caryclark@google.com | 9e49fb6 | 2012-08-27 14:11:33 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
caryclark@google.com | c682590 | 2012-02-03 22:07:47 +0000 | [diff] [blame] | 7 | #include "CurveIntersection.h" |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 8 | #include "Intersections.h" |
| 9 | #include "IntersectionUtilities.h" |
| 10 | #include "LineIntersection.h" |
| 11 | |
| 12 | class QuadraticIntersections : public Intersections { |
| 13 | public: |
| 14 | |
rmistry@google.com | d6176b0 | 2012-08-23 18:14:13 +0000 | [diff] [blame] | 15 | QuadraticIntersections(const Quadratic& q1, const Quadratic& q2, Intersections& i) |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 16 | : quad1(q1) |
| 17 | , quad2(q2) |
| 18 | , intersections(i) |
rmistry@google.com | d6176b0 | 2012-08-23 18:14:13 +0000 | [diff] [blame] | 19 | , depth(0) |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 20 | , splits(0) { |
| 21 | } |
| 22 | |
| 23 | bool intersect() { |
| 24 | double minT1, minT2, maxT1, maxT2; |
| 25 | if (!bezier_clip(quad2, quad1, minT1, maxT1)) { |
| 26 | return false; |
| 27 | } |
| 28 | if (!bezier_clip(quad1, quad2, minT2, maxT2)) { |
| 29 | return false; |
| 30 | } |
| 31 | int split; |
| 32 | if (maxT1 - minT1 < maxT2 - minT2) { |
| 33 | intersections.swap(); |
| 34 | minT2 = 0; |
| 35 | maxT2 = 1; |
| 36 | split = maxT1 - minT1 > tClipLimit; |
| 37 | } else { |
| 38 | minT1 = 0; |
| 39 | maxT1 = 1; |
| 40 | split = (maxT2 - minT2 > tClipLimit) << 1; |
| 41 | } |
| 42 | return chop(minT1, maxT1, minT2, maxT2, split); |
| 43 | } |
| 44 | |
| 45 | protected: |
rmistry@google.com | d6176b0 | 2012-08-23 18:14:13 +0000 | [diff] [blame] | 46 | |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 47 | bool intersect(double minT1, double maxT1, double minT2, double maxT2) { |
| 48 | Quadratic smaller, larger; |
rmistry@google.com | d6176b0 | 2012-08-23 18:14:13 +0000 | [diff] [blame] | 49 | // FIXME: carry last subdivide and reduceOrder result with quad |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 50 | sub_divide(quad1, minT1, maxT1, intersections.swapped() ? larger : smaller); |
| 51 | sub_divide(quad2, minT2, maxT2, intersections.swapped() ? smaller : larger); |
| 52 | Quadratic smallResult; |
| 53 | if (reduceOrder(smaller, smallResult) <= 2) { |
| 54 | Quadratic largeResult; |
| 55 | if (reduceOrder(larger, largeResult) <= 2) { |
caryclark@google.com | c682590 | 2012-02-03 22:07:47 +0000 | [diff] [blame] | 56 | double smallT[2], largeT[2]; |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 57 | const _Line& smallLine = (const _Line&) smallResult; |
| 58 | const _Line& largeLine = (const _Line&) largeResult; |
caryclark@google.com | c682590 | 2012-02-03 22:07:47 +0000 | [diff] [blame] | 59 | // FIXME: this doesn't detect or deal with coincident lines |
| 60 | if (!::intersect(smallLine, largeLine, smallT, largeT)) { |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 61 | return false; |
| 62 | } |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 63 | if (intersections.swapped()) { |
rmistry@google.com | d6176b0 | 2012-08-23 18:14:13 +0000 | [diff] [blame] | 64 | smallT[0] = interp(minT2, maxT2, smallT[0]); |
| 65 | largeT[0] = interp(minT1, maxT1, largeT[0]); |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 66 | } else { |
rmistry@google.com | d6176b0 | 2012-08-23 18:14:13 +0000 | [diff] [blame] | 67 | smallT[0] = interp(minT1, maxT1, smallT[0]); |
| 68 | largeT[0] = interp(minT2, maxT2, largeT[0]); |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 69 | } |
caryclark@google.com | c682590 | 2012-02-03 22:07:47 +0000 | [diff] [blame] | 70 | intersections.add(smallT[0], largeT[0]); |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 71 | return true; |
| 72 | } |
| 73 | } |
| 74 | double minT, maxT; |
| 75 | if (!bezier_clip(smaller, larger, minT, maxT)) { |
| 76 | if (minT == maxT) { |
| 77 | if (intersections.swapped()) { |
| 78 | minT1 = (minT1 + maxT1) / 2; |
| 79 | minT2 = interp(minT2, maxT2, minT); |
| 80 | } else { |
| 81 | minT1 = interp(minT1, maxT1, minT); |
| 82 | minT2 = (minT2 + maxT2) / 2; |
| 83 | } |
| 84 | intersections.add(minT1, minT2); |
| 85 | return true; |
| 86 | } |
| 87 | return false; |
| 88 | } |
rmistry@google.com | d6176b0 | 2012-08-23 18:14:13 +0000 | [diff] [blame] | 89 | |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 90 | int split; |
| 91 | if (intersections.swapped()) { |
| 92 | double newMinT1 = interp(minT1, maxT1, minT); |
| 93 | double newMaxT1 = interp(minT1, maxT1, maxT); |
| 94 | split = (newMaxT1 - newMinT1 > (maxT1 - minT1) * tClipLimit) << 1; |
caryclark@google.com | 198e054 | 2012-03-30 18:47:02 +0000 | [diff] [blame] | 95 | #define VERBOSE 0 |
| 96 | #if VERBOSE |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 97 | printf("%s d=%d s=%d new1=(%g,%g) old1=(%g,%g) split=%d\n", __FUNCTION__, depth, |
| 98 | splits, newMinT1, newMaxT1, minT1, maxT1, split); |
caryclark@google.com | 198e054 | 2012-03-30 18:47:02 +0000 | [diff] [blame] | 99 | #endif |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 100 | minT1 = newMinT1; |
| 101 | maxT1 = newMaxT1; |
| 102 | } else { |
| 103 | double newMinT2 = interp(minT2, maxT2, minT); |
| 104 | double newMaxT2 = interp(minT2, maxT2, maxT); |
| 105 | split = newMaxT2 - newMinT2 > (maxT2 - minT2) * tClipLimit; |
caryclark@google.com | 198e054 | 2012-03-30 18:47:02 +0000 | [diff] [blame] | 106 | #if VERBOSE |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 107 | printf("%s d=%d s=%d new2=(%g,%g) old2=(%g,%g) split=%d\n", __FUNCTION__, depth, |
| 108 | splits, newMinT2, newMaxT2, minT2, maxT2, split); |
caryclark@google.com | 198e054 | 2012-03-30 18:47:02 +0000 | [diff] [blame] | 109 | #endif |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 110 | minT2 = newMinT2; |
| 111 | maxT2 = newMaxT2; |
| 112 | } |
| 113 | return chop(minT1, maxT1, minT2, maxT2, split); |
| 114 | } |
| 115 | |
| 116 | bool chop(double minT1, double maxT1, double minT2, double maxT2, int split) { |
| 117 | ++depth; |
| 118 | intersections.swap(); |
| 119 | if (split) { |
| 120 | ++splits; |
| 121 | if (split & 2) { |
| 122 | double middle1 = (maxT1 + minT1) / 2; |
| 123 | intersect(minT1, middle1, minT2, maxT2); |
| 124 | intersect(middle1, maxT1, minT2, maxT2); |
| 125 | } else { |
| 126 | double middle2 = (maxT2 + minT2) / 2; |
| 127 | intersect(minT1, maxT1, minT2, middle2); |
| 128 | intersect(minT1, maxT1, middle2, maxT2); |
| 129 | } |
| 130 | --splits; |
| 131 | intersections.swap(); |
| 132 | --depth; |
| 133 | return intersections.intersected(); |
| 134 | } |
| 135 | bool result = intersect(minT1, maxT1, minT2, maxT2); |
| 136 | intersections.swap(); |
| 137 | --depth; |
| 138 | return result; |
| 139 | } |
| 140 | |
| 141 | private: |
| 142 | |
| 143 | static const double tClipLimit = 0.8; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf see Multiple intersections |
| 144 | const Quadratic& quad1; |
| 145 | const Quadratic& quad2; |
| 146 | Intersections& intersections; |
| 147 | int depth; |
| 148 | int splits; |
| 149 | }; |
| 150 | |
caryclark@google.com | c682590 | 2012-02-03 22:07:47 +0000 | [diff] [blame] | 151 | bool intersect(const Quadratic& q1, const Quadratic& q2, Intersections& i) { |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 152 | if (implicit_matches(q1, q2)) { |
| 153 | // FIXME: compute T values |
| 154 | // compute the intersections of the ends to find the coincident span |
| 155 | bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y); |
| 156 | double t; |
| 157 | if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) { |
| 158 | i.fT[0][0] = t; |
| 159 | i.fT[1][0] = 0; |
| 160 | i.fUsed++; |
| 161 | } |
| 162 | if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) { |
| 163 | i.fT[0][i.fUsed] = t; |
| 164 | i.fT[1][i.fUsed] = 1; |
| 165 | i.fUsed++; |
| 166 | } |
| 167 | useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y); |
| 168 | if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) { |
| 169 | i.fT[0][i.fUsed] = 0; |
| 170 | i.fT[1][i.fUsed] = t; |
| 171 | i.fUsed++; |
| 172 | } |
| 173 | if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) { |
| 174 | i.fT[0][i.fUsed] = 1; |
| 175 | i.fT[1][i.fUsed] = t; |
| 176 | i.fUsed++; |
| 177 | } |
| 178 | assert(i.fUsed <= 2); |
| 179 | return i.fUsed > 0; |
| 180 | } |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 181 | QuadraticIntersections q(q1, q2, i); |
| 182 | return q.intersect(); |
| 183 | } |
| 184 | |
| 185 | |
| 186 | // Another approach is to start with the implicit form of one curve and solve |
| 187 | // by substituting in the parametric form of the other. |
| 188 | // The downside of this approach is that early rejects are difficult to come by. |
| 189 | // http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step |
| 190 | /* |
| 191 | given x^4 + ax^3 + bx^2 + cx + d |
| 192 | the resolvent cubic is x^3 - 2bx^2 + (b^2 + ac - 4d)x + (c^2 + a^2d - abc) |
| 193 | use the cubic formula (CubicRoots.cpp) to find the radical expressions t1, t2, and t3. |
| 194 | |
| 195 | (x - r1 r2) (x - r3 r4) = x^2 - (t2 + t3 - t1) / 2 x + d |
| 196 | s = r1*r2 = ((t2 + t3 - t1) + sqrt((t2 + t3 - t1)^2 - 16*d)) / 4 |
| 197 | t = r3*r4 = ((t2 + t3 - t1) - sqrt((t2 + t3 - t1)^2 - 16*d)) / 4 |
| 198 | |
| 199 | u = r1+r2 = (-a + sqrt(a^2 - 4*t1)) / 2 |
| 200 | v = r3+r4 = (-a - sqrt(a^2 - 4*t1)) / 2 |
| 201 | |
| 202 | r1 = (u + sqrt(u^2 - 4*s)) / 2 |
| 203 | r2 = (u - sqrt(u^2 - 4*s)) / 2 |
| 204 | r3 = (v + sqrt(v^2 - 4*t)) / 2 |
| 205 | r4 = (v - sqrt(v^2 - 4*t)) / 2 |
| 206 | */ |
| 207 | |
| 208 | |
| 209 | /* square root of complex number |
| 210 | http://en.wikipedia.org/wiki/Square_root#Square_roots_of_negative_and_complex_numbers |
| 211 | Algebraic formula |
| 212 | When the number is expressed using Cartesian coordinates the following formula |
| 213 | can be used for the principal square root:[5][6] |
| 214 | |
| 215 | sqrt(x + iy) = sqrt((r + x) / 2) +/- i*sqrt((r - x) / 2) |
| 216 | |
| 217 | where the sign of the imaginary part of the root is taken to be same as the sign |
| 218 | of the imaginary part of the original number, and |
rmistry@google.com | d6176b0 | 2012-08-23 18:14:13 +0000 | [diff] [blame] | 219 | |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 220 | r = abs(x + iy) = sqrt(x^2 + y^2) |
| 221 | |
rmistry@google.com | d6176b0 | 2012-08-23 18:14:13 +0000 | [diff] [blame] | 222 | is the absolute value or modulus of the original number. The real part of the |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 223 | principal value is always non-negative. |
rmistry@google.com | d6176b0 | 2012-08-23 18:14:13 +0000 | [diff] [blame] | 224 | The other square root is simply –1 times the principal square root; in other |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 225 | words, the two square roots of a number sum to 0. |
| 226 | */ |