caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | #include "SkPathOpsCubic.h" |
| 8 | #include "SkPathOpsLine.h" |
| 9 | #include "SkPathOpsQuad.h" |
| 10 | |
| 11 | // Sources |
| 12 | // computer-aided design - volume 22 number 9 november 1990 pp 538 - 549 |
| 13 | // online at http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf |
| 14 | |
| 15 | // This turns a line segment into a parameterized line, of the form |
| 16 | // ax + by + c = 0 |
| 17 | // When a^2 + b^2 == 1, the line is normalized. |
| 18 | // The distance to the line for (x, y) is d(x,y) = ax + by + c |
| 19 | // |
| 20 | // Note that the distances below are not necessarily normalized. To get the true |
| 21 | // distance, it's necessary to either call normalize() after xxxEndPoints(), or |
| 22 | // divide the result of xxxDistance() by sqrt(normalSquared()) |
| 23 | |
| 24 | class SkLineParameters { |
| 25 | public: |
commit-bot@chromium.org | 866f4e3 | 2013-11-21 17:04:29 +0000 | [diff] [blame] | 26 | |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 27 | void cubicEndPoints(const SkDCubic& pts) { |
commit-bot@chromium.org | 866f4e3 | 2013-11-21 17:04:29 +0000 | [diff] [blame] | 28 | int endIndex = 1; |
| 29 | cubicEndPoints(pts, 0, endIndex); |
| 30 | if (dy() != 0) { |
| 31 | return; |
| 32 | } |
| 33 | if (dx() == 0) { |
| 34 | cubicEndPoints(pts, 0, ++endIndex); |
| 35 | SkASSERT(endIndex == 2); |
| 36 | if (dy() != 0) { |
| 37 | return; |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 38 | } |
commit-bot@chromium.org | 866f4e3 | 2013-11-21 17:04:29 +0000 | [diff] [blame] | 39 | if (dx() == 0) { |
| 40 | cubicEndPoints(pts, 0, ++endIndex); // line |
| 41 | SkASSERT(endIndex == 3); |
| 42 | return; |
| 43 | } |
| 44 | } |
| 45 | if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie |
| 46 | return; |
| 47 | } |
| 48 | // if cubic tangent is on x axis, look at next control point to break tie |
| 49 | // control point may be approximate, so it must move significantly to account for error |
| 50 | if (NotAlmostEqualUlps(pts[0].fY, pts[++endIndex].fY)) { |
| 51 | if (pts[0].fY > pts[endIndex].fY) { |
| 52 | a = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a) |
| 53 | } |
| 54 | return; |
| 55 | } |
| 56 | if (endIndex == 3) { |
| 57 | return; |
| 58 | } |
| 59 | SkASSERT(endIndex == 2); |
| 60 | if (pts[0].fY > pts[3].fY) { |
| 61 | a = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a) |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 62 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 63 | } |
| 64 | |
| 65 | void cubicEndPoints(const SkDCubic& pts, int s, int e) { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 66 | a = pts[s].fY - pts[e].fY; |
| 67 | b = pts[e].fX - pts[s].fX; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 68 | c = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY; |
| 69 | } |
| 70 | |
caryclark@google.com | 570863f | 2013-09-16 15:55:01 +0000 | [diff] [blame] | 71 | double cubicPart(const SkDCubic& part) { |
| 72 | cubicEndPoints(part); |
| 73 | if (part[0] == part[1] || ((const SkDLine& ) part[0]).nearRay(part[2])) { |
| 74 | return pointDistance(part[3]); |
| 75 | } |
| 76 | return pointDistance(part[2]); |
| 77 | } |
| 78 | |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 79 | void lineEndPoints(const SkDLine& pts) { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 80 | a = pts[0].fY - pts[1].fY; |
| 81 | b = pts[1].fX - pts[0].fX; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 82 | c = pts[0].fX * pts[1].fY - pts[1].fX * pts[0].fY; |
| 83 | } |
| 84 | |
| 85 | void quadEndPoints(const SkDQuad& pts) { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 86 | quadEndPoints(pts, 0, 1); |
commit-bot@chromium.org | 866f4e3 | 2013-11-21 17:04:29 +0000 | [diff] [blame] | 87 | if (dy() != 0) { |
| 88 | return; |
| 89 | } |
| 90 | if (dx() == 0) { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 91 | quadEndPoints(pts, 0, 2); |
commit-bot@chromium.org | 866f4e3 | 2013-11-21 17:04:29 +0000 | [diff] [blame] | 92 | return; |
| 93 | } |
| 94 | if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie |
| 95 | return; |
| 96 | } |
| 97 | if (pts[0].fY > pts[2].fY) { |
| 98 | a = DBL_EPSILON; |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 99 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 100 | } |
| 101 | |
| 102 | void quadEndPoints(const SkDQuad& pts, int s, int e) { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 103 | a = pts[s].fY - pts[e].fY; |
| 104 | b = pts[e].fX - pts[s].fX; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 105 | c = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY; |
| 106 | } |
| 107 | |
caryclark@google.com | 570863f | 2013-09-16 15:55:01 +0000 | [diff] [blame] | 108 | double quadPart(const SkDQuad& part) { |
| 109 | quadEndPoints(part); |
| 110 | return pointDistance(part[2]); |
| 111 | } |
| 112 | |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 113 | double normalSquared() const { |
| 114 | return a * a + b * b; |
| 115 | } |
| 116 | |
| 117 | bool normalize() { |
| 118 | double normal = sqrt(normalSquared()); |
| 119 | if (approximately_zero(normal)) { |
| 120 | a = b = c = 0; |
| 121 | return false; |
| 122 | } |
| 123 | double reciprocal = 1 / normal; |
| 124 | a *= reciprocal; |
| 125 | b *= reciprocal; |
| 126 | c *= reciprocal; |
| 127 | return true; |
| 128 | } |
| 129 | |
| 130 | void cubicDistanceY(const SkDCubic& pts, SkDCubic& distance) const { |
| 131 | double oneThird = 1 / 3.0; |
| 132 | for (int index = 0; index < 4; ++index) { |
| 133 | distance[index].fX = index * oneThird; |
| 134 | distance[index].fY = a * pts[index].fX + b * pts[index].fY + c; |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | void quadDistanceY(const SkDQuad& pts, SkDQuad& distance) const { |
| 139 | double oneHalf = 1 / 2.0; |
| 140 | for (int index = 0; index < 3; ++index) { |
| 141 | distance[index].fX = index * oneHalf; |
| 142 | distance[index].fY = a * pts[index].fX + b * pts[index].fY + c; |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | double controlPtDistance(const SkDCubic& pts, int index) const { |
| 147 | SkASSERT(index == 1 || index == 2); |
| 148 | return a * pts[index].fX + b * pts[index].fY + c; |
| 149 | } |
| 150 | |
| 151 | double controlPtDistance(const SkDQuad& pts) const { |
| 152 | return a * pts[1].fX + b * pts[1].fY + c; |
| 153 | } |
| 154 | |
| 155 | double pointDistance(const SkDPoint& pt) const { |
| 156 | return a * pt.fX + b * pt.fY + c; |
| 157 | } |
| 158 | |
| 159 | double dx() const { |
| 160 | return b; |
| 161 | } |
| 162 | |
| 163 | double dy() const { |
| 164 | return -a; |
| 165 | } |
| 166 | |
| 167 | private: |
| 168 | double a; |
| 169 | double b; |
| 170 | double c; |
| 171 | }; |