blob: a9ae6fa4e13dee3e473c2498378a81cc9e82922e [file] [log] [blame]
senorblancod6ed19c2015-02-26 06:58:17 -08001/*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrTessellatingPathRenderer.h"
9
10#include "GrDefaultGeoProcFactory.h"
11#include "GrPathUtils.h"
12#include "SkChunkAlloc.h"
13#include "SkGeometry.h"
14
15#include <stdio.h>
16
17/*
18 * This path renderer tessellates the path into triangles, uploads the triangles to a
19 * vertex buffer, and renders them with a single draw call. It does not currently do
20 * antialiasing, so it must be used in conjunction with multisampling.
21 *
22 * There are six stages to the algorithm:
23 *
24 * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
25 * 2) Build a mesh of edges connecting the vertices (build_edges()).
26 * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
27 * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
28 * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
29 * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
30 *
31 * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
32 * of vertices (and the necessity of inserting new vertices on intersection).
33 *
34 * Stages (4) and (5) use an active edge list, which a list of all edges for which the
35 * sweep line has crossed the top vertex, but not the bottom vertex. It's sorted
36 * left-to-right based on the point where both edges are active (when both top vertices
37 * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
38 * (shared), it's sorted based on the last point where both edges are active, so the
39 * "upper" bottom vertex.
40 *
41 * The most complex step is the simplification (4). It's based on the Bentley-Ottman
42 * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
43 * not exact and may violate the mesh topology or active edge list ordering. We
44 * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
45 * points. This occurs in three ways:
46 *
47 * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
48 * neighbouring edges at the top or bottom vertex. This is handled by merging the
49 * edges (merge_collinear_edges()).
50 * B) Intersections may cause an edge to violate the left-to-right ordering of the
51 * active edge list. This is handled by splitting the neighbour edge on the
52 * intersected vertex (cleanup_active_edges()).
53 * C) Shortening an edge may cause an active edge to become inactive or an inactive edge
54 * to become active. This is handled by removing or inserting the edge in the active
55 * edge list (fix_active_state()).
56 *
57 * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
58 * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
59 * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
60 * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
61 * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
62 * insertions and removals was greater than the cost of infrequent O(N) lookups with the
63 * linked list implementation. With the latter, all removals are O(1), and most insertions
64 * are O(1), since we know the adjacent edge in the active edge list based on the topology.
65 * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
66 * frequent. There may be other data structures worth investigating, however.
67 *
68 * Note that there is a compile-time flag (SWEEP_IN_X) which changes the orientation of the
69 * line sweep algorithms. When SWEEP_IN_X is unset, we sort vertices based on increasing
70 * Y coordinate, and secondarily by increasing X coordinate. When SWEEP_IN_X is set, we sort by
71 * increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so that the
72 * "left" and "right" orientation in the code remains correct (edges to the left are increasing
73 * in Y; edges to the right are decreasing in Y). That is, the setting rotates 90 degrees
74 * counterclockwise, rather that transposing.
75 *
76 * The choice is arbitrary, but most test cases are wider than they are tall, so the
77 * default is to sweep in X. In the future, we may want to make this a runtime parameter
78 * and base it on the aspect ratio of the clip bounds.
79 */
80#define LOGGING_ENABLED 0
81#define WIREFRAME 0
82#define SWEEP_IN_X 1
83
84#if LOGGING_ENABLED
85#define LOG printf
86#else
87#define LOG(...)
88#endif
89
90#define ALLOC_NEW(Type, args, alloc) \
91 SkNEW_PLACEMENT_ARGS(alloc.allocThrow(sizeof(Type)), Type, args)
92
93namespace {
94
95struct Vertex;
96struct Edge;
97struct Poly;
98
99template <class T, T* T::*Prev, T* T::*Next>
100void insert(T* t, T* prev, T* next, T** head, T** tail) {
101 t->*Prev = prev;
102 t->*Next = next;
103 if (prev) {
104 prev->*Next = t;
105 } else if (head) {
106 *head = t;
107 }
108 if (next) {
109 next->*Prev = t;
110 } else if (tail) {
111 *tail = t;
112 }
113}
114
115template <class T, T* T::*Prev, T* T::*Next>
116void remove(T* t, T** head, T** tail) {
117 if (t->*Prev) {
118 t->*Prev->*Next = t->*Next;
119 } else if (head) {
120 *head = t->*Next;
121 }
122 if (t->*Next) {
123 t->*Next->*Prev = t->*Prev;
124 } else if (tail) {
125 *tail = t->*Prev;
126 }
127 t->*Prev = t->*Next = NULL;
128}
129
130/**
131 * Vertices are used in three ways: first, the path contours are converted into a
132 * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
133 * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
134 * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
135 * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
136 * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
137 * an individual Vertex from the path mesh may belong to multiple
138 * MonotonePolys, so the original Vertices cannot be re-used.
139 */
140
141struct Vertex {
142 Vertex(const SkPoint& point)
143 : fPoint(point), fPrev(NULL), fNext(NULL)
144 , fFirstEdgeAbove(NULL), fLastEdgeAbove(NULL)
145 , fFirstEdgeBelow(NULL), fLastEdgeBelow(NULL)
146 , fProcessed(false)
147#if LOGGING_ENABLED
148 , fID (-1.0f)
149#endif
150 {}
151 SkPoint fPoint; // Vertex position
152 Vertex* fPrev; // Linked list of contours, then Y-sorted vertices.
153 Vertex* fNext; // "
154 Edge* fFirstEdgeAbove; // Linked list of edges above this vertex.
155 Edge* fLastEdgeAbove; // "
156 Edge* fFirstEdgeBelow; // Linked list of edges below this vertex.
157 Edge* fLastEdgeBelow; // "
158 bool fProcessed; // Has this vertex been seen in simplify()?
159#if LOGGING_ENABLED
160 float fID; // Identifier used for logging.
161#endif
162};
163
164/***************************************************************************************/
165
166bool sweep_lt(const SkPoint& a, const SkPoint& b) {
167#if SWEEP_IN_X
168 return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX;
169#else
170 return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY;
171#endif
172}
173
174bool sweep_gt(const SkPoint& a, const SkPoint& b) {
175#if SWEEP_IN_X
176 return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX;
177#else
178 return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY;
179#endif
180}
181
182inline void* emit_vertex(Vertex* v, void* data) {
183 SkPoint* d = static_cast<SkPoint*>(data);
184 *d++ = v->fPoint;
185 return d;
186}
187
188void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, void* data) {
189#if WIREFRAME
190 data = emit_vertex(v0, data);
191 data = emit_vertex(v1, data);
192 data = emit_vertex(v1, data);
193 data = emit_vertex(v2, data);
194 data = emit_vertex(v2, data);
195 data = emit_vertex(v0, data);
196#else
197 data = emit_vertex(v0, data);
198 data = emit_vertex(v1, data);
199 data = emit_vertex(v2, data);
200#endif
201 return data;
202}
203
204/**
205 * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
206 * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
207 * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
208 * point). For speed, that case is only tested by the callers which require it (e.g.,
209 * cleanup_active_edges()). Edges also handle checking for intersection with other edges.
210 * Currently, this converts the edges to the parametric form, in order to avoid doing a division
211 * until an intersection has been confirmed. This is slightly slower in the "found" case, but
212 * a lot faster in the "not found" case.
213 *
214 * The coefficients of the line equation stored in double precision to avoid catastrphic
215 * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
216 * correct in float, since it's a polynomial of degree 2. The intersect() function, being
217 * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
218 * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
219 * this file).
220 */
221
222struct Edge {
223 Edge(Vertex* top, Vertex* bottom, int winding)
224 : fWinding(winding)
225 , fTop(top)
226 , fBottom(bottom)
227 , fLeft(NULL)
228 , fRight(NULL)
229 , fPrevEdgeAbove(NULL)
230 , fNextEdgeAbove(NULL)
231 , fPrevEdgeBelow(NULL)
232 , fNextEdgeBelow(NULL)
233 , fLeftPoly(NULL)
234 , fRightPoly(NULL) {
235 recompute();
236 }
237 int fWinding; // 1 == edge goes downward; -1 = edge goes upward.
238 Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt).
239 Vertex* fBottom; // The bottom vertex in vertex-sort-order.
240 Edge* fLeft; // The linked list of edges in the active edge list.
241 Edge* fRight; // "
242 Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex's "edges above".
243 Edge* fNextEdgeAbove; // "
244 Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's "edges below".
245 Edge* fNextEdgeBelow; // "
246 Poly* fLeftPoly; // The Poly to the left of this edge, if any.
247 Poly* fRightPoly; // The Poly to the right of this edge, if any.
248 double fDX; // The line equation for this edge, in implicit form.
249 double fDY; // fDY * x + fDX * y + fC = 0, for point (x, y) on the line.
250 double fC;
251 double dist(const SkPoint& p) const {
252 return fDY * p.fX - fDX * p.fY + fC;
253 }
254 bool isRightOf(Vertex* v) const {
255 return dist(v->fPoint) < 0.0;
256 }
257 bool isLeftOf(Vertex* v) const {
258 return dist(v->fPoint) > 0.0;
259 }
260 void recompute() {
261 fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX;
262 fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY;
263 fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX -
264 static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY;
265 }
266 bool intersect(const Edge& other, SkPoint* p) {
267 LOG("intersecting %g -> %g with %g -> %g\n",
268 fTop->fID, fBottom->fID,
269 other.fTop->fID, other.fBottom->fID);
270 if (fTop == other.fTop || fBottom == other.fBottom) {
271 return false;
272 }
273 double denom = fDX * other.fDY - fDY * other.fDX;
274 if (denom == 0.0) {
275 return false;
276 }
277 double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
278 double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
279 double sNumer = dy * other.fDX - dx * other.fDY;
280 double tNumer = dy * fDX - dx * fDY;
281 // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
282 // This saves us doing the divide below unless absolutely necessary.
283 if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
284 : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
285 return false;
286 }
287 double s = sNumer / denom;
288 SkASSERT(s >= 0.0 && s <= 1.0);
289 p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX);
290 p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY);
291 return true;
292 }
293 bool isActive(Edge** activeEdges) const {
294 return activeEdges && (fLeft || fRight || *activeEdges == this);
295 }
296};
297
298/***************************************************************************************/
299
300struct Poly {
301 Poly(int winding)
302 : fWinding(winding)
303 , fHead(NULL)
304 , fTail(NULL)
305 , fActive(NULL)
306 , fNext(NULL)
307 , fPartner(NULL)
308 , fCount(0)
309 {
310#if LOGGING_ENABLED
311 static int gID = 0;
312 fID = gID++;
313 LOG("*** created Poly %d\n", fID);
314#endif
315 }
316 typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side;
317 struct MonotonePoly {
318 MonotonePoly()
319 : fSide(kNeither_Side)
320 , fHead(NULL)
321 , fTail(NULL)
322 , fPrev(NULL)
323 , fNext(NULL) {}
324 Side fSide;
325 Vertex* fHead;
326 Vertex* fTail;
327 MonotonePoly* fPrev;
328 MonotonePoly* fNext;
329 bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
330 Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc);
331 bool done = false;
332 if (fSide == kNeither_Side) {
333 fSide = side;
334 } else {
335 done = side != fSide;
336 }
337 if (fHead == NULL) {
338 fHead = fTail = newV;
339 } else if (fSide == kRight_Side) {
340 newV->fPrev = fTail;
341 fTail->fNext = newV;
342 fTail = newV;
343 } else {
344 newV->fNext = fHead;
345 fHead->fPrev = newV;
346 fHead = newV;
347 }
348 return done;
349 }
350
351 void* emit(void* data) {
352 Vertex* first = fHead;
353 Vertex* v = first->fNext;
354 while (v != fTail) {
355 SkASSERT(v && v->fPrev && v->fNext);
356#ifdef SK_DEBUG
357 validate();
358#endif
359 Vertex* prev = v->fPrev;
360 Vertex* curr = v;
361 Vertex* next = v->fNext;
362 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
363 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
364 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
365 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
366 if (ax * by - ay * bx >= 0.0) {
367 data = emit_triangle(prev, curr, next, data);
368 v->fPrev->fNext = v->fNext;
369 v->fNext->fPrev = v->fPrev;
370 if (v->fPrev == first) {
371 v = v->fNext;
372 } else {
373 v = v->fPrev;
374 }
375 } else {
376 v = v->fNext;
377 SkASSERT(v != fTail);
378 }
379 }
380 return data;
381 }
382
383#ifdef SK_DEBUG
384 void validate() {
385 int winding = sweep_lt(fHead->fPoint, fTail->fPoint) ? 1 : -1;
386 Vertex* top = winding < 0 ? fTail : fHead;
387 Vertex* bottom = winding < 0 ? fHead : fTail;
388 Edge e(top, bottom, winding);
389 for (Vertex* v = fHead->fNext; v != fTail; v = v->fNext) {
390 if (fSide == kRight_Side) {
391 SkASSERT(!e.isRightOf(v));
392 } else if (fSide == Poly::kLeft_Side) {
393 SkASSERT(!e.isLeftOf(v));
394 }
395 }
396 }
397#endif
398 };
399 Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
400 LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoint.fX, v->fPoint.fY,
401 side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "neither");
402 Poly* partner = fPartner;
403 Poly* poly = this;
404 if (partner) {
405 fPartner = partner->fPartner = NULL;
406 }
407 if (!fActive) {
408 fActive = ALLOC_NEW(MonotonePoly, (), alloc);
409 }
410 if (fActive->addVertex(v, side, alloc)) {
411#ifdef SK_DEBUG
412 fActive->validate();
413#endif
414 if (fTail) {
415 fActive->fPrev = fTail;
416 fTail->fNext = fActive;
417 fTail = fActive;
418 } else {
419 fHead = fTail = fActive;
420 }
421 if (partner) {
422 partner->addVertex(v, side, alloc);
423 poly = partner;
424 } else {
425 Vertex* prev = fActive->fSide == Poly::kLeft_Side ?
426 fActive->fHead->fNext : fActive->fTail->fPrev;
427 fActive = ALLOC_NEW(MonotonePoly, , alloc);
428 fActive->addVertex(prev, Poly::kNeither_Side, alloc);
429 fActive->addVertex(v, side, alloc);
430 }
431 }
432 fCount++;
433 return poly;
434 }
435 void end(Vertex* v, SkChunkAlloc& alloc) {
436 LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY);
437 if (fPartner) {
438 fPartner = fPartner->fPartner = NULL;
439 }
440 addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, alloc);
441 }
442 void* emit(void *data) {
443 if (fCount < 3) {
444 return data;
445 }
446 LOG("emit() %d, size %d\n", fID, fCount);
447 for (MonotonePoly* m = fHead; m != NULL; m = m->fNext) {
448 data = m->emit(data);
449 }
450 return data;
451 }
452 int fWinding;
453 MonotonePoly* fHead;
454 MonotonePoly* fTail;
455 MonotonePoly* fActive;
456 Poly* fNext;
457 Poly* fPartner;
458 int fCount;
459#if LOGGING_ENABLED
460 int fID;
461#endif
462};
463
464/***************************************************************************************/
465
466bool coincident(const SkPoint& a, const SkPoint& b) {
467 return a == b;
468}
469
470Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) {
471 Poly* poly = ALLOC_NEW(Poly, (winding), alloc);
472 poly->addVertex(v, Poly::kNeither_Side, alloc);
473 poly->fNext = *head;
474 *head = poly;
475 return poly;
476}
477
478#ifdef SK_DEBUG
479void validate_edges(Edge* head) {
480 for (Edge* e = head; e != NULL; e = e->fRight) {
481 SkASSERT(e->fTop != e->fBottom);
482 if (e->fLeft) {
483 SkASSERT(e->fLeft->fRight == e);
484 if (sweep_gt(e->fTop->fPoint, e->fLeft->fTop->fPoint)) {
485 SkASSERT(e->fLeft->isLeftOf(e->fTop));
486 }
487 if (sweep_lt(e->fBottom->fPoint, e->fLeft->fBottom->fPoint)) {
488 SkASSERT(e->fLeft->isLeftOf(e->fBottom));
489 }
490 } else {
491 SkASSERT(e == head);
492 }
493 if (e->fRight) {
494 SkASSERT(e->fRight->fLeft == e);
495 if (sweep_gt(e->fTop->fPoint, e->fRight->fTop->fPoint)) {
496 SkASSERT(e->fRight->isRightOf(e->fTop));
497 }
498 if (sweep_lt(e->fBottom->fPoint, e->fRight->fBottom->fPoint)) {
499 SkASSERT(e->fRight->isRightOf(e->fBottom));
500 }
501 }
502 }
503}
504
505void validate_connectivity(Vertex* v) {
506 for (Edge* e = v->fFirstEdgeAbove; e != NULL; e = e->fNextEdgeAbove) {
507 SkASSERT(e->fBottom == v);
508 if (e->fPrevEdgeAbove) {
509 SkASSERT(e->fPrevEdgeAbove->fNextEdgeAbove == e);
510 SkASSERT(e->fPrevEdgeAbove->isLeftOf(e->fTop));
511 } else {
512 SkASSERT(e == v->fFirstEdgeAbove);
513 }
514 if (e->fNextEdgeAbove) {
515 SkASSERT(e->fNextEdgeAbove->fPrevEdgeAbove == e);
516 SkASSERT(e->fNextEdgeAbove->isRightOf(e->fTop));
517 } else {
518 SkASSERT(e == v->fLastEdgeAbove);
519 }
520 }
521 for (Edge* e = v->fFirstEdgeBelow; e != NULL; e = e->fNextEdgeBelow) {
522 SkASSERT(e->fTop == v);
523 if (e->fPrevEdgeBelow) {
524 SkASSERT(e->fPrevEdgeBelow->fNextEdgeBelow == e);
525 SkASSERT(e->fPrevEdgeBelow->isLeftOf(e->fBottom));
526 } else {
527 SkASSERT(e == v->fFirstEdgeBelow);
528 }
529 if (e->fNextEdgeBelow) {
530 SkASSERT(e->fNextEdgeBelow->fPrevEdgeBelow == e);
531 SkASSERT(e->fNextEdgeBelow->isRightOf(e->fBottom));
532 } else {
533 SkASSERT(e == v->fLastEdgeBelow);
534 }
535 }
536}
537#endif
538
539Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
540 SkChunkAlloc& alloc) {
541 Vertex* v = ALLOC_NEW(Vertex, (p), alloc);
542#if LOGGING_ENABLED
543 static float gID = 0.0f;
544 v->fID = gID++;
545#endif
546 if (prev) {
547 prev->fNext = v;
548 v->fPrev = prev;
549 } else {
550 *head = v;
551 }
552 return v;
553}
554
555Vertex* generate_quadratic_points(const SkPoint& p0,
556 const SkPoint& p1,
557 const SkPoint& p2,
558 SkScalar tolSqd,
559 Vertex* prev,
560 Vertex** head,
561 int pointsLeft,
562 SkChunkAlloc& alloc) {
563 SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
564 if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
565 return append_point_to_contour(p2, prev, head, alloc);
566 }
567
568 const SkPoint q[] = {
569 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
570 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
571 };
572 const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
573
574 pointsLeft >>= 1;
575 prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft, alloc);
576 prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft, alloc);
577 return prev;
578}
579
580Vertex* generate_cubic_points(const SkPoint& p0,
581 const SkPoint& p1,
582 const SkPoint& p2,
583 const SkPoint& p3,
584 SkScalar tolSqd,
585 Vertex* prev,
586 Vertex** head,
587 int pointsLeft,
588 SkChunkAlloc& alloc) {
589 SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
590 SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
591 if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
592 !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
593 return append_point_to_contour(p3, prev, head, alloc);
594 }
595 const SkPoint q[] = {
596 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
597 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
598 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
599 };
600 const SkPoint r[] = {
601 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
602 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
603 };
604 const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
605 pointsLeft >>= 1;
606 prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLeft, alloc);
607 prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLeft, alloc);
608 return prev;
609}
610
611// Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
612
613void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
614 Vertex** contours, SkChunkAlloc& alloc) {
615
616 SkScalar toleranceSqd = tolerance * tolerance;
617
618 SkPoint pts[4];
619 bool done = false;
620 SkPath::Iter iter(path, false);
621 Vertex* prev = NULL;
622 Vertex* head = NULL;
623 if (path.isInverseFillType()) {
624 SkPoint quad[4];
625 clipBounds.toQuad(quad);
626 for (int i = 3; i >= 0; i--) {
627 prev = append_point_to_contour(quad[i], prev, &head, alloc);
628 }
629 head->fPrev = prev;
630 prev->fNext = head;
631 *contours++ = head;
632 head = prev = NULL;
633 }
634 SkAutoConicToQuads converter;
635 while (!done) {
636 SkPath::Verb verb = iter.next(pts);
637 switch (verb) {
638 case SkPath::kConic_Verb: {
639 SkScalar weight = iter.conicWeight();
640 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
641 for (int i = 0; i < converter.countQuads(); ++i) {
642 int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, toleranceSqd);
643 prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2],
644 toleranceSqd, prev, &head, pointsLeft, alloc);
645 quadPts += 2;
646 }
647 break;
648 }
649 case SkPath::kMove_Verb:
650 if (head) {
651 head->fPrev = prev;
652 prev->fNext = head;
653 *contours++ = head;
654 }
655 head = prev = NULL;
656 prev = append_point_to_contour(pts[0], prev, &head, alloc);
657 break;
658 case SkPath::kLine_Verb: {
659 prev = append_point_to_contour(pts[1], prev, &head, alloc);
660 break;
661 }
662 case SkPath::kQuad_Verb: {
663 int pointsLeft = GrPathUtils::quadraticPointCount(pts, toleranceSqd);
664 prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, prev,
665 &head, pointsLeft, alloc);
666 break;
667 }
668 case SkPath::kCubic_Verb: {
669 int pointsLeft = GrPathUtils::cubicPointCount(pts, toleranceSqd);
670 prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3],
671 toleranceSqd, prev, &head, pointsLeft, alloc);
672 break;
673 }
674 case SkPath::kClose_Verb:
675 if (head) {
676 head->fPrev = prev;
677 prev->fNext = head;
678 *contours++ = head;
679 }
680 head = prev = NULL;
681 break;
682 case SkPath::kDone_Verb:
683 if (head) {
684 head->fPrev = prev;
685 prev->fNext = head;
686 *contours++ = head;
687 }
688 done = true;
689 break;
690 }
691 }
692}
693
694inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
695 switch (fillType) {
696 case SkPath::kWinding_FillType:
697 return winding != 0;
698 case SkPath::kEvenOdd_FillType:
699 return (winding & 1) != 0;
700 case SkPath::kInverseWinding_FillType:
701 return winding == 1;
702 case SkPath::kInverseEvenOdd_FillType:
703 return (winding & 1) == 1;
704 default:
705 SkASSERT(false);
706 return false;
707 }
708}
709
710Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc) {
711 int winding = sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
712 Vertex* top = winding < 0 ? next : prev;
713 Vertex* bottom = winding < 0 ? prev : next;
714 return ALLOC_NEW(Edge, (top, bottom, winding), alloc);
715}
716
717void remove_edge(Edge* edge, Edge** head) {
718 LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
719 SkASSERT(edge->isActive(head));
720 remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, head, NULL);
721}
722
723void insert_edge(Edge* edge, Edge* prev, Edge** head) {
724 LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
725 SkASSERT(!edge->isActive(head));
726 Edge* next = prev ? prev->fRight : *head;
727 insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, head, NULL);
728}
729
730void find_enclosing_edges(Vertex* v, Edge* head, Edge** left, Edge** right) {
731 if (v->fFirstEdgeAbove) {
732 *left = v->fFirstEdgeAbove->fLeft;
733 *right = v->fLastEdgeAbove->fRight;
734 return;
735 }
736 Edge* prev = NULL;
737 Edge* next;
738 for (next = head; next != NULL; next = next->fRight) {
739 if (next->isRightOf(v)) {
740 break;
741 }
742 prev = next;
743 }
744 *left = prev;
745 *right = next;
746 return;
747}
748
749void find_enclosing_edges(Edge* edge, Edge* head, Edge** left, Edge** right) {
750 Edge* prev = NULL;
751 Edge* next;
752 for (next = head; next != NULL; next = next->fRight) {
753 if ((sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) ||
754 (sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) ||
755 (sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) &&
756 next->isRightOf(edge->fBottom)) ||
757 (sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) &&
758 edge->isLeftOf(next->fBottom))) {
759 break;
760 }
761 prev = next;
762 }
763 *left = prev;
764 *right = next;
765 return;
766}
767
768void fix_active_state(Edge* edge, Edge** activeEdges) {
769 if (edge->isActive(activeEdges)) {
770 if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
771 remove_edge(edge, activeEdges);
772 }
773 } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) {
774 Edge* left;
775 Edge* right;
776 find_enclosing_edges(edge, *activeEdges, &left, &right);
777 insert_edge(edge, left, activeEdges);
778 }
779}
780
781void insert_edge_above(Edge* edge, Vertex* v) {
782 if (edge->fTop->fPoint == edge->fBottom->fPoint ||
783 sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
784 SkASSERT(false);
785 return;
786 }
787 LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
788 Edge* prev = NULL;
789 Edge* next;
790 for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
791 if (next->isRightOf(edge->fTop)) {
792 break;
793 }
794 prev = next;
795 }
796 insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
797 edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
798}
799
800void insert_edge_below(Edge* edge, Vertex* v) {
801 if (edge->fTop->fPoint == edge->fBottom->fPoint ||
802 sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
803 SkASSERT(false);
804 return;
805 }
806 LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
807 Edge* prev = NULL;
808 Edge* next;
809 for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
810 if (next->isRightOf(edge->fBottom)) {
811 break;
812 }
813 prev = next;
814 }
815 insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
816 edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
817}
818
819void remove_edge_above(Edge* edge) {
820 LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
821 edge->fBottom->fID);
822 remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
823 edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
824}
825
826void remove_edge_below(Edge* edge) {
827 LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
828 edge->fTop->fID);
829 remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
830 edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
831}
832
833void erase_edge_if_zero_winding(Edge* edge, Edge** head) {
834 if (edge->fWinding != 0) {
835 return;
836 }
837 LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID);
838 remove_edge_above(edge);
839 remove_edge_below(edge);
840 if (edge->isActive(head)) {
841 remove_edge(edge, head);
842 }
843}
844
845void merge_collinear_edges(Edge* edge, Edge** activeEdges);
846
847void set_top(Edge* edge, Vertex* v, Edge** activeEdges) {
848 remove_edge_below(edge);
849 edge->fTop = v;
850 edge->recompute();
851 insert_edge_below(edge, v);
852 fix_active_state(edge, activeEdges);
853 merge_collinear_edges(edge, activeEdges);
854}
855
856void set_bottom(Edge* edge, Vertex* v, Edge** activeEdges) {
857 remove_edge_above(edge);
858 edge->fBottom = v;
859 edge->recompute();
860 insert_edge_above(edge, v);
861 fix_active_state(edge, activeEdges);
862 merge_collinear_edges(edge, activeEdges);
863}
864
865void merge_edges_above(Edge* edge, Edge* other, Edge** activeEdges) {
866 if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
867 LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
868 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
869 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
870 other->fWinding += edge->fWinding;
871 erase_edge_if_zero_winding(other, activeEdges);
872 edge->fWinding = 0;
873 erase_edge_if_zero_winding(edge, activeEdges);
874 } else if (sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
875 other->fWinding += edge->fWinding;
876 erase_edge_if_zero_winding(other, activeEdges);
877 set_bottom(edge, other->fTop, activeEdges);
878 } else {
879 edge->fWinding += other->fWinding;
880 erase_edge_if_zero_winding(edge, activeEdges);
881 set_bottom(other, edge->fTop, activeEdges);
882 }
883}
884
885void merge_edges_below(Edge* edge, Edge* other, Edge** activeEdges) {
886 if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
887 LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
888 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
889 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
890 other->fWinding += edge->fWinding;
891 erase_edge_if_zero_winding(other, activeEdges);
892 edge->fWinding = 0;
893 erase_edge_if_zero_winding(edge, activeEdges);
894 } else if (sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
895 edge->fWinding += other->fWinding;
896 erase_edge_if_zero_winding(edge, activeEdges);
897 set_top(other, edge->fBottom, activeEdges);
898 } else {
899 other->fWinding += edge->fWinding;
900 erase_edge_if_zero_winding(other, activeEdges);
901 set_top(edge, other->fBottom, activeEdges);
902 }
903}
904
905void merge_collinear_edges(Edge* edge, Edge** activeEdges) {
906 if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop ||
907 !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) {
908 merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges);
909 } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop ||
910 !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) {
911 merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges);
912 }
913 if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom ||
914 !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) {
915 merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges);
916 } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom ||
917 !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) {
918 merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges);
919 }
920}
921
922void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc);
923
924void cleanup_active_edges(Edge* edge, Edge** activeEdges, SkChunkAlloc& alloc) {
925 Vertex* top = edge->fTop;
926 Vertex* bottom = edge->fBottom;
927 if (edge->fLeft) {
928 Vertex* leftTop = edge->fLeft->fTop;
929 Vertex* leftBottom = edge->fLeft->fBottom;
930 if (sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) {
931 split_edge(edge->fLeft, edge->fTop, activeEdges, alloc);
932 } else if (sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) {
933 split_edge(edge, leftTop, activeEdges, alloc);
934 } else if (sweep_lt(bottom->fPoint, leftBottom->fPoint) && !edge->fLeft->isLeftOf(bottom)) {
935 split_edge(edge->fLeft, bottom, activeEdges, alloc);
936 } else if (sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
937 split_edge(edge, leftBottom, activeEdges, alloc);
938 }
939 }
940 if (edge->fRight) {
941 Vertex* rightTop = edge->fRight->fTop;
942 Vertex* rightBottom = edge->fRight->fBottom;
943 if (sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) {
944 split_edge(edge->fRight, top, activeEdges, alloc);
945 } else if (sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) {
946 split_edge(edge, rightTop, activeEdges, alloc);
947 } else if (sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
948 !edge->fRight->isRightOf(bottom)) {
949 split_edge(edge->fRight, bottom, activeEdges, alloc);
950 } else if (sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
951 !edge->isLeftOf(rightBottom)) {
952 split_edge(edge, rightBottom, activeEdges, alloc);
953 }
954 }
955}
956
957void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc) {
958 LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
959 edge->fTop->fID, edge->fBottom->fID,
960 v->fID, v->fPoint.fX, v->fPoint.fY);
senorblancoa2b6d282015-03-02 09:34:13 -0800961 if (sweep_lt(v->fPoint, edge->fTop->fPoint)) {
962 set_top(edge, v, activeEdges);
963 } else if (sweep_gt(v->fPoint, edge->fBottom->fPoint)) {
964 set_bottom(edge, v, activeEdges);
965 } else {
966 Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc);
967 insert_edge_below(newEdge, v);
968 insert_edge_above(newEdge, edge->fBottom);
969 set_bottom(edge, v, activeEdges);
970 cleanup_active_edges(edge, activeEdges, alloc);
971 fix_active_state(newEdge, activeEdges);
972 merge_collinear_edges(newEdge, activeEdges);
973 }
senorblancod6ed19c2015-02-26 06:58:17 -0800974}
975
976void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, SkChunkAlloc& alloc) {
977 LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
978 src->fID, dst->fID);
979 for (Edge* edge = src->fFirstEdgeAbove; edge;) {
980 Edge* next = edge->fNextEdgeAbove;
981 set_bottom(edge, dst, NULL);
982 edge = next;
983 }
984 for (Edge* edge = src->fFirstEdgeBelow; edge;) {
985 Edge* next = edge->fNextEdgeBelow;
986 set_top(edge, dst, NULL);
987 edge = next;
988 }
989 remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, NULL);
990}
991
992Vertex* check_for_intersection(Edge* edge, Edge* other, Edge** activeEdges, SkChunkAlloc& alloc) {
993 SkPoint p;
994 if (!edge || !other) {
995 return NULL;
996 }
997 if (edge->intersect(*other, &p)) {
998 Vertex* v;
999 LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
1000 if (p == edge->fTop->fPoint || sweep_lt(p, edge->fTop->fPoint)) {
1001 split_edge(other, edge->fTop, activeEdges, alloc);
1002 v = edge->fTop;
1003 } else if (p == edge->fBottom->fPoint || sweep_gt(p, edge->fBottom->fPoint)) {
1004 split_edge(other, edge->fBottom, activeEdges, alloc);
1005 v = edge->fBottom;
1006 } else if (p == other->fTop->fPoint || sweep_lt(p, other->fTop->fPoint)) {
1007 split_edge(edge, other->fTop, activeEdges, alloc);
1008 v = other->fTop;
1009 } else if (p == other->fBottom->fPoint || sweep_gt(p, other->fBottom->fPoint)) {
1010 split_edge(edge, other->fBottom, activeEdges, alloc);
1011 v = other->fBottom;
1012 } else {
1013 Vertex* nextV = edge->fTop;
1014 while (sweep_lt(p, nextV->fPoint)) {
1015 nextV = nextV->fPrev;
1016 }
1017 while (sweep_lt(nextV->fPoint, p)) {
1018 nextV = nextV->fNext;
1019 }
1020 Vertex* prevV = nextV->fPrev;
1021 if (coincident(prevV->fPoint, p)) {
1022 v = prevV;
1023 } else if (coincident(nextV->fPoint, p)) {
1024 v = nextV;
1025 } else {
1026 v = ALLOC_NEW(Vertex, (p), alloc);
1027 LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
1028 prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
1029 nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
1030#if LOGGING_ENABLED
1031 v->fID = (nextV->fID + prevV->fID) * 0.5f;
1032#endif
1033 v->fPrev = prevV;
1034 v->fNext = nextV;
1035 prevV->fNext = v;
1036 nextV->fPrev = v;
1037 }
1038 split_edge(edge, v, activeEdges, alloc);
1039 split_edge(other, v, activeEdges, alloc);
1040 }
1041#ifdef SK_DEBUG
1042 validate_connectivity(v);
1043#endif
1044 return v;
1045 }
1046 return NULL;
1047}
1048
1049void sanitize_contours(Vertex** contours, int contourCnt) {
1050 for (int i = 0; i < contourCnt; ++i) {
1051 SkASSERT(contours[i]);
1052 for (Vertex* v = contours[i];;) {
1053 if (coincident(v->fPrev->fPoint, v->fPoint)) {
1054 LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
1055 if (v->fPrev == v) {
1056 contours[i] = NULL;
1057 break;
1058 }
1059 v->fPrev->fNext = v->fNext;
1060 v->fNext->fPrev = v->fPrev;
1061 if (contours[i] == v) {
1062 contours[i] = v->fNext;
1063 }
1064 v = v->fPrev;
1065 } else {
1066 v = v->fNext;
1067 if (v == contours[i]) break;
1068 }
1069 }
1070 }
1071}
1072
1073void merge_coincident_vertices(Vertex** vertices, SkChunkAlloc& alloc) {
1074 for (Vertex* v = (*vertices)->fNext; v != NULL; v = v->fNext) {
1075 if (sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1076 v->fPoint = v->fPrev->fPoint;
1077 }
1078 if (coincident(v->fPrev->fPoint, v->fPoint)) {
1079 merge_vertices(v->fPrev, v, vertices, alloc);
1080 }
1081 }
1082}
1083
1084// Stage 2: convert the contours to a mesh of edges connecting the vertices.
1085
1086Vertex* build_edges(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) {
1087 Vertex* vertices = NULL;
1088 Vertex* prev = NULL;
1089 for (int i = 0; i < contourCnt; ++i) {
1090 for (Vertex* v = contours[i]; v != NULL;) {
1091 Vertex* vNext = v->fNext;
1092 Edge* edge = new_edge(v->fPrev, v, alloc);
1093 if (edge->fWinding > 0) {
1094 insert_edge_below(edge, v->fPrev);
1095 insert_edge_above(edge, v);
1096 } else {
1097 insert_edge_below(edge, v);
1098 insert_edge_above(edge, v->fPrev);
1099 }
1100 merge_collinear_edges(edge, NULL);
1101 if (prev) {
1102 prev->fNext = v;
1103 v->fPrev = prev;
1104 } else {
1105 vertices = v;
1106 }
1107 prev = v;
1108 v = vNext;
1109 if (v == contours[i]) break;
1110 }
1111 }
1112 if (prev) {
1113 prev->fNext = vertices->fPrev = NULL;
1114 }
1115 return vertices;
1116}
1117
1118// Stage 3: sort the vertices by increasing Y (or X if SWEEP_IN_X is on).
1119
1120Vertex* sorted_merge(Vertex* a, Vertex* b);
1121
1122void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) {
1123 Vertex* fast;
1124 Vertex* slow;
1125 if (!v || !v->fNext) {
1126 *pFront = v;
1127 *pBack = NULL;
1128 } else {
1129 slow = v;
1130 fast = v->fNext;
1131
1132 while (fast != NULL) {
1133 fast = fast->fNext;
1134 if (fast != NULL) {
1135 slow = slow->fNext;
1136 fast = fast->fNext;
1137 }
1138 }
1139
1140 *pFront = v;
1141 *pBack = slow->fNext;
1142 slow->fNext->fPrev = NULL;
1143 slow->fNext = NULL;
1144 }
1145}
1146
1147void merge_sort(Vertex** head) {
1148 if (!*head || !(*head)->fNext) {
1149 return;
1150 }
1151
1152 Vertex* a;
1153 Vertex* b;
1154 front_back_split(*head, &a, &b);
1155
1156 merge_sort(&a);
1157 merge_sort(&b);
1158
1159 *head = sorted_merge(a, b);
1160}
1161
1162Vertex* sorted_merge(Vertex* a, Vertex* b) {
1163 if (!a) {
1164 return b;
1165 } else if (!b) {
1166 return a;
1167 }
1168
1169 Vertex* result = NULL;
1170
1171 if (sweep_lt(a->fPoint, b->fPoint)) {
1172 result = a;
1173 result->fNext = sorted_merge(a->fNext, b);
1174 } else {
1175 result = b;
1176 result->fNext = sorted_merge(a, b->fNext);
1177 }
1178 result->fNext->fPrev = result;
1179 return result;
1180}
1181
1182// Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1183
1184void simplify(Vertex* vertices, SkChunkAlloc& alloc) {
1185 LOG("simplifying complex polygons\n");
1186 Edge* activeEdges = NULL;
1187 for (Vertex* v = vertices; v != NULL; v = v->fNext) {
1188 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1189 continue;
1190 }
1191#if LOGGING_ENABLED
1192 LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
1193#endif
1194#ifdef SK_DEBUG
1195 validate_connectivity(v);
1196#endif
1197 Edge* leftEnclosingEdge = NULL;
1198 Edge* rightEnclosingEdge = NULL;
1199 bool restartChecks;
1200 do {
1201 restartChecks = false;
1202 find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1203 if (v->fFirstEdgeBelow) {
1204 for (Edge* edge = v->fFirstEdgeBelow; edge != NULL; edge = edge->fNextEdgeBelow) {
1205 if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, alloc)) {
1206 restartChecks = true;
1207 break;
1208 }
1209 if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, alloc)) {
1210 restartChecks = true;
1211 break;
1212 }
1213 }
1214 } else {
1215 if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
1216 &activeEdges, alloc)) {
1217 if (sweep_lt(pv->fPoint, v->fPoint)) {
1218 v = pv;
1219 }
1220 restartChecks = true;
1221 }
1222
1223 }
1224 } while (restartChecks);
1225 SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v));
1226 SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v));
1227#ifdef SK_DEBUG
1228 validate_edges(activeEdges);
1229#endif
1230 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1231 remove_edge(e, &activeEdges);
1232 }
1233 Edge* leftEdge = leftEnclosingEdge;
1234 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1235 insert_edge(e, leftEdge, &activeEdges);
1236 leftEdge = e;
1237 }
1238 v->fProcessed = true;
1239 }
1240}
1241
1242// Stage 5: Tessellate the simplified mesh into monotone polygons.
1243
1244Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
1245 LOG("tessellating simple polygons\n");
1246 Edge* activeEdges = NULL;
1247 Poly* polys = NULL;
1248 for (Vertex* v = vertices; v != NULL; v = v->fNext) {
1249 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1250 continue;
1251 }
1252#if LOGGING_ENABLED
1253 LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
1254#endif
1255#ifdef SK_DEBUG
1256 validate_connectivity(v);
1257#endif
1258 Edge* leftEnclosingEdge = NULL;
1259 Edge* rightEnclosingEdge = NULL;
1260 find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1261 SkASSERT(!leftEnclosingEdge || leftEnclosingEdge->isLeftOf(v));
1262 SkASSERT(!rightEnclosingEdge || rightEnclosingEdge->isRightOf(v));
1263#ifdef SK_DEBUG
1264 validate_edges(activeEdges);
1265#endif
1266 Poly* leftPoly = NULL;
1267 Poly* rightPoly = NULL;
1268 if (v->fFirstEdgeAbove) {
1269 leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1270 rightPoly = v->fLastEdgeAbove->fRightPoly;
1271 } else {
1272 leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : NULL;
1273 rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : NULL;
1274 }
1275#if LOGGING_ENABLED
1276 LOG("edges above:\n");
1277 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1278 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1279 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1280 }
1281 LOG("edges below:\n");
1282 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1283 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1284 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1285 }
1286#endif
1287 if (v->fFirstEdgeAbove) {
1288 if (leftPoly) {
1289 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1290 }
1291 if (rightPoly) {
1292 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1293 }
1294 for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1295 Edge* leftEdge = e;
1296 Edge* rightEdge = e->fNextEdgeAbove;
1297 SkASSERT(rightEdge->isRightOf(leftEdge->fTop));
1298 remove_edge(leftEdge, &activeEdges);
1299 if (leftEdge->fRightPoly) {
1300 leftEdge->fRightPoly->end(v, alloc);
1301 }
1302 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fRightPoly) {
1303 rightEdge->fLeftPoly->end(v, alloc);
1304 }
1305 }
1306 remove_edge(v->fLastEdgeAbove, &activeEdges);
1307 if (!v->fFirstEdgeBelow) {
1308 if (leftPoly && rightPoly && leftPoly != rightPoly) {
1309 SkASSERT(leftPoly->fPartner == NULL && rightPoly->fPartner == NULL);
1310 rightPoly->fPartner = leftPoly;
1311 leftPoly->fPartner = rightPoly;
1312 }
1313 }
1314 }
1315 if (v->fFirstEdgeBelow) {
1316 if (!v->fFirstEdgeAbove) {
1317 if (leftPoly && leftPoly == rightPoly) {
1318 // Split the poly.
1319 if (leftPoly->fActive->fSide == Poly::kLeft_Side) {
1320 leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, leftPoly->fWinding,
1321 alloc);
1322 leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1323 rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1324 leftEnclosingEdge->fRightPoly = leftPoly;
1325 } else {
1326 rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, rightPoly->fWinding,
1327 alloc);
1328 rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1329 leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1330 rightEnclosingEdge->fLeftPoly = rightPoly;
1331 }
1332 } else {
1333 if (leftPoly) {
1334 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1335 }
1336 if (rightPoly) {
1337 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1338 }
1339 }
1340 }
1341 Edge* leftEdge = v->fFirstEdgeBelow;
1342 leftEdge->fLeftPoly = leftPoly;
1343 insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
1344 for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1345 rightEdge = rightEdge->fNextEdgeBelow) {
1346 insert_edge(rightEdge, leftEdge, &activeEdges);
1347 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1348 winding += leftEdge->fWinding;
1349 if (winding != 0) {
1350 Poly* poly = new_poly(&polys, v, winding, alloc);
1351 leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1352 }
1353 leftEdge = rightEdge;
1354 }
1355 v->fLastEdgeBelow->fRightPoly = rightPoly;
1356 }
1357#ifdef SK_DEBUG
1358 validate_edges(activeEdges);
1359#endif
1360#if LOGGING_ENABLED
1361 LOG("\nactive edges:\n");
1362 for (Edge* e = activeEdges; e != NULL; e = e->fRight) {
1363 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1364 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1365 }
1366#endif
1367 }
1368 return polys;
1369}
1370
1371// This is a driver function which calls stages 2-5 in turn.
1372
1373Poly* contours_to_polys(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) {
1374#if LOGGING_ENABLED
1375 for (int i = 0; i < contourCnt; ++i) {
1376 Vertex* v = contours[i];
1377 SkASSERT(v);
1378 LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1379 for (v = v->fNext; v != contours[i]; v = v->fNext) {
1380 LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1381 }
1382 }
1383#endif
1384 sanitize_contours(contours, contourCnt);
1385 Vertex* vertices = build_edges(contours, contourCnt, alloc);
1386 if (!vertices) {
1387 return NULL;
1388 }
1389
1390 // Sort vertices in Y (secondarily in X).
1391 merge_sort(&vertices);
1392 merge_coincident_vertices(&vertices, alloc);
1393#if LOGGING_ENABLED
1394 for (Vertex* v = vertices; v != NULL; v = v->fNext) {
1395 static float gID = 0.0f;
1396 v->fID = gID++;
1397 }
1398#endif
1399 simplify(vertices, alloc);
1400 return tessellate(vertices, alloc);
1401}
1402
1403// Stage 6: Triangulate the monotone polygons into a vertex buffer.
1404
1405void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, void* data) {
1406 void* d = data;
1407 for (Poly* poly = polys; poly; poly = poly->fNext) {
1408 if (apply_fill_type(fillType, poly->fWinding)) {
1409 d = poly->emit(d);
1410 }
1411 }
1412 return d;
1413}
1414
1415};
1416
1417GrTessellatingPathRenderer::GrTessellatingPathRenderer() {
1418}
1419
1420GrPathRenderer::StencilSupport GrTessellatingPathRenderer::onGetStencilSupport(
1421 const GrDrawTarget*,
1422 const GrPipelineBuilder*,
1423 const SkPath&,
1424 const SkStrokeRec&) const {
1425 return GrPathRenderer::kNoSupport_StencilSupport;
1426}
1427
1428bool GrTessellatingPathRenderer::canDrawPath(const GrDrawTarget* target,
1429 const GrPipelineBuilder* pipelineBuilder,
1430 const SkMatrix& viewMatrix,
1431 const SkPath& path,
1432 const SkStrokeRec& stroke,
1433 bool antiAlias) const {
1434 // This path renderer can draw all fill styles, but does not do antialiasing. It can do convex
1435 // and concave paths, but we'll leave the convex ones to simpler algorithms.
1436 return stroke.isFillStyle() && !antiAlias && !path.isConvex();
1437}
1438
1439bool GrTessellatingPathRenderer::onDrawPath(GrDrawTarget* target,
1440 GrPipelineBuilder* pipelineBuilder,
1441 GrColor color,
1442 const SkMatrix& viewM,
1443 const SkPath& path,
1444 const SkStrokeRec& stroke,
1445 bool antiAlias) {
1446 SkASSERT(!antiAlias);
1447 const GrRenderTarget* rt = pipelineBuilder->getRenderTarget();
1448 if (NULL == rt) {
1449 return false;
1450 }
1451
1452 SkScalar tol = GrPathUtils::scaleToleranceToSrc(SK_Scalar1, viewM, path.getBounds());
1453
1454 int contourCnt;
1455 int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tol);
1456 if (maxPts <= 0) {
1457 return false;
1458 }
1459 if (maxPts > ((int)SK_MaxU16 + 1)) {
1460 SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
1461 return false;
1462 }
1463 SkPath::FillType fillType = path.getFillType();
1464 if (SkPath::IsInverseFillType(fillType)) {
1465 contourCnt++;
1466 }
1467
1468 LOG("got %d pts, %d contours\n", maxPts, contourCnt);
1469
1470 SkAutoTDeleteArray<Vertex*> contours(SkNEW_ARRAY(Vertex *, contourCnt));
1471
1472 // For the initial size of the chunk allocator, estimate based on the point count:
1473 // one vertex per point for the initial passes, plus two for the vertices in the
1474 // resulting Polys, since the same point may end up in two Polys. Assume minimal
1475 // connectivity of one Edge per Vertex (will grow for intersections).
1476 SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge)));
1477 SkIRect clipBoundsI;
1478 pipelineBuilder->clip().getConservativeBounds(rt, &clipBoundsI);
1479 SkRect clipBounds = SkRect::Make(clipBoundsI);
1480 SkMatrix vmi;
1481 if (!viewM.invert(&vmi)) {
1482 return false;
1483 }
1484 vmi.mapRect(&clipBounds);
1485 path_to_contours(path, tol, clipBounds, contours.get(), alloc);
1486 Poly* polys;
1487 uint32_t flags = GrDefaultGeoProcFactory::kPosition_GPType;
1488 polys = contours_to_polys(contours.get(), contourCnt, alloc);
1489 SkAutoTUnref<const GrGeometryProcessor> gp(
1490 GrDefaultGeoProcFactory::Create(flags, color, viewM, SkMatrix::I()));
1491 int count = 0;
1492 for (Poly* poly = polys; poly; poly = poly->fNext) {
1493 if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
1494 count += (poly->fCount - 2) * (WIREFRAME ? 6 : 3);
1495 }
1496 }
1497
Stephen White68ccca12015-02-26 10:11:20 -05001498 size_t stride = gp->getVertexStride();
senorblancod6ed19c2015-02-26 06:58:17 -08001499 GrDrawTarget::AutoReleaseGeometry arg;
1500 if (!arg.set(target, count, stride, 0)) {
1501 return false;
1502 }
1503 LOG("emitting %d verts\n", count);
1504 void* end = polys_to_triangles(polys, fillType, arg.vertices());
Stephen White68ccca12015-02-26 10:11:20 -05001505 int actualCount = static_cast<int>((static_cast<char*>(end) - static_cast<char*>(arg.vertices())) / stride);
senorblancod6ed19c2015-02-26 06:58:17 -08001506 LOG("actual count: %d\n", actualCount);
1507 SkASSERT(actualCount <= count);
1508
1509 GrPrimitiveType primitiveType = WIREFRAME ? kLines_GrPrimitiveType
1510 : kTriangles_GrPrimitiveType;
1511 target->drawNonIndexed(pipelineBuilder, gp, primitiveType, 0, actualCount);
1512
1513 return true;
1514}