, so |
| 117 | // we can compare the original shapes. When the modes are mixed, we outset B in device space first. |
| 118 | static bool shape_contains_rect( |
| 119 | const GrShape& a, const SkMatrix& aToDevice, const SkMatrix& deviceToA, |
| 120 | const SkRect& b, const SkMatrix& bToDevice, bool mixedAAMode) { |
| 121 | if (!a.convex()) { |
| 122 | return false; |
| 123 | } |
| 124 | |
| 125 | if (!mixedAAMode && aToDevice == bToDevice) { |
| 126 | // A and B are in the same coordinate space, so don't bother mapping |
| 127 | return a.conservativeContains(b); |
Michael Ludwig | d30e9ef | 2020-09-28 12:03:01 -0400 | [diff] [blame] | 128 | } else if (bToDevice.isIdentity() && aToDevice.preservesAxisAlignment()) { |
Michael Ludwig | 84a008f | 2020-09-18 15:30:55 -0400 | [diff] [blame] | 129 | // Optimize the common case of draws (B, with identity matrix) and axis-aligned shapes, |
| 130 | // instead of checking the four corners separately. |
| 131 | SkRect bInA = b; |
| 132 | if (mixedAAMode) { |
| 133 | bInA.outset(0.5f, 0.5f); |
| 134 | } |
| 135 | SkAssertResult(deviceToA.mapRect(&bInA)); |
| 136 | return a.conservativeContains(bInA); |
Michael Ludwig | a195d10 | 2020-09-15 14:51:52 -0400 | [diff] [blame] | 137 | } |
| 138 | |
| 139 | // Test each corner for contains; since a is convex, if all 4 corners of b's bounds are |
| 140 | // contained, then the entirety of b is within a. |
| 141 | GrQuad deviceQuad = GrQuad::MakeFromRect(b, bToDevice); |
| 142 | if (any(deviceQuad.w4f() < SkPathPriv::kW0PlaneDistance)) { |
| 143 | // Something in B actually projects behind the W = 0 plane and would be clipped to infinity, |
| 144 | // so it's extremely unlikely that A can contain B. |
| 145 | return false; |
| 146 | } |
| 147 | if (mixedAAMode) { |
| 148 | // Outset it so its edges are 1/2px out, giving us a buffer to avoid cases where a non-AA |
| 149 | // clip or draw would snap outside an aa element. |
| 150 | GrQuadUtils::Outset({0.5f, 0.5f, 0.5f, 0.5f}, &deviceQuad); |
| 151 | } |
| 152 | |
| 153 | for (int i = 0; i < 4; ++i) { |
| 154 | SkPoint cornerInA = deviceQuad.point(i); |
| 155 | deviceToA.mapPoints(&cornerInA, 1); |
| 156 | if (!a.conservativeContains(cornerInA)) { |
| 157 | return false; |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | return true; |
| 162 | } |
| 163 | |
| 164 | static SkIRect subtract(const SkIRect& a, const SkIRect& b, bool exact) { |
| 165 | SkIRect diff; |
| 166 | if (SkRectPriv::Subtract(a, b, &diff) || !exact) { |
| 167 | // Either A-B is exactly the rectangle stored in diff, or we don't need an exact answer |
| 168 | // and can settle for the subrect of A excluded from B (which is also 'diff') |
| 169 | return diff; |
| 170 | } else { |
| 171 | // For our purposes, we want the original A when A-B cannot be exactly represented |
| 172 | return a; |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | static GrClipEdgeType get_clip_edge_type(SkClipOp op, GrAA aa) { |
| 177 | if (op == SkClipOp::kIntersect) { |
| 178 | return aa == GrAA::kYes ? GrClipEdgeType::kFillAA : GrClipEdgeType::kFillBW; |
| 179 | } else { |
| 180 | return aa == GrAA::kYes ? GrClipEdgeType::kInverseFillAA : GrClipEdgeType::kInverseFillBW; |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | static uint32_t kInvalidGenID = 0; |
| 185 | static uint32_t kEmptyGenID = 1; |
| 186 | static uint32_t kWideOpenGenID = 2; |
| 187 | |
| 188 | static uint32_t next_gen_id() { |
| 189 | // 0-2 are reserved for invalid, empty & wide-open |
| 190 | static const uint32_t kFirstUnreservedGenID = 3; |
| 191 | static std::atomic<uint32_t> nextID{kFirstUnreservedGenID}; |
| 192 | |
| 193 | uint32_t id; |
| 194 | do { |
| 195 | id = nextID++; |
| 196 | } while (id < kFirstUnreservedGenID); |
| 197 | return id; |
| 198 | } |
| 199 | |
| 200 | // Functions for rendering / applying clip shapes in various ways |
| 201 | // The general strategy is: |
| 202 | // - Represent the clip element as an analytic FP that tests sk_FragCoord vs. its device shape |
| 203 | // - Render the clip element to the stencil, if stencil is allowed and supports the AA, and the |
| 204 | // size of the element indicates stenciling will be worth it, vs. making a mask. |
| 205 | // - Try to put the individual element into a clip atlas, which is then sampled during the draw |
| 206 | // - Render the element into a SW mask and upload it. If possible, the SW rasterization happens |
| 207 | // in parallel. |
| 208 | static constexpr GrSurfaceOrigin kMaskOrigin = kTopLeft_GrSurfaceOrigin; |
| 209 | |
| 210 | static GrFPResult analytic_clip_fp(const GrClipStack::Element& e, |
| 211 | const GrShaderCaps& caps, |
| 212 | std::unique_ptr<GrFragmentProcessor> fp) { |
| 213 | // All analytic clip shape FPs need to be in device space |
| 214 | GrClipEdgeType edgeType = get_clip_edge_type(e.fOp, e.fAA); |
| 215 | if (e.fLocalToDevice.isIdentity()) { |
| 216 | if (e.fShape.isRect()) { |
| 217 | return GrFPSuccess(GrAARectEffect::Make(std::move(fp), edgeType, e.fShape.rect())); |
| 218 | } else if (e.fShape.isRRect()) { |
| 219 | return GrRRectEffect::Make(std::move(fp), edgeType, e.fShape.rrect(), caps); |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | // A convex hull can be transformed into device space (this will handle rect shapes with a |
| 224 | // non-identity transform). |
| 225 | if (e.fShape.segmentMask() == SkPath::kLine_SegmentMask && e.fShape.convex()) { |
| 226 | SkPath devicePath; |
| 227 | e.fShape.asPath(&devicePath); |
| 228 | devicePath.transform(e.fLocalToDevice); |
| 229 | return GrConvexPolyEffect::Make(std::move(fp), edgeType, devicePath); |
| 230 | } |
| 231 | |
| 232 | return GrFPFailure(std::move(fp)); |
| 233 | } |
| 234 | |
| 235 | // TODO: Currently this only works with CCPR because CCPR owns and manages the clip atlas. The |
| 236 | // high-level concept should be generalized to support any path renderer going into a shared atlas. |
| 237 | static std::unique_ptr<GrFragmentProcessor> clip_atlas_fp(GrCoverageCountingPathRenderer* ccpr, |
| 238 | uint32_t opsTaskID, |
| 239 | const SkIRect& bounds, |
| 240 | const GrClipStack::Element& e, |
| 241 | SkPath* devicePath, |
| 242 | const GrCaps& caps, |
| 243 | std::unique_ptr<GrFragmentProcessor> fp) { |
| 244 | // TODO: Currently the atlas manages device-space paths, so we have to transform by the ctm. |
| 245 | // In the future, the atlas manager should see the local path and the ctm so that it can |
| 246 | // cache across integer-only translations (internally, it already does this, just not exposed). |
| 247 | if (devicePath->isEmpty()) { |
| 248 | e.fShape.asPath(devicePath); |
| 249 | devicePath->transform(e.fLocalToDevice); |
| 250 | SkASSERT(!devicePath->isEmpty()); |
| 251 | } |
| 252 | |
| 253 | SkASSERT(!devicePath->isInverseFillType()); |
| 254 | if (e.fOp == SkClipOp::kIntersect) { |
| 255 | return ccpr->makeClipProcessor(std::move(fp), opsTaskID, *devicePath, bounds, caps); |
| 256 | } else { |
| 257 | // Use kDstOut to convert the non-inverted mask alpha into (1-alpha), so the atlas only |
| 258 | // ever renders non-inverse filled paths. |
| 259 | // - When the input FP is null, this turns into "(1-sample(ccpr, 1).a) * input" |
| 260 | // - When not null, it works out to |
| 261 | // (1-sample(ccpr, input.rgb1).a) * sample(fp, input.rgb1) * input.a |
| 262 | // - Since clips only care about the alpha channel, these are both equivalent to the |
| 263 | // desired product of (1-ccpr) * fp * input.a. |
| 264 | return GrBlendFragmentProcessor::Make( |
| 265 | ccpr->makeClipProcessor(nullptr, opsTaskID, *devicePath, bounds, caps), // src |
| 266 | std::move(fp), // dst |
| 267 | SkBlendMode::kDstOut); |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | static void draw_to_sw_mask(GrSWMaskHelper* helper, const GrClipStack::Element& e, bool clearMask) { |
| 272 | // If the first element to draw is an intersect, we clear to 0 and will draw it directly with |
| 273 | // coverage 1 (subsequent intersect elements will be inverse-filled and draw 0 outside). |
| 274 | // If the first element to draw is a difference, we clear to 1, and in all cases we draw the |
| 275 | // difference element directly with coverage 0. |
| 276 | if (clearMask) { |
| 277 | helper->clear(e.fOp == SkClipOp::kIntersect ? 0x00 : 0xFF); |
| 278 | } |
| 279 | |
| 280 | uint8_t alpha; |
| 281 | bool invert; |
| 282 | if (e.fOp == SkClipOp::kIntersect) { |
| 283 | // Intersect modifies pixels outside of its geometry. If this isn't the first op, we |
| 284 | // draw the inverse-filled shape with 0 coverage to erase everything outside the element |
| 285 | // But if we are the first element, we can draw directly with coverage 1 since we |
| 286 | // cleared to 0. |
| 287 | if (clearMask) { |
| 288 | alpha = 0xFF; |
| 289 | invert = false; |
| 290 | } else { |
| 291 | alpha = 0x00; |
| 292 | invert = true; |
| 293 | } |
| 294 | } else { |
| 295 | // For difference ops, can always just subtract the shape directly by drawing 0 coverage |
| 296 | SkASSERT(e.fOp == SkClipOp::kDifference); |
| 297 | alpha = 0x00; |
| 298 | invert = false; |
| 299 | } |
| 300 | |
| 301 | // Draw the shape; based on how we've initialized the buffer and chosen alpha+invert, |
| 302 | // every element is drawn with the kReplace_Op |
| 303 | if (invert) { |
| 304 | // Must invert the path |
| 305 | SkASSERT(!e.fShape.inverted()); |
| 306 | // TODO: this is an extra copy effectively, just so we can toggle inversion; would be |
| 307 | // better perhaps to just call a drawPath() since we know it'll use path rendering w/ |
| 308 | // the inverse fill type. |
| 309 | GrShape inverted(e.fShape); |
| 310 | inverted.setInverted(true); |
| 311 | helper->drawShape(inverted, e.fLocalToDevice, SkRegion::kReplace_Op, e.fAA, alpha); |
| 312 | } else { |
| 313 | helper->drawShape(e.fShape, e.fLocalToDevice, SkRegion::kReplace_Op, e.fAA, alpha); |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | static GrSurfaceProxyView render_sw_mask(GrRecordingContext* context, const SkIRect& bounds, |
| 318 | const GrClipStack::Element** elements, int count) { |
| 319 | SkASSERT(count > 0); |
| 320 | |
| 321 | SkTaskGroup* taskGroup = nullptr; |
| 322 | if (auto direct = context->asDirectContext()) { |
| 323 | taskGroup = direct->priv().getTaskGroup(); |
| 324 | } |
| 325 | |
| 326 | if (taskGroup) { |
| 327 | const GrCaps* caps = context->priv().caps(); |
| 328 | GrProxyProvider* proxyProvider = context->priv().proxyProvider(); |
| 329 | |
| 330 | // Create our texture proxy |
| 331 | GrBackendFormat format = caps->getDefaultBackendFormat(GrColorType::kAlpha_8, |
| 332 | GrRenderable::kNo); |
| 333 | |
| 334 | GrSwizzle swizzle = context->priv().caps()->getReadSwizzle(format, GrColorType::kAlpha_8); |
| 335 | auto proxy = proxyProvider->createProxy(format, bounds.size(), GrRenderable::kNo, 1, |
| 336 | GrMipMapped::kNo, SkBackingFit::kApprox, |
| 337 | SkBudgeted::kYes, GrProtected::kNo); |
| 338 | |
| 339 | // Since this will be rendered on another thread, make a copy of the elements in case |
| 340 | // the clip stack is modified on the main thread |
| 341 | using Uploader = GrTDeferredProxyUploader<SkTArray<GrClipStack::Element>>; |
| 342 | std::unique_ptr<Uploader> uploader = std::make_unique<Uploader>(count); |
| 343 | for (int i = 0; i < count; ++i) { |
| 344 | uploader->data().push_back(*(elements[i])); |
| 345 | } |
| 346 | |
| 347 | Uploader* uploaderRaw = uploader.get(); |
| 348 | auto drawAndUploadMask = [uploaderRaw, bounds] { |
| 349 | TRACE_EVENT0("skia.gpu", "Threaded SW Clip Mask Render"); |
| 350 | GrSWMaskHelper helper(uploaderRaw->getPixels()); |
| 351 | if (helper.init(bounds)) { |
| 352 | for (int i = 0; i < uploaderRaw->data().count(); ++i) { |
| 353 | draw_to_sw_mask(&helper, uploaderRaw->data()[i], i == 0); |
| 354 | } |
| 355 | } else { |
| 356 | SkDEBUGFAIL("Unable to allocate SW clip mask."); |
| 357 | } |
| 358 | uploaderRaw->signalAndFreeData(); |
| 359 | }; |
| 360 | |
| 361 | taskGroup->add(std::move(drawAndUploadMask)); |
| 362 | proxy->texPriv().setDeferredUploader(std::move(uploader)); |
| 363 | |
| 364 | return {std::move(proxy), kMaskOrigin, swizzle}; |
| 365 | } else { |
| 366 | GrSWMaskHelper helper; |
| 367 | if (!helper.init(bounds)) { |
| 368 | return {}; |
| 369 | } |
| 370 | |
| 371 | for (int i = 0; i < count; ++i) { |
| 372 | draw_to_sw_mask(&helper,*(elements[i]), i == 0); |
| 373 | } |
| 374 | |
| 375 | return helper.toTextureView(context, SkBackingFit::kApprox); |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | static void render_stencil_mask(GrRecordingContext* context, GrRenderTargetContext* rtc, |
| 380 | uint32_t genID, const SkIRect& bounds, |
| 381 | const GrClipStack::Element** elements, int count, |
| 382 | GrAppliedClip* out) { |
| 383 | GrStencilMaskHelper helper(context, rtc); |
| 384 | if (helper.init(bounds, genID, out->windowRectsState().windows(), 0)) { |
| 385 | // This follows the same logic as in draw_sw_mask |
| 386 | bool startInside = elements[0]->fOp == SkClipOp::kDifference; |
| 387 | helper.clear(startInside); |
| 388 | for (int i = 0; i < count; ++i) { |
| 389 | const GrClipStack::Element& e = *(elements[i]); |
| 390 | SkRegion::Op op; |
| 391 | if (e.fOp == SkClipOp::kIntersect) { |
| 392 | op = (i == 0) ? SkRegion::kReplace_Op : SkRegion::kIntersect_Op; |
| 393 | } else { |
| 394 | op = SkRegion::kDifference_Op; |
| 395 | } |
| 396 | helper.drawShape(e.fShape, e.fLocalToDevice, op, e.fAA); |
| 397 | } |
| 398 | helper.finish(); |
| 399 | } |
| 400 | out->hardClip().addStencilClip(genID); |
| 401 | } |
| 402 | |
| 403 | } // anonymous namespace |
| 404 | |
| 405 | class GrClipStack::Draw { |
| 406 | public: |
| 407 | Draw(const SkRect& drawBounds, GrAA aa) |
| 408 | : fBounds(GrClip::GetPixelIBounds(drawBounds, aa, BoundsType::kExterior)) |
| 409 | , fAA(aa) { |
| 410 | // Be slightly more forgiving on whether or not a draw is inside a clip element. |
| 411 | fOriginalBounds = drawBounds.makeInset(GrClip::kBoundsTolerance, GrClip::kBoundsTolerance); |
| 412 | if (fOriginalBounds.isEmpty()) { |
| 413 | fOriginalBounds = drawBounds; |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | // Common clip type interface |
| 418 | SkClipOp op() const { return SkClipOp::kIntersect; } |
| 419 | const SkIRect& outerBounds() const { return fBounds; } |
| 420 | |
| 421 | // Draw does not have inner bounds so cannot contain anything. |
| 422 | bool contains(const RawElement& e) const { return false; } |
| 423 | bool contains(const SaveRecord& s) const { return false; } |
| 424 | |
| 425 | bool applyDeviceBounds(const SkIRect& deviceBounds) { |
| 426 | return fBounds.intersect(deviceBounds); |
| 427 | } |
| 428 | |
| 429 | const SkRect& bounds() const { return fOriginalBounds; } |
| 430 | GrAA aa() const { return fAA; } |
| 431 | |
| 432 | private: |
| 433 | SkRect fOriginalBounds; |
| 434 | SkIRect fBounds; |
| 435 | GrAA fAA; |
| 436 | }; |
| 437 | |
| 438 | /////////////////////////////////////////////////////////////////////////////// |
| 439 | // GrClipStack::Element |
| 440 | |
| 441 | GrClipStack::RawElement::RawElement(const SkMatrix& localToDevice, const GrShape& shape, |
| 442 | GrAA aa, SkClipOp op) |
| 443 | : Element{shape, localToDevice, op, aa} |
| 444 | , fInnerBounds(SkIRect::MakeEmpty()) |
| 445 | , fOuterBounds(SkIRect::MakeEmpty()) |
| 446 | , fInvalidatedByIndex(-1) { |
| 447 | if (!localToDevice.invert(&fDeviceToLocal)) { |
| 448 | // If the transform can't be inverted, it means that two dimensions are collapsed to 0 or |
| 449 | // 1 dimension, making the device-space geometry effectively empty. |
| 450 | fShape.reset(); |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | void GrClipStack::RawElement::markInvalid(const SaveRecord& current) { |
| 455 | SkASSERT(!this->isInvalid()); |
| 456 | fInvalidatedByIndex = current.firstActiveElementIndex(); |
| 457 | } |
| 458 | |
| 459 | void GrClipStack::RawElement::restoreValid(const SaveRecord& current) { |
| 460 | if (current.firstActiveElementIndex() < fInvalidatedByIndex) { |
| 461 | fInvalidatedByIndex = -1; |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | bool GrClipStack::RawElement::contains(const Draw& d) const { |
| 466 | if (fInnerBounds.contains(d.outerBounds())) { |
| 467 | return true; |
| 468 | } else { |
| 469 | // If the draw is non-AA, use the already computed outer bounds so we don't need to use |
| 470 | // device-space outsetting inside shape_contains_rect. |
| 471 | SkRect queryBounds = d.aa() == GrAA::kYes ? d.bounds() : SkRect::Make(d.outerBounds()); |
| 472 | return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal, |
| 473 | queryBounds, SkMatrix::I(), /* mixed-aa */ false); |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | bool GrClipStack::RawElement::contains(const SaveRecord& s) const { |
| 478 | if (fInnerBounds.contains(s.outerBounds())) { |
| 479 | return true; |
| 480 | } else { |
| 481 | // This is very similar to contains(Draw) but we just have outerBounds to work with. |
| 482 | SkRect queryBounds = SkRect::Make(s.outerBounds()); |
| 483 | return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal, |
| 484 | queryBounds, SkMatrix::I(), /* mixed-aa */ false); |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | bool GrClipStack::RawElement::contains(const RawElement& e) const { |
| 489 | // This is similar to how RawElement checks containment for a Draw, except that both the tester |
| 490 | // and testee have a transform that needs to be considered. |
| 491 | if (fInnerBounds.contains(e.fOuterBounds)) { |
| 492 | return true; |
| 493 | } |
| 494 | |
| 495 | bool mixedAA = fAA != e.fAA; |
| 496 | if (!mixedAA && fLocalToDevice == e.fLocalToDevice) { |
| 497 | // Test the shapes directly against each other, with a special check for a rrect+rrect |
| 498 | // containment (a intersect b == a implies b contains a) and paths (same gen ID, or same |
| 499 | // path for small paths means they contain each other). |
| 500 | static constexpr int kMaxPathComparePoints = 16; |
| 501 | if (fShape.isRRect() && e.fShape.isRRect()) { |
| 502 | return SkRRectPriv::ConservativeIntersect(fShape.rrect(), e.fShape.rrect()) |
| 503 | == e.fShape.rrect(); |
| 504 | } else if (fShape.isPath() && e.fShape.isPath()) { |
| 505 | return fShape.path().getGenerationID() == e.fShape.path().getGenerationID() || |
| 506 | (fShape.path().getPoints(nullptr, 0) <= kMaxPathComparePoints && |
| 507 | fShape.path() == e.fShape.path()); |
| 508 | } // else fall through to shape_contains_rect |
| 509 | } |
| 510 | |
| 511 | return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal, |
| 512 | e.fShape.bounds(), e.fLocalToDevice, mixedAA); |
| 513 | |
| 514 | } |
| 515 | |
| 516 | void GrClipStack::RawElement::simplify(const SkIRect& deviceBounds, bool forceAA) { |
| 517 | // Make sure the shape is not inverted. An inverted shape is equivalent to a non-inverted shape |
| 518 | // with the clip op toggled. |
| 519 | if (fShape.inverted()) { |
| 520 | fOp = fOp == SkClipOp::kIntersect ? SkClipOp::kDifference : SkClipOp::kIntersect; |
| 521 | fShape.setInverted(false); |
| 522 | } |
| 523 | |
| 524 | // Then simplify the base shape, if it becomes empty, no need to update the bounds |
| 525 | fShape.simplify(); |
| 526 | SkASSERT(!fShape.inverted()); |
| 527 | if (fShape.isEmpty()) { |
| 528 | return; |
| 529 | } |
| 530 | |
| 531 | // Lines and points should have been turned into empty since we assume everything is filled |
| 532 | SkASSERT(!fShape.isPoint() && !fShape.isLine()); |
| 533 | // Validity check, we have no public API to create an arc at the moment |
| 534 | SkASSERT(!fShape.isArc()); |
| 535 | |
| 536 | SkRect outer = fLocalToDevice.mapRect(fShape.bounds()); |
| 537 | if (!outer.intersect(SkRect::Make(deviceBounds))) { |
| 538 | // A non-empty shape is offscreen, so treat it as empty |
| 539 | fShape.reset(); |
| 540 | return; |
| 541 | } |
| 542 | |
Michael Ludwig | 462bdfc | 2020-09-22 16:27:04 -0400 | [diff] [blame] | 543 | // Except for axis-aligned clip rects, upgrade to AA when forced. We skip axis-aligned clip |
| 544 | // rects because a non-AA axis aligned rect can always be set as just a scissor test or window |
| 545 | // rect, avoiding an expensive stencil mask generation. |
Michael Ludwig | d30e9ef | 2020-09-28 12:03:01 -0400 | [diff] [blame] | 546 | if (forceAA && !(fShape.isRect() && fLocalToDevice.preservesAxisAlignment())) { |
Michael Ludwig | a195d10 | 2020-09-15 14:51:52 -0400 | [diff] [blame] | 547 | fAA = GrAA::kYes; |
| 548 | } |
| 549 | |
| 550 | // Except for non-AA axis-aligned rects, the outer bounds is the rounded-out device-space |
| 551 | // mapped bounds of the shape. |
| 552 | fOuterBounds = GrClip::GetPixelIBounds(outer, fAA, BoundsType::kExterior); |
| 553 | |
Michael Ludwig | d30e9ef | 2020-09-28 12:03:01 -0400 | [diff] [blame] | 554 | if (fLocalToDevice.preservesAxisAlignment()) { |
Michael Ludwig | a195d10 | 2020-09-15 14:51:52 -0400 | [diff] [blame] | 555 | if (fShape.isRect()) { |
| 556 | // The actual geometry can be updated to the device-intersected bounds and we can |
| 557 | // know the inner bounds |
| 558 | fShape.rect() = outer; |
| 559 | fLocalToDevice.setIdentity(); |
| 560 | fDeviceToLocal.setIdentity(); |
| 561 | |
| 562 | if (fAA == GrAA::kNo && outer.width() >= 1.f && outer.height() >= 1.f) { |
| 563 | // NOTE: Legacy behavior to avoid performance regressions. For non-aa axis-aligned |
| 564 | // clip rects we always just round so that they can be scissor-only (avoiding the |
| 565 | // uncertainty in how a GPU might actually round an edge on fractional coords). |
| 566 | fOuterBounds = outer.round(); |
| 567 | fInnerBounds = fOuterBounds; |
| 568 | } else { |
| 569 | fInnerBounds = GrClip::GetPixelIBounds(outer, fAA, BoundsType::kInterior); |
| 570 | SkASSERT(fOuterBounds.contains(fInnerBounds) || fInnerBounds.isEmpty()); |
| 571 | } |
| 572 | } else if (fShape.isRRect()) { |
Michael Ludwig | 3dad803 | 2020-09-28 11:24:05 -0400 | [diff] [blame] | 573 | // Can't transform in place and must still check transform result since some very |
| 574 | // ill-formed scale+translate matrices can cause invalid rrect radii. |
| 575 | SkRRect src; |
| 576 | if (fShape.rrect().transform(fLocalToDevice, &src)) { |
| 577 | fShape.rrect() = src; |
| 578 | fLocalToDevice.setIdentity(); |
| 579 | fDeviceToLocal.setIdentity(); |
Michael Ludwig | a195d10 | 2020-09-15 14:51:52 -0400 | [diff] [blame] | 580 | |
Michael Ludwig | 3dad803 | 2020-09-28 11:24:05 -0400 | [diff] [blame] | 581 | SkRect inner = SkRRectPriv::InnerBounds(fShape.rrect()); |
| 582 | fInnerBounds = GrClip::GetPixelIBounds(inner, fAA, BoundsType::kInterior); |
| 583 | if (!fInnerBounds.intersect(deviceBounds)) { |
| 584 | fInnerBounds = SkIRect::MakeEmpty(); |
| 585 | } |
Michael Ludwig | a195d10 | 2020-09-15 14:51:52 -0400 | [diff] [blame] | 586 | } |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | if (fOuterBounds.isEmpty()) { |
| 591 | // This can happen if we have non-AA shapes smaller than a pixel that do not cover a pixel |
| 592 | // center. We could round out, but rasterization would still result in an empty clip. |
| 593 | fShape.reset(); |
| 594 | } |
| 595 | |
| 596 | // Post-conditions on inner and outer bounds |
| 597 | SkASSERT(fShape.isEmpty() || (!fOuterBounds.isEmpty() && deviceBounds.contains(fOuterBounds))); |
| 598 | SkASSERT(fShape.isEmpty() || fInnerBounds.isEmpty() || fOuterBounds.contains(fInnerBounds)); |
| 599 | } |
| 600 | |
| 601 | bool GrClipStack::RawElement::combine(const RawElement& other, const SaveRecord& current) { |
| 602 | // To reduce the number of possibilities, only consider intersect+intersect. Difference and |
| 603 | // mixed op cases could be analyzed to simplify one of the shapes, but that is a rare |
| 604 | // occurrence and the math is much more complicated. |
| 605 | if (other.fOp != SkClipOp::kIntersect || fOp != SkClipOp::kIntersect) { |
| 606 | return false; |
| 607 | } |
| 608 | |
| 609 | // At the moment, only rect+rect or rrect+rrect are supported (although rect+rrect is |
| 610 | // treated as a degenerate case of rrect+rrect). |
| 611 | bool shapeUpdated = false; |
| 612 | if (fShape.isRect() && other.fShape.isRect()) { |
| 613 | bool aaMatch = fAA == other.fAA; |
| 614 | if (fLocalToDevice.isIdentity() && other.fLocalToDevice.isIdentity() && !aaMatch) { |
| 615 | if (GrClip::IsPixelAligned(fShape.rect())) { |
| 616 | // Our AA type doesn't really matter, take other's since its edges may not be |
| 617 | // pixel aligned, so after intersection clip behavior should respect its aa type. |
| 618 | fAA = other.fAA; |
| 619 | } else if (!GrClip::IsPixelAligned(other.fShape.rect())) { |
| 620 | // Neither shape is pixel aligned and AA types don't match so can't combine |
| 621 | return false; |
| 622 | } |
| 623 | // Either we've updated this->fAA to actually match, or other->fAA doesn't matter so |
| 624 | // this can be set to true. We just can't modify other to set it's aa to this->fAA. |
| 625 | // But since 'this' becomes the combo of the two, other will be deleted so that's fine. |
| 626 | aaMatch = true; |
| 627 | } |
| 628 | |
| 629 | if (aaMatch && fLocalToDevice == other.fLocalToDevice) { |
| 630 | if (!fShape.rect().intersect(other.fShape.rect())) { |
| 631 | // By floating point, it turns out the combination should be empty |
| 632 | this->fShape.reset(); |
| 633 | this->markInvalid(current); |
| 634 | return true; |
| 635 | } |
| 636 | shapeUpdated = true; |
| 637 | } |
| 638 | } else if ((fShape.isRect() || fShape.isRRect()) && |
| 639 | (other.fShape.isRect() || other.fShape.isRRect())) { |
| 640 | // No such pixel-aligned disregard for AA for round rects |
| 641 | if (fAA == other.fAA && fLocalToDevice == other.fLocalToDevice) { |
| 642 | // Treat rrect+rect intersections as rrect+rrect |
| 643 | SkRRect a = fShape.isRect() ? SkRRect::MakeRect(fShape.rect()) : fShape.rrect(); |
| 644 | SkRRect b = other.fShape.isRect() ? SkRRect::MakeRect(other.fShape.rect()) |
| 645 | : other.fShape.rrect(); |
| 646 | |
| 647 | SkRRect joined = SkRRectPriv::ConservativeIntersect(a, b); |
| 648 | if (!joined.isEmpty()) { |
| 649 | // Can reduce to a single element |
| 650 | if (joined.isRect()) { |
| 651 | // And with a simplified type |
| 652 | fShape.setRect(joined.rect()); |
| 653 | } else { |
| 654 | fShape.setRRect(joined); |
| 655 | } |
| 656 | shapeUpdated = true; |
| 657 | } else if (!a.getBounds().intersects(b.getBounds())) { |
| 658 | // Like the rect+rect combination, the intersection is actually empty |
| 659 | fShape.reset(); |
| 660 | this->markInvalid(current); |
| 661 | return true; |
| 662 | } |
| 663 | } |
| 664 | } |
| 665 | |
| 666 | if (shapeUpdated) { |
| 667 | // This logic works under the assumption that both combined elements were intersect, so we |
| 668 | // don't do the full bounds computations like in simplify(). |
| 669 | SkASSERT(fOp == SkClipOp::kIntersect && other.fOp == SkClipOp::kIntersect); |
| 670 | SkAssertResult(fOuterBounds.intersect(other.fOuterBounds)); |
| 671 | if (!fInnerBounds.intersect(other.fInnerBounds)) { |
| 672 | fInnerBounds = SkIRect::MakeEmpty(); |
| 673 | } |
| 674 | return true; |
| 675 | } else { |
| 676 | return false; |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | void GrClipStack::RawElement::updateForElement(RawElement* added, const SaveRecord& current) { |
| 681 | if (this->isInvalid()) { |
| 682 | // Already doesn't do anything, so skip this element |
| 683 | return; |
| 684 | } |
| 685 | |
| 686 | // 'A' refers to this element, 'B' refers to 'added'. |
| 687 | switch (get_clip_geometry(*this, *added)) { |
| 688 | case ClipGeometry::kEmpty: |
| 689 | // Mark both elements as invalid to signal that the clip is fully empty |
| 690 | this->markInvalid(current); |
| 691 | added->markInvalid(current); |
| 692 | break; |
| 693 | |
| 694 | case ClipGeometry::kAOnly: |
| 695 | // This element already clips more than 'added', so mark 'added' is invalid to skip it |
| 696 | added->markInvalid(current); |
| 697 | break; |
| 698 | |
| 699 | case ClipGeometry::kBOnly: |
| 700 | // 'added' clips more than this element, so mark this as invalid |
| 701 | this->markInvalid(current); |
| 702 | break; |
| 703 | |
| 704 | case ClipGeometry::kBoth: |
| 705 | // Else the bounds checks think we need to keep both, but depending on the combination |
| 706 | // of the ops and shape kinds, we may be able to do better. |
| 707 | if (added->combine(*this, current)) { |
| 708 | // 'added' now fully represents the combination of the two elements |
| 709 | this->markInvalid(current); |
| 710 | } |
| 711 | break; |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | GrClipStack::ClipState GrClipStack::RawElement::clipType() const { |
| 716 | // Map from the internal shape kind to the clip state enum |
| 717 | switch (fShape.type()) { |
| 718 | case GrShape::Type::kEmpty: |
| 719 | return ClipState::kEmpty; |
| 720 | |
| 721 | case GrShape::Type::kRect: |
| 722 | return fOp == SkClipOp::kIntersect && fLocalToDevice.isIdentity() |
| 723 | ? ClipState::kDeviceRect : ClipState::kComplex; |
| 724 | |
| 725 | case GrShape::Type::kRRect: |
| 726 | return fOp == SkClipOp::kIntersect && fLocalToDevice.isIdentity() |
| 727 | ? ClipState::kDeviceRRect : ClipState::kComplex; |
| 728 | |
| 729 | case GrShape::Type::kArc: |
| 730 | case GrShape::Type::kLine: |
| 731 | case GrShape::Type::kPoint: |
| 732 | // These types should never become RawElements |
| 733 | SkASSERT(false); |
| 734 | [[fallthrough]]; |
| 735 | |
| 736 | case GrShape::Type::kPath: |
| 737 | return ClipState::kComplex; |
| 738 | } |
| 739 | SkUNREACHABLE; |
| 740 | } |
| 741 | |
| 742 | /////////////////////////////////////////////////////////////////////////////// |
| 743 | // GrClipStack::Mask |
| 744 | |
| 745 | GrClipStack::Mask::Mask(const SaveRecord& current, const SkIRect& drawBounds) |
| 746 | : fBounds(drawBounds) |
| 747 | , fGenID(current.genID()) { |
| 748 | static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); |
| 749 | |
| 750 | // The gen ID should not be invalid, empty, or wide open, since those do not require masks |
| 751 | SkASSERT(fGenID != kInvalidGenID && fGenID != kEmptyGenID && fGenID != kWideOpenGenID); |
| 752 | |
| 753 | GrUniqueKey::Builder builder(&fKey, kDomain, 3, "clip_mask"); |
| 754 | builder[0] = fGenID; |
| 755 | // SkToS16 because image filters outset layers to a size indicated by the filter, which can |
| 756 | // sometimes result in negative coordinates from device space. |
| 757 | builder[1] = SkToS16(drawBounds.fLeft) | (SkToS16(drawBounds.fRight) << 16); |
| 758 | builder[2] = SkToS16(drawBounds.fTop) | (SkToS16(drawBounds.fBottom) << 16); |
| 759 | SkASSERT(fKey.isValid()); |
| 760 | |
| 761 | SkDEBUGCODE(fOwner = ¤t;) |
| 762 | } |
| 763 | |
| 764 | bool GrClipStack::Mask::appliesToDraw(const SaveRecord& current, const SkIRect& drawBounds) const { |
| 765 | // For the same save record, a larger mask will have the same or more elements |
| 766 | // baked into it, so it can be reused to clip the smaller draw. |
| 767 | SkASSERT(fGenID != current.genID() || ¤t == fOwner); |
| 768 | return fGenID == current.genID() && fBounds.contains(drawBounds); |
| 769 | } |
| 770 | |
| 771 | void GrClipStack::Mask::invalidate(GrProxyProvider* proxyProvider) { |
| 772 | SkASSERT(proxyProvider); |
| 773 | SkASSERT(fKey.isValid()); // Should only be invalidated once |
| 774 | proxyProvider->processInvalidUniqueKey( |
| 775 | fKey, nullptr, GrProxyProvider::InvalidateGPUResource::kYes); |
| 776 | fKey.reset(); |
| 777 | } |
| 778 | |
| 779 | /////////////////////////////////////////////////////////////////////////////// |
| 780 | // GrClipStack::SaveRecord |
| 781 | |
| 782 | GrClipStack::SaveRecord::SaveRecord(const SkIRect& deviceBounds) |
| 783 | : fInnerBounds(deviceBounds) |
| 784 | , fOuterBounds(deviceBounds) |
| 785 | , fShader(nullptr) |
| 786 | , fStartingMaskIndex(0) |
| 787 | , fStartingElementIndex(0) |
| 788 | , fOldestValidIndex(0) |
| 789 | , fDeferredSaveCount(0) |
| 790 | , fStackOp(SkClipOp::kIntersect) |
| 791 | , fState(ClipState::kWideOpen) |
| 792 | , fGenID(kInvalidGenID) {} |
| 793 | |
| 794 | GrClipStack::SaveRecord::SaveRecord(const SaveRecord& prior, |
| 795 | int startingMaskIndex, |
| 796 | int startingElementIndex) |
| 797 | : fInnerBounds(prior.fInnerBounds) |
| 798 | , fOuterBounds(prior.fOuterBounds) |
| 799 | , fShader(prior.fShader) |
| 800 | , fStartingMaskIndex(startingMaskIndex) |
| 801 | , fStartingElementIndex(startingElementIndex) |
| 802 | , fOldestValidIndex(prior.fOldestValidIndex) |
| 803 | , fDeferredSaveCount(0) |
| 804 | , fStackOp(prior.fStackOp) |
| 805 | , fState(prior.fState) |
| 806 | , fGenID(kInvalidGenID) { |
| 807 | // If the prior record never needed a mask, this one will insert into the same index |
| 808 | // (that's okay since we'll remove it when this record is popped off the stack). |
| 809 | SkASSERT(startingMaskIndex >= prior.fStartingMaskIndex); |
| 810 | // The same goes for elements (the prior could have been wide open). |
| 811 | SkASSERT(startingElementIndex >= prior.fStartingElementIndex); |
| 812 | } |
| 813 | |
| 814 | uint32_t GrClipStack::SaveRecord::genID() const { |
| 815 | if (fState == ClipState::kEmpty) { |
| 816 | return kEmptyGenID; |
| 817 | } else if (fState == ClipState::kWideOpen) { |
| 818 | return kWideOpenGenID; |
| 819 | } else { |
| 820 | // The gen ID shouldn't be empty or wide open, since they are reserved for the above |
| 821 | // if-cases. It may be kInvalid if the record hasn't had any elements added to it yet. |
| 822 | SkASSERT(fGenID != kEmptyGenID && fGenID != kWideOpenGenID); |
| 823 | return fGenID; |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | GrClipStack::ClipState GrClipStack::SaveRecord::state() const { |
| 828 | if (fShader && fState != ClipState::kEmpty) { |
| 829 | return ClipState::kComplex; |
| 830 | } else { |
| 831 | return fState; |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | bool GrClipStack::SaveRecord::contains(const GrClipStack::Draw& draw) const { |
| 836 | return fInnerBounds.contains(draw.outerBounds()); |
| 837 | } |
| 838 | |
| 839 | bool GrClipStack::SaveRecord::contains(const GrClipStack::RawElement& element) const { |
| 840 | return fInnerBounds.contains(element.outerBounds()); |
| 841 | } |
| 842 | |
| 843 | void GrClipStack::SaveRecord::removeElements(RawElement::Stack* elements) { |
| 844 | while (elements->count() > fStartingElementIndex) { |
| 845 | elements->pop_back(); |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | void GrClipStack::SaveRecord::restoreElements(RawElement::Stack* elements) { |
| 850 | // Presumably this SaveRecord is the new top of the stack, and so it owns the elements |
| 851 | // from its starting index to restoreCount - 1. Elements from the old save record have |
| 852 | // been destroyed already, so their indices would have been >= restoreCount, and any |
| 853 | // still-present element can be un-invalidated based on that. |
| 854 | int i = elements->count() - 1; |
| 855 | for (RawElement& e : elements->ritems()) { |
| 856 | if (i < fOldestValidIndex) { |
| 857 | break; |
| 858 | } |
| 859 | e.restoreValid(*this); |
| 860 | --i; |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | void GrClipStack::SaveRecord::invalidateMasks(GrProxyProvider* proxyProvider, |
| 865 | Mask::Stack* masks) { |
| 866 | // Must explicitly invalidate the key before removing the mask object from the stack |
| 867 | while (masks->count() > fStartingMaskIndex) { |
| 868 | SkASSERT(masks->back().owner() == this && proxyProvider); |
| 869 | masks->back().invalidate(proxyProvider); |
| 870 | masks->pop_back(); |
| 871 | } |
| 872 | SkASSERT(masks->empty() || masks->back().genID() != fGenID); |
| 873 | } |
| 874 | |
| 875 | void GrClipStack::SaveRecord::reset(const SkIRect& bounds) { |
| 876 | SkASSERT(this->canBeUpdated()); |
| 877 | fOldestValidIndex = fStartingElementIndex; |
| 878 | fOuterBounds = bounds; |
| 879 | fInnerBounds = bounds; |
| 880 | fStackOp = SkClipOp::kIntersect; |
| 881 | fState = ClipState::kWideOpen; |
| 882 | fShader = nullptr; |
| 883 | } |
| 884 | |
| 885 | void GrClipStack::SaveRecord::addShader(sk_sp<SkShader> shader) { |
| 886 | SkASSERT(shader); |
| 887 | SkASSERT(this->canBeUpdated()); |
| 888 | if (!fShader) { |
| 889 | fShader = std::move(shader); |
| 890 | } else { |
| 891 | // The total coverage is computed by multiplying the coverage from each element (shape or |
| 892 | // shader), but since multiplication is associative, we can use kSrcIn blending to make |
| 893 | // a new shader that represents 'shader' * 'fShader' |
| 894 | fShader = SkShaders::Blend(SkBlendMode::kSrcIn, std::move(shader), fShader); |
| 895 | } |
| 896 | } |
| 897 | |
| 898 | bool GrClipStack::SaveRecord::addElement(RawElement&& toAdd, RawElement::Stack* elements) { |
| 899 | // Validity check the element's state first; if the shape class isn't empty, the outer bounds |
| 900 | // shouldn't be empty; if the inner bounds are not empty, they must be contained in outer. |
| 901 | SkASSERT((toAdd.shape().isEmpty() || !toAdd.outerBounds().isEmpty()) && |
| 902 | (toAdd.innerBounds().isEmpty() || toAdd.outerBounds().contains(toAdd.innerBounds()))); |
| 903 | // And we shouldn't be adding an element if we have a deferred save |
| 904 | SkASSERT(this->canBeUpdated()); |
| 905 | |
| 906 | if (fState == ClipState::kEmpty) { |
| 907 | // The clip is already empty, and we only shrink, so there's no need to record this element. |
| 908 | return false; |
| 909 | } else if (toAdd.shape().isEmpty()) { |
| 910 | // An empty difference op should have been detected earlier, since it's a no-op |
| 911 | SkASSERT(toAdd.op() == SkClipOp::kIntersect); |
| 912 | fState = ClipState::kEmpty; |
| 913 | return true; |
| 914 | } |
| 915 | |
| 916 | // In this invocation, 'A' refers to the existing stack's bounds and 'B' refers to the new |
| 917 | // element. |
| 918 | switch (get_clip_geometry(*this, toAdd)) { |
| 919 | case ClipGeometry::kEmpty: |
| 920 | // The combination results in an empty clip |
| 921 | fState = ClipState::kEmpty; |
| 922 | return true; |
| 923 | |
| 924 | case ClipGeometry::kAOnly: |
| 925 | // The combination would not be any different than the existing clip |
| 926 | return false; |
| 927 | |
| 928 | case ClipGeometry::kBOnly: |
| 929 | // The combination would invalidate the entire existing stack and can be replaced with |
| 930 | // just the new element. |
| 931 | this->replaceWithElement(std::move(toAdd), elements); |
| 932 | return true; |
| 933 | |
| 934 | case ClipGeometry::kBoth: |
| 935 | // The new element combines in a complex manner, so update the stack's bounds based on |
| 936 | // the combination of its and the new element's ops (handled below) |
| 937 | break; |
| 938 | } |
| 939 | |
| 940 | if (fState == ClipState::kWideOpen) { |
| 941 | // When the stack was wide open and the clip effect was kBoth, the "complex" manner is |
| 942 | // simply to keep the element and update the stack bounds to be the element's intersected |
| 943 | // with the device. |
| 944 | this->replaceWithElement(std::move(toAdd), elements); |
| 945 | return true; |
| 946 | } |
| 947 | |
| 948 | // Some form of actual clip element(s) to combine with. |
| 949 | if (fStackOp == SkClipOp::kIntersect) { |
| 950 | if (toAdd.op() == SkClipOp::kIntersect) { |
| 951 | // Intersect (stack) + Intersect (toAdd) |
| 952 | // - Bounds updates is simply the paired intersections of outer and inner. |
| 953 | SkAssertResult(fOuterBounds.intersect(toAdd.outerBounds())); |
| 954 | if (!fInnerBounds.intersect(toAdd.innerBounds())) { |
| 955 | // NOTE: this does the right thing if either rect is empty, since we set the |
| 956 | // inner bounds to empty here |
| 957 | fInnerBounds = SkIRect::MakeEmpty(); |
| 958 | } |
| 959 | } else { |
| 960 | // Intersect (stack) + Difference (toAdd) |
| 961 | // - Shrink the stack's outer bounds if the difference op's inner bounds completely |
| 962 | // cuts off an edge. |
| 963 | // - Shrink the stack's inner bounds to completely exclude the op's outer bounds. |
| 964 | fOuterBounds = subtract(fOuterBounds, toAdd.innerBounds(), /* exact */ true); |
| 965 | fInnerBounds = subtract(fInnerBounds, toAdd.outerBounds(), /* exact */ false); |
| 966 | } |
| 967 | } else { |
| 968 | if (toAdd.op() == SkClipOp::kIntersect) { |
| 969 | // Difference (stack) + Intersect (toAdd) |
| 970 | // - Bounds updates are just the mirror of Intersect(stack) + Difference(toAdd) |
| 971 | SkIRect oldOuter = fOuterBounds; |
| 972 | fOuterBounds = subtract(toAdd.outerBounds(), fInnerBounds, /* exact */ true); |
| 973 | fInnerBounds = subtract(toAdd.innerBounds(), oldOuter, /* exact */ false); |
| 974 | } else { |
| 975 | // Difference (stack) + Difference (toAdd) |
| 976 | // - The updated outer bounds is the union of outer bounds and the inner becomes the |
| 977 | // largest of the two possible inner bounds |
| 978 | fOuterBounds.join(toAdd.outerBounds()); |
| 979 | if (toAdd.innerBounds().width() * toAdd.innerBounds().height() > |
| 980 | fInnerBounds.width() * fInnerBounds.height()) { |
| 981 | fInnerBounds = toAdd.innerBounds(); |
| 982 | } |
| 983 | } |
| 984 | } |
| 985 | |
| 986 | // If we get here, we're keeping the new element and the stack's bounds have been updated. |
| 987 | // We ought to have caught the cases where the stack bounds resemble an empty or wide open |
| 988 | // clip, so assert that's the case. |
| 989 | SkASSERT(!fOuterBounds.isEmpty() && |
| 990 | (fInnerBounds.isEmpty() || fOuterBounds.contains(fInnerBounds))); |
| 991 | |
| 992 | return this->appendElement(std::move(toAdd), elements); |
| 993 | } |
| 994 | |
| 995 | bool GrClipStack::SaveRecord::appendElement(RawElement&& toAdd, RawElement::Stack* elements) { |
| 996 | // Update past elements to account for the new element |
| 997 | int i = elements->count() - 1; |
| 998 | |
| 999 | // After the loop, elements between [max(youngestValid, startingIndex)+1, count-1] can be |
| 1000 | // removed from the stack (these are the active elements that have been invalidated by the |
| 1001 | // newest element; since it's the active part of the stack, no restore() can bring them back). |
| 1002 | int youngestValid = fStartingElementIndex - 1; |
| 1003 | // After the loop, elements between [0, oldestValid-1] are all invalid. The value of oldestValid |
| 1004 | // becomes the save record's new fLastValidIndex value. |
| 1005 | int oldestValid = elements->count(); |
| 1006 | // After the loop, this is the earliest active element that was invalidated. It may be |
| 1007 | // older in the stack than earliestValid, so cannot be popped off, but can be used to store |
| 1008 | // the new element instead of allocating more. |
| 1009 | RawElement* oldestActiveInvalid = nullptr; |
| 1010 | int oldestActiveInvalidIndex = elements->count(); |
| 1011 | |
| 1012 | for (RawElement& existing : elements->ritems()) { |
| 1013 | if (i < fOldestValidIndex) { |
| 1014 | break; |
| 1015 | } |
| 1016 | // We don't need to pass the actual index that toAdd will be saved to; just the minimum |
| 1017 | // index of this save record, since that will result in the same restoration behavior later. |
| 1018 | existing.updateForElement(&toAdd, *this); |
| 1019 | |
| 1020 | if (toAdd.isInvalid()) { |
| 1021 | if (existing.isInvalid()) { |
| 1022 | // Both new and old invalid implies the entire clip becomes empty |
| 1023 | fState = ClipState::kEmpty; |
| 1024 | return true; |
| 1025 | } else { |
| 1026 | // The new element doesn't change the clip beyond what the old element already does |
| 1027 | return false; |
| 1028 | } |
| 1029 | } else if (existing.isInvalid()) { |
| 1030 | // The new element cancels out the old element. The new element may have been modified |
| 1031 | // to account for the old element's geometry. |
| 1032 | if (i >= fStartingElementIndex) { |
| 1033 | // Still active, so the invalidated index could be used to store the new element |
| 1034 | oldestActiveInvalid = &existing; |
| 1035 | oldestActiveInvalidIndex = i; |
| 1036 | } |
| 1037 | } else { |
| 1038 | // Keep both new and old elements |
| 1039 | oldestValid = i; |
| 1040 | if (i > youngestValid) { |
| 1041 | youngestValid = i; |
| 1042 | } |
| 1043 | } |
| 1044 | |
| 1045 | --i; |
| 1046 | } |
| 1047 | |
| 1048 | // Post-iteration validity check |
| 1049 | SkASSERT(oldestValid == elements->count() || |
| 1050 | (oldestValid >= fOldestValidIndex && oldestValid < elements->count())); |
| 1051 | SkASSERT(youngestValid == fStartingElementIndex - 1 || |
| 1052 | (youngestValid >= fStartingElementIndex && youngestValid < elements->count())); |
| 1053 | SkASSERT((oldestActiveInvalid && oldestActiveInvalidIndex >= fStartingElementIndex && |
| 1054 | oldestActiveInvalidIndex < elements->count()) || !oldestActiveInvalid); |
| 1055 | |
| 1056 | // Update final state |
| 1057 | SkASSERT(oldestValid >= fOldestValidIndex); |
| 1058 | fOldestValidIndex = std::min(oldestValid, oldestActiveInvalidIndex); |
| 1059 | fState = oldestValid == elements->count() ? toAdd.clipType() : ClipState::kComplex; |
| 1060 | if (fStackOp == SkClipOp::kDifference && toAdd.op() == SkClipOp::kIntersect) { |
| 1061 | // The stack remains in difference mode only as long as all elements are difference |
| 1062 | fStackOp = SkClipOp::kIntersect; |
| 1063 | } |
| 1064 | |
| 1065 | int targetCount = youngestValid + 1; |
| 1066 | if (!oldestActiveInvalid || oldestActiveInvalidIndex >= targetCount) { |
| 1067 | // toAdd will be stored right after youngestValid |
| 1068 | targetCount++; |
| 1069 | oldestActiveInvalid = nullptr; |
| 1070 | } |
| 1071 | while (elements->count() > targetCount) { |
| 1072 | SkASSERT(oldestActiveInvalid != &elements->back()); // shouldn't delete what we'll reuse |
| 1073 | elements->pop_back(); |
| 1074 | } |
| 1075 | if (oldestActiveInvalid) { |
| 1076 | *oldestActiveInvalid = std::move(toAdd); |
| 1077 | } else if (elements->count() < targetCount) { |
| 1078 | elements->push_back(std::move(toAdd)); |
| 1079 | } else { |
| 1080 | elements->back() = std::move(toAdd); |
| 1081 | } |
| 1082 | |
| 1083 | // Changing this will prompt GrClipStack to invalidate any masks associated with this record. |
| 1084 | fGenID = next_gen_id(); |
| 1085 | return true; |
| 1086 | } |
| 1087 | |
| 1088 | void GrClipStack::SaveRecord::replaceWithElement(RawElement&& toAdd, RawElement::Stack* elements) { |
| 1089 | // The aggregate state of the save record mirrors the element |
| 1090 | fInnerBounds = toAdd.innerBounds(); |
| 1091 | fOuterBounds = toAdd.outerBounds(); |
| 1092 | fStackOp = toAdd.op(); |
| 1093 | fState = toAdd.clipType(); |
| 1094 | |
| 1095 | // All prior active element can be removed from the stack: [startingIndex, count - 1] |
| 1096 | int targetCount = fStartingElementIndex + 1; |
| 1097 | while (elements->count() > targetCount) { |
| 1098 | elements->pop_back(); |
| 1099 | } |
| 1100 | if (elements->count() < targetCount) { |
| 1101 | elements->push_back(std::move(toAdd)); |
| 1102 | } else { |
| 1103 | elements->back() = std::move(toAdd); |
| 1104 | } |
| 1105 | |
| 1106 | SkASSERT(elements->count() == fStartingElementIndex + 1); |
| 1107 | |
| 1108 | // This invalidates all older elements that are owned by save records lower in the clip stack. |
| 1109 | fOldestValidIndex = fStartingElementIndex; |
| 1110 | fGenID = next_gen_id(); |
| 1111 | } |
| 1112 | |
| 1113 | /////////////////////////////////////////////////////////////////////////////// |
| 1114 | // GrClipStack |
| 1115 | |
| 1116 | // NOTE: Based on draw calls in all GMs, SKPs, and SVGs as of 08/20, 98% use a clip stack with |
| 1117 | // one Element and up to two SaveRecords, thus the inline size for RawElement::Stack and |
| 1118 | // SaveRecord::Stack (this conveniently keeps the size of GrClipStack manageable). The max |
| 1119 | // encountered element stack depth was 5 and the max save depth was 6. Using an increment of 8 for |
| 1120 | // these stacks means that clip management will incur a single allocation for the remaining 2% |
| 1121 | // of the draws, with extra head room for more complex clips encountered in the wild. |
| 1122 | // |
| 1123 | // The mask stack increment size was chosen to be smaller since only 0.2% of the evaluated draw call |
| 1124 | // set ever used a mask (which includes stencil masks), or up to 0.3% when CCPR is disabled. |
| 1125 | static constexpr int kElementStackIncrement = 8; |
| 1126 | static constexpr int kSaveStackIncrement = 8; |
| 1127 | static constexpr int kMaskStackIncrement = 4; |
| 1128 | |
| 1129 | // And from this same draw call set, the most complex clip could only use 5 analytic coverage FPs. |
| 1130 | // Historically we limited it to 4 based on Blink's call pattern, so we keep the limit as-is since |
| 1131 | // it's so close to the empirically encountered max. |
| 1132 | static constexpr int kMaxAnalyticFPs = 4; |
| 1133 | // The number of stack-allocated mask pointers to store before extending the arrays. |
| 1134 | // Stack size determined empirically, the maximum number of elements put in a SW mask was 4 |
| 1135 | // across our set of GMs, SKPs, and SVGs used for testing. |
| 1136 | static constexpr int kNumStackMasks = 4; |
| 1137 | |
| 1138 | GrClipStack::GrClipStack(const SkIRect& deviceBounds, const SkMatrixProvider* matrixProvider, |
| 1139 | bool forceAA) |
| 1140 | : fElements(kElementStackIncrement) |
| 1141 | , fSaves(kSaveStackIncrement) |
| 1142 | , fMasks(kMaskStackIncrement) |
| 1143 | , fProxyProvider(nullptr) |
| 1144 | , fDeviceBounds(deviceBounds) |
| 1145 | , fMatrixProvider(matrixProvider) |
| 1146 | , fForceAA(forceAA) { |
| 1147 | // Start with a save record that is wide open |
| 1148 | fSaves.emplace_back(deviceBounds); |
| 1149 | } |
| 1150 | |
| 1151 | GrClipStack::~GrClipStack() { |
| 1152 | // Invalidate all mask keys that remain. Since we're tearing the clip stack down, we don't need |
| 1153 | // to go through SaveRecord. |
| 1154 | SkASSERT(fProxyProvider || fMasks.empty()); |
| 1155 | if (fProxyProvider) { |
| 1156 | for (Mask& m : fMasks.ritems()) { |
| 1157 | m.invalidate(fProxyProvider); |
| 1158 | } |
| 1159 | } |
| 1160 | } |
| 1161 | |
| 1162 | void GrClipStack::save() { |
| 1163 | SkASSERT(!fSaves.empty()); |
| 1164 | fSaves.back().pushSave(); |
| 1165 | } |
| 1166 | |
| 1167 | void GrClipStack::restore() { |
| 1168 | SkASSERT(!fSaves.empty()); |
| 1169 | SaveRecord& current = fSaves.back(); |
| 1170 | if (current.popSave()) { |
| 1171 | // This was just a deferred save being undone, so the record doesn't need to be removed yet |
| 1172 | return; |
| 1173 | } |
| 1174 | |
| 1175 | // When we remove a save record, we delete all elements >= its starting index and any masks |
| 1176 | // that were rasterized for it. |
| 1177 | current.removeElements(&fElements); |
| 1178 | SkASSERT(fProxyProvider || fMasks.empty()); |
| 1179 | if (fProxyProvider) { |
| 1180 | current.invalidateMasks(fProxyProvider, &fMasks); |
| 1181 | } |
| 1182 | fSaves.pop_back(); |
| 1183 | // Restore any remaining elements that were only invalidated by the now-removed save record. |
| 1184 | fSaves.back().restoreElements(&fElements); |
| 1185 | } |
| 1186 | |
| 1187 | SkIRect GrClipStack::getConservativeBounds() const { |
| 1188 | const SaveRecord& current = this->currentSaveRecord(); |
| 1189 | if (current.state() == ClipState::kEmpty) { |
| 1190 | return SkIRect::MakeEmpty(); |
| 1191 | } else if (current.state() == ClipState::kWideOpen) { |
| 1192 | return fDeviceBounds; |
| 1193 | } else { |
| 1194 | if (current.op() == SkClipOp::kDifference) { |
| 1195 | // The outer/inner bounds represent what's cut out, so full bounds remains the device |
| 1196 | // bounds, minus any fully clipped content that spans the device edge. |
| 1197 | return subtract(fDeviceBounds, current.innerBounds(), /* exact */ true); |
| 1198 | } else { |
| 1199 | SkASSERT(fDeviceBounds.contains(current.outerBounds())); |
| 1200 | return current.outerBounds(); |
| 1201 | } |
| 1202 | } |
| 1203 | } |
| 1204 | |
| 1205 | GrClip::PreClipResult GrClipStack::preApply(const SkRect& bounds, GrAA aa) const { |
| 1206 | Draw draw(bounds, fForceAA ? GrAA::kYes : aa); |
| 1207 | if (!draw.applyDeviceBounds(fDeviceBounds)) { |
| 1208 | return GrClip::Effect::kClippedOut; |
| 1209 | } |
| 1210 | |
| 1211 | const SaveRecord& cs = this->currentSaveRecord(); |
| 1212 | // Early out if we know a priori that the clip is full 0s or full 1s. |
| 1213 | if (cs.state() == ClipState::kEmpty) { |
| 1214 | return GrClip::Effect::kClippedOut; |
| 1215 | } else if (cs.state() == ClipState::kWideOpen) { |
| 1216 | SkASSERT(!cs.shader()); |
| 1217 | return GrClip::Effect::kUnclipped; |
| 1218 | } |
| 1219 | |
| 1220 | // Given argument order, 'A' == current clip, 'B' == draw |
| 1221 | switch (get_clip_geometry(cs, draw)) { |
| 1222 | case ClipGeometry::kEmpty: |
| 1223 | // Can ignore the shader since the geometry removed everything already |
| 1224 | return GrClip::Effect::kClippedOut; |
| 1225 | |
| 1226 | case ClipGeometry::kBOnly: |
| 1227 | // Geometrically, the draw is unclipped, but can't ignore a shader |
| 1228 | return cs.shader() ? GrClip::Effect::kClipped : GrClip::Effect::kUnclipped; |
| 1229 | |
| 1230 | case ClipGeometry::kAOnly: |
| 1231 | // Shouldn't happen since the inner bounds of a draw are unknown |
| 1232 | SkASSERT(false); |
| 1233 | // But if it did, it technically means the draw covered the clip and should be |
| 1234 | // considered kClipped or similar, which is what the next case handles. |
| 1235 | [[fallthrough]]; |
| 1236 | |
| 1237 | case ClipGeometry::kBoth: { |
| 1238 | SkASSERT(fElements.count() > 0); |
| 1239 | const RawElement& back = fElements.back(); |
| 1240 | if (cs.state() == ClipState::kDeviceRect) { |
| 1241 | SkASSERT(back.clipType() == ClipState::kDeviceRect); |
| 1242 | return {back.shape().rect(), back.aa()}; |
| 1243 | } else if (cs.state() == ClipState::kDeviceRRect) { |
| 1244 | SkASSERT(back.clipType() == ClipState::kDeviceRRect); |
| 1245 | return {back.shape().rrect(), back.aa()}; |
| 1246 | } else { |
| 1247 | // The clip stack has complex shapes, multiple elements, or a shader; we could |
| 1248 | // iterate per element like we would in apply(), but preApply() is meant to be |
| 1249 | // conservative and efficient. |
| 1250 | SkASSERT(cs.state() == ClipState::kComplex); |
| 1251 | return GrClip::Effect::kClipped; |
| 1252 | } |
| 1253 | } |
| 1254 | } |
| 1255 | |
| 1256 | SkUNREACHABLE; |
| 1257 | } |
| 1258 | |
| 1259 | GrClip::Effect GrClipStack::apply(GrRecordingContext* context, GrRenderTargetContext* rtc, |
| 1260 | GrAAType aa, bool hasUserStencilSettings, |
| 1261 | GrAppliedClip* out, SkRect* bounds) const { |
| 1262 | // TODO: Once we no longer store SW masks, we don't need to sneak the provider in like this |
| 1263 | if (!fProxyProvider) { |
| 1264 | fProxyProvider = context->priv().proxyProvider(); |
| 1265 | } |
| 1266 | SkASSERT(fProxyProvider == context->priv().proxyProvider()); |
| 1267 | const GrCaps* caps = context->priv().caps(); |
| 1268 | |
| 1269 | // Convert the bounds to a Draw and apply device bounds clipping, making our query as tight |
| 1270 | // as possible. |
| 1271 | Draw draw(*bounds, GrAA(fForceAA || aa != GrAAType::kNone)); |
| 1272 | if (!draw.applyDeviceBounds(fDeviceBounds)) { |
| 1273 | return Effect::kClippedOut; |
| 1274 | } |
| 1275 | SkAssertResult(bounds->intersect(SkRect::Make(fDeviceBounds))); |
| 1276 | |
| 1277 | const SaveRecord& cs = this->currentSaveRecord(); |
| 1278 | // Early out if we know a priori that the clip is full 0s or full 1s. |
| 1279 | if (cs.state() == ClipState::kEmpty) { |
| 1280 | return Effect::kClippedOut; |
| 1281 | } else if (cs.state() == ClipState::kWideOpen) { |
| 1282 | SkASSERT(!cs.shader()); |
| 1283 | return Effect::kUnclipped; |
| 1284 | } |
| 1285 | |
| 1286 | // Convert any clip shader first, since it's not geometrically related to the draw bounds |
| 1287 | std::unique_ptr<GrFragmentProcessor> clipFP = nullptr; |
| 1288 | if (cs.shader()) { |
| 1289 | static const GrColorInfo kCoverageColorInfo{GrColorType::kUnknown, kPremul_SkAlphaType, |
| 1290 | nullptr}; |
| 1291 | GrFPArgs args(context, *fMatrixProvider, kNone_SkFilterQuality, &kCoverageColorInfo); |
| 1292 | clipFP = as_SB(cs.shader())->asFragmentProcessor(args); |
| 1293 | if (clipFP) { |
| 1294 | clipFP = GrFragmentProcessor::SwizzleOutput(std::move(clipFP), GrSwizzle::AAAA()); |
| 1295 | } |
| 1296 | } |
| 1297 | |
| 1298 | // A refers to the entire clip stack, B refers to the draw |
| 1299 | switch (get_clip_geometry(cs, draw)) { |
| 1300 | case ClipGeometry::kEmpty: |
| 1301 | return Effect::kClippedOut; |
| 1302 | |
| 1303 | case ClipGeometry::kBOnly: |
| 1304 | // Geometrically unclipped, but may need to add the shader as a coverage FP |
| 1305 | if (clipFP) { |
| 1306 | out->addCoverageFP(std::move(clipFP)); |
| 1307 | return Effect::kClipped; |
| 1308 | } else { |
| 1309 | return Effect::kUnclipped; |
| 1310 | } |
| 1311 | |
| 1312 | case ClipGeometry::kAOnly: |
| 1313 | // Shouldn't happen since draws don't report inner bounds |
| 1314 | SkASSERT(false); |
| 1315 | [[fallthrough]]; |
| 1316 | |
| 1317 | case ClipGeometry::kBoth: |
| 1318 | // The draw is combined with the saved clip elements; the below logic tries to skip |
| 1319 | // as many elements as possible. |
| 1320 | SkASSERT(cs.state() == ClipState::kDeviceRect || |
| 1321 | cs.state() == ClipState::kDeviceRRect || |
| 1322 | cs.state() == ClipState::kComplex); |
| 1323 | break; |
| 1324 | } |
| 1325 | |
| 1326 | // We can determine a scissor based on the draw and the overall stack bounds. |
| 1327 | SkIRect scissorBounds; |
| 1328 | if (cs.op() == SkClipOp::kIntersect) { |
| 1329 | // Initially we keep this as large as possible; if the clip is applied solely with coverage |
| 1330 | // FPs then using a loose scissor increases the chance we can batch the draws. |
| 1331 | // We tighten it later if any form of mask or atlas element is needed. |
| 1332 | scissorBounds = cs.outerBounds(); |
| 1333 | } else { |
| 1334 | scissorBounds = subtract(draw.outerBounds(), cs.innerBounds(), /* exact */ true); |
| 1335 | } |
| 1336 | |
| 1337 | // We mark this true once we have a coverage FP (since complex clipping is occurring), or we |
| 1338 | // have an element that wouldn't affect the scissored draw bounds, but does affect the regular |
| 1339 | // draw bounds. In that case, the scissor is sufficient for clipping and we can skip the |
| 1340 | // element but definitely cannot then drop the scissor. |
| 1341 | bool scissorIsNeeded = SkToBool(cs.shader()); |
| 1342 | |
| 1343 | int remainingAnalyticFPs = kMaxAnalyticFPs; |
Michael Ludwig | b28e141 | 2020-09-18 15:07:49 -0400 | [diff] [blame] | 1344 | if (hasUserStencilSettings) { |
| 1345 | // Disable analytic clips when there are user stencil settings to ensure the clip is |
| 1346 | // respected in the stencil buffer. |
Michael Ludwig | a195d10 | 2020-09-15 14:51:52 -0400 | [diff] [blame] | 1347 | remainingAnalyticFPs = 0; |
Michael Ludwig | b28e141 | 2020-09-18 15:07:49 -0400 | [diff] [blame] | 1348 | // If we have user stencil settings, we shouldn't be avoiding the stencil buffer anyways. |
Michael Ludwig | a195d10 | 2020-09-15 14:51:52 -0400 | [diff] [blame] | 1349 | SkASSERT(!context->priv().caps()->avoidStencilBuffers()); |
| 1350 | } |
| 1351 | |
| 1352 | // If window rectangles are supported, we can use them to exclude inner bounds of difference ops |
| 1353 | int maxWindowRectangles = rtc->priv().maxWindowRectangles(); |
| 1354 | GrWindowRectangles windowRects; |
| 1355 | |
| 1356 | // Elements not represented as an analytic FP or skipped will be collected here and later |
| 1357 | // applied by using the stencil buffer, CCPR clip atlas, or a cached SW mask. |
| 1358 | SkSTArray<kNumStackMasks, const Element*> elementsForMask; |
| 1359 | SkSTArray<kNumStackMasks, const RawElement*> elementsForAtlas; |
| 1360 | |
| 1361 | bool maskRequiresAA = false; |
| 1362 | auto* ccpr = context->priv().drawingManager()->getCoverageCountingPathRenderer(); |
| 1363 | |
| 1364 | int i = fElements.count(); |
| 1365 | for (const RawElement& e : fElements.ritems()) { |
| 1366 | --i; |
| 1367 | if (i < cs.oldestElementIndex()) { |
| 1368 | // All earlier elements have been invalidated by elements already processed |
| 1369 | break; |
| 1370 | } else if (e.isInvalid()) { |
| 1371 | continue; |
| 1372 | } |
| 1373 | |
| 1374 | switch (get_clip_geometry(e, draw)) { |
| 1375 | case ClipGeometry::kEmpty: |
| 1376 | // This can happen for difference op elements that have a larger fInnerBounds than |
| 1377 | // can be preserved at the next level. |
| 1378 | return Effect::kClippedOut; |
| 1379 | |
| 1380 | case ClipGeometry::kBOnly: |
| 1381 | // We don't need to produce a coverage FP or mask for the element |
| 1382 | break; |
| 1383 | |
| 1384 | case ClipGeometry::kAOnly: |
| 1385 | // Shouldn't happen for draws, fall through to regular element processing |
| 1386 | SkASSERT(false); |
| 1387 | [[fallthrough]]; |
| 1388 | |
| 1389 | case ClipGeometry::kBoth: { |
| 1390 | // The element must apply coverage to the draw, enable the scissor to limit overdraw |
| 1391 | scissorIsNeeded = true; |
| 1392 | |
| 1393 | // First apply using HW methods (scissor and window rects). When the inner and outer |
| 1394 | // bounds match, nothing else needs to be done. |
| 1395 | bool fullyApplied = false; |
| 1396 | if (e.op() == SkClipOp::kIntersect) { |
| 1397 | // The second test allows clipped draws that are scissored by multiple elements |
| 1398 | // to remain scissor-only. |
| 1399 | fullyApplied = e.innerBounds() == e.outerBounds() || |
| 1400 | e.innerBounds().contains(scissorBounds); |
| 1401 | } else { |
| 1402 | if (!e.innerBounds().isEmpty() && |
| 1403 | out->windowRectsState().numWindows() < maxWindowRectangles) { |
| 1404 | // TODO: If we have more difference ops than available window rects, we |
| 1405 | // should prioritize those with the largest inner bounds. |
| 1406 | windowRects.addWindow(e.innerBounds()); |
| 1407 | fullyApplied = e.innerBounds() == e.outerBounds(); |
| 1408 | } |
| 1409 | } |
| 1410 | |
| 1411 | if (!fullyApplied && remainingAnalyticFPs > 0) { |
| 1412 | std::tie(fullyApplied, clipFP) = analytic_clip_fp(e.asElement(), |
| 1413 | *caps->shaderCaps(), |
| 1414 | std::move(clipFP)); |
| 1415 | if (fullyApplied) { |
| 1416 | remainingAnalyticFPs--; |
| 1417 | } else if (ccpr && e.aa() == GrAA::kYes) { |
| 1418 | // While technically the element is turned into a mask, each atlas entry |
| 1419 | // counts towards the FP complexity of the clip. |
| 1420 | // TODO - CCPR needs a stable ops task ID so we can't create FPs until we |
| 1421 | // know any other mask generation is finished. It also only works with AA |
| 1422 | // shapes, future atlas systems can improve on this. |
| 1423 | elementsForAtlas.push_back(&e); |
| 1424 | remainingAnalyticFPs--; |
| 1425 | fullyApplied = true; |
| 1426 | } |
| 1427 | } |
| 1428 | |
| 1429 | if (!fullyApplied) { |
| 1430 | elementsForMask.push_back(&e.asElement()); |
| 1431 | maskRequiresAA |= (e.aa() == GrAA::kYes); |
| 1432 | } |
| 1433 | |
| 1434 | break; |
| 1435 | } |
| 1436 | } |
| 1437 | } |
| 1438 | |
| 1439 | if (!scissorIsNeeded) { |
| 1440 | // More detailed analysis of the element shapes determined no clip is needed |
| 1441 | SkASSERT(elementsForMask.empty() && elementsForAtlas.empty() && !clipFP); |
| 1442 | return Effect::kUnclipped; |
| 1443 | } |
| 1444 | |
| 1445 | // Fill out the GrAppliedClip with what we know so far, possibly with a tightened scissor |
| 1446 | if (cs.op() == SkClipOp::kIntersect && |
| 1447 | (!elementsForMask.empty() || !elementsForAtlas.empty())) { |
| 1448 | SkAssertResult(scissorBounds.intersect(draw.outerBounds())); |
| 1449 | } |
| 1450 | if (!GrClip::IsInsideClip(scissorBounds, *bounds)) { |
| 1451 | out->hardClip().addScissor(scissorBounds, bounds); |
| 1452 | } |
| 1453 | if (!windowRects.empty()) { |
| 1454 | out->hardClip().addWindowRectangles(windowRects, GrWindowRectsState::Mode::kExclusive); |
| 1455 | } |
| 1456 | |
| 1457 | // Now rasterize any remaining elements, either to the stencil or a SW mask. All elements are |
| 1458 | // flattened into a single mask. |
| 1459 | if (!elementsForMask.empty()) { |
| 1460 | bool stencilUnavailable = context->priv().caps()->avoidStencilBuffers() || |
| 1461 | rtc->wrapsVkSecondaryCB(); |
| 1462 | |
| 1463 | bool hasSWMask = false; |
| 1464 | if ((rtc->numSamples() <= 1 && maskRequiresAA) || stencilUnavailable) { |
| 1465 | // Must use a texture mask to represent the combined clip elements since the stencil |
| 1466 | // cannot be used, or cannot handle smooth clips. |
| 1467 | std::tie(hasSWMask, clipFP) = GetSWMaskFP( |
| 1468 | context, &fMasks, cs, scissorBounds, elementsForMask.begin(), |
| 1469 | elementsForMask.count(), std::move(clipFP)); |
| 1470 | } |
| 1471 | |
| 1472 | if (!hasSWMask) { |
| 1473 | if (stencilUnavailable) { |
| 1474 | SkDebugf("WARNING: Clip mask requires stencil, but stencil unavailable. " |
| 1475 | "Draw will be ignored.\n"); |
| 1476 | return Effect::kClippedOut; |
| 1477 | } else { |
| 1478 | // Rasterize the remaining elements to the stencil buffer |
| 1479 | render_stencil_mask(context, rtc, cs.genID(), scissorBounds, |
| 1480 | elementsForMask.begin(), elementsForMask.count(), out); |
| 1481 | } |
| 1482 | } |
| 1483 | } |
| 1484 | |
| 1485 | // Finish CCPR paths now that the render target's ops task is stable. |
| 1486 | if (!elementsForAtlas.empty()) { |
| 1487 | uint32_t opsTaskID = rtc->getOpsTask()->uniqueID(); |
| 1488 | for (int i = 0; i < elementsForAtlas.count(); ++i) { |
| 1489 | SkASSERT(elementsForAtlas[i]->aa() == GrAA::kYes); |
| 1490 | clipFP = clip_atlas_fp(ccpr, opsTaskID, scissorBounds, elementsForAtlas[i]->asElement(), |
| 1491 | elementsForAtlas[i]->devicePath(), *caps, std::move(clipFP)); |
| 1492 | } |
| 1493 | } |
| 1494 | |
| 1495 | if (clipFP) { |
| 1496 | // This will include all analytic FPs, all CCPR atlas FPs, and a SW mask FP. |
| 1497 | out->addCoverageFP(std::move(clipFP)); |
| 1498 | } |
| 1499 | |
| 1500 | SkASSERT(out->doesClip()); |
| 1501 | return Effect::kClipped; |
| 1502 | } |
| 1503 | |
| 1504 | GrClipStack::SaveRecord& GrClipStack::writableSaveRecord(bool* wasDeferred) { |
| 1505 | SaveRecord& current = fSaves.back(); |
| 1506 | if (current.canBeUpdated()) { |
| 1507 | // Current record is still open, so it can be modified directly |
| 1508 | *wasDeferred = false; |
| 1509 | return current; |
| 1510 | } else { |
| 1511 | // Must undefer the save to get a new record. |
| 1512 | SkAssertResult(current.popSave()); |
| 1513 | *wasDeferred = true; |
| 1514 | return fSaves.emplace_back(current, fMasks.count(), fElements.count()); |
| 1515 | } |
| 1516 | } |
| 1517 | |
| 1518 | void GrClipStack::clipShader(sk_sp<SkShader> shader) { |
| 1519 | // Shaders can't bring additional coverage |
| 1520 | if (this->currentSaveRecord().state() == ClipState::kEmpty) { |
| 1521 | return; |
| 1522 | } |
| 1523 | |
| 1524 | bool wasDeferred; |
| 1525 | this->writableSaveRecord(&wasDeferred).addShader(std::move(shader)); |
| 1526 | // Masks and geometry elements are not invalidated by updating the clip shader |
| 1527 | } |
| 1528 | |
| 1529 | void GrClipStack::replaceClip(const SkIRect& rect) { |
| 1530 | bool wasDeferred; |
| 1531 | SaveRecord& save = this->writableSaveRecord(&wasDeferred); |
| 1532 | |
| 1533 | if (!wasDeferred) { |
| 1534 | save.removeElements(&fElements); |
| 1535 | save.invalidateMasks(fProxyProvider, &fMasks); |
| 1536 | } |
| 1537 | |
| 1538 | save.reset(fDeviceBounds); |
| 1539 | if (rect != fDeviceBounds) { |
| 1540 | this->clipRect(SkMatrix::I(), SkRect::Make(rect), GrAA::kNo, SkClipOp::kIntersect); |
| 1541 | } |
| 1542 | } |
| 1543 | |
| 1544 | void GrClipStack::clip(RawElement&& element) { |
| 1545 | if (this->currentSaveRecord().state() == ClipState::kEmpty) { |
| 1546 | return; |
| 1547 | } |
| 1548 | |
| 1549 | // Reduce the path to anything simpler, will apply the transform if it's a scale+translate |
| 1550 | // and ensures the element's bounds are clipped to the device (NOT the conservative clip bounds, |
| 1551 | // since those are based on the net effect of all elements while device bounds clipping happens |
| 1552 | // implicitly. During addElement, we may still be able to invalidate some older elements). |
| 1553 | element.simplify(fDeviceBounds, fForceAA); |
| 1554 | SkASSERT(!element.shape().inverted()); |
| 1555 | |
| 1556 | // An empty op means do nothing (for difference), or close the save record, so we try and detect |
| 1557 | // that early before doing additional unnecessary save record allocation. |
| 1558 | if (element.shape().isEmpty()) { |
| 1559 | if (element.op() == SkClipOp::kDifference) { |
| 1560 | // If the shape is empty and we're subtracting, this has no effect on the clip |
| 1561 | return; |
| 1562 | } |
| 1563 | // else we will make the clip empty, but we need a new save record to record that change |
| 1564 | // in the clip state; fall through to below and updateForElement() will handle it. |
| 1565 | } |
| 1566 | |
| 1567 | bool wasDeferred; |
| 1568 | SaveRecord& save = this->writableSaveRecord(&wasDeferred); |
| 1569 | SkDEBUGCODE(uint32_t oldGenID = save.genID();) |
| 1570 | SkDEBUGCODE(int elementCount = fElements.count();) |
| 1571 | if (!save.addElement(std::move(element), &fElements)) { |
| 1572 | if (wasDeferred) { |
| 1573 | // We made a new save record, but ended up not adding an element to the stack. |
| 1574 | // So instead of keeping an empty save record around, pop it off and restore the counter |
| 1575 | SkASSERT(elementCount == fElements.count()); |
| 1576 | fSaves.pop_back(); |
| 1577 | fSaves.back().pushSave(); |
| 1578 | } else { |
| 1579 | // Should not have changed gen ID if the element and save were not modified |
| 1580 | SkASSERT(oldGenID == save.genID()); |
| 1581 | } |
| 1582 | } else { |
| 1583 | // The gen ID should be new, and should not be invalid |
| 1584 | SkASSERT(oldGenID != save.genID() && save.genID() != kInvalidGenID); |
| 1585 | if (fProxyProvider && !wasDeferred) { |
| 1586 | // We modified an active save record so any old masks it had can be invalidated |
| 1587 | save.invalidateMasks(fProxyProvider, &fMasks); |
| 1588 | } |
| 1589 | } |
| 1590 | } |
| 1591 | |
| 1592 | GrFPResult GrClipStack::GetSWMaskFP(GrRecordingContext* context, Mask::Stack* masks, |
| 1593 | const SaveRecord& current, const SkIRect& bounds, |
| 1594 | const Element** elements, int count, |
| 1595 | std::unique_ptr<GrFragmentProcessor> clipFP) { |
| 1596 | GrProxyProvider* proxyProvider = context->priv().proxyProvider(); |
| 1597 | GrSurfaceProxyView maskProxy; |
| 1598 | |
| 1599 | SkIRect maskBounds; // may not be 'bounds' if we reuse a large clip mask |
| 1600 | // Check the existing masks from this save record for compatibility |
| 1601 | for (const Mask& m : masks->ritems()) { |
| 1602 | if (m.genID() != current.genID()) { |
| 1603 | break; |
| 1604 | } |
| 1605 | if (m.appliesToDraw(current, bounds)) { |
| 1606 | maskProxy = proxyProvider->findCachedProxyWithColorTypeFallback( |
| 1607 | m.key(), kMaskOrigin, GrColorType::kAlpha_8, 1); |
| 1608 | if (maskProxy) { |
| 1609 | maskBounds = m.bounds(); |
| 1610 | break; |
| 1611 | } |
| 1612 | } |
| 1613 | } |
| 1614 | |
| 1615 | if (!maskProxy) { |
| 1616 | // No existing mask was found, so need to render a new one |
| 1617 | maskProxy = render_sw_mask(context, bounds, elements, count); |
| 1618 | if (!maskProxy) { |
| 1619 | // If we still don't have one, there's nothing we can do |
| 1620 | return GrFPFailure(std::move(clipFP)); |
| 1621 | } |
| 1622 | |
| 1623 | // Register the mask for later invalidation |
| 1624 | Mask& mask = masks->emplace_back(current, bounds); |
| 1625 | proxyProvider->assignUniqueKeyToProxy(mask.key(), maskProxy.asTextureProxy()); |
| 1626 | maskBounds = bounds; |
| 1627 | } |
| 1628 | |
| 1629 | // Wrap the mask in an FP that samples it for coverage |
| 1630 | SkASSERT(maskProxy && maskProxy.origin() == kMaskOrigin); |
| 1631 | |
| 1632 | GrSamplerState samplerState(GrSamplerState::WrapMode::kClampToBorder, |
| 1633 | GrSamplerState::Filter::kNearest); |
| 1634 | // Maps the device coords passed to the texture effect to the top-left corner of the mask, and |
| 1635 | // make sure that the draw bounds are pre-mapped into the mask's space as well. |
| 1636 | auto m = SkMatrix::Translate(-maskBounds.fLeft, -maskBounds.fTop); |
| 1637 | auto subset = SkRect::Make(bounds); |
| 1638 | subset.offset(-maskBounds.fLeft, -maskBounds.fTop); |
| 1639 | // We scissor to bounds. The mask's texel centers are aligned to device space |
| 1640 | // pixel centers. Hence this domain of texture coordinates. |
| 1641 | auto domain = subset.makeInset(0.5, 0.5); |
| 1642 | auto fp = GrTextureEffect::MakeSubset(std::move(maskProxy), kPremul_SkAlphaType, m, |
| 1643 | samplerState, subset, domain, *context->priv().caps()); |
| 1644 | fp = GrDeviceSpaceEffect::Make(std::move(fp)); |
| 1645 | |
| 1646 | // Must combine the coverage sampled from the texture effect with the previous coverage |
| 1647 | fp = GrBlendFragmentProcessor::Make(std::move(clipFP), std::move(fp), SkBlendMode::kModulate); |
| 1648 | return GrFPSuccess(std::move(fp)); |
| 1649 | } |