caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 7 | #include "SkIntersections.h" |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 8 | #include "SkLineParameters.h" |
| 9 | #include "SkPathOpsCubic.h" |
caryclark | 03b03ca | 2015-04-23 09:13:37 -0700 | [diff] [blame] | 10 | #include "SkPathOpsCurve.h" |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 11 | #include "SkPathOpsQuad.h" |
caryclark | 5435929 | 2015-03-26 07:52:43 -0700 | [diff] [blame] | 12 | |
| 13 | /* started with at_most_end_pts_in_common from SkDQuadIntersection.cpp */ |
| 14 | // Do a quick reject by rotating all points relative to a line formed by |
| 15 | // a pair of one quad's points. If the 2nd quad's points |
| 16 | // are on the line or on the opposite side from the 1st quad's 'odd man', the |
| 17 | // curves at most intersect at the endpoints. |
| 18 | /* if returning true, check contains true if quad's hull collapsed, making the cubic linear |
| 19 | if returning false, check contains true if the the quad pair have only the end point in common |
| 20 | */ |
| 21 | bool SkDQuad::hullIntersects(const SkDQuad& q2, bool* isLinear) const { |
| 22 | bool linear = true; |
| 23 | for (int oddMan = 0; oddMan < kPointCount; ++oddMan) { |
| 24 | const SkDPoint* endPt[2]; |
| 25 | this->otherPts(oddMan, endPt); |
| 26 | double origX = endPt[0]->fX; |
| 27 | double origY = endPt[0]->fY; |
| 28 | double adj = endPt[1]->fX - origX; |
| 29 | double opp = endPt[1]->fY - origY; |
| 30 | double sign = (fPts[oddMan].fY - origY) * adj - (fPts[oddMan].fX - origX) * opp; |
| 31 | if (approximately_zero(sign)) { |
| 32 | continue; |
| 33 | } |
| 34 | linear = false; |
| 35 | bool foundOutlier = false; |
| 36 | for (int n = 0; n < kPointCount; ++n) { |
| 37 | double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp; |
| 38 | if (test * sign > 0 && !precisely_zero(test)) { |
| 39 | foundOutlier = true; |
| 40 | break; |
| 41 | } |
| 42 | } |
| 43 | if (!foundOutlier) { |
| 44 | return false; |
| 45 | } |
| 46 | } |
| 47 | *isLinear = linear; |
| 48 | return true; |
| 49 | } |
| 50 | |
caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 51 | bool SkDQuad::hullIntersects(const SkDConic& conic, bool* isLinear) const { |
| 52 | return conic.hullIntersects(*this, isLinear); |
| 53 | } |
| 54 | |
| 55 | bool SkDQuad::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { |
| 56 | return cubic.hullIntersects(*this, isLinear); |
| 57 | } |
| 58 | |
caryclark | 5435929 | 2015-03-26 07:52:43 -0700 | [diff] [blame] | 59 | /* bit twiddling for finding the off curve index (x&~m is the pair in [0,1,2] excluding oddMan) |
| 60 | oddMan opp x=oddMan^opp x=x-oddMan m=x>>2 x&~m |
| 61 | 0 1 1 1 0 1 |
| 62 | 2 2 2 0 2 |
| 63 | 1 1 0 -1 -1 0 |
| 64 | 2 3 2 0 2 |
| 65 | 2 1 3 1 0 1 |
| 66 | 2 0 -2 -1 0 |
| 67 | */ |
| 68 | void SkDQuad::otherPts(int oddMan, const SkDPoint* endPt[2]) const { |
| 69 | for (int opp = 1; opp < kPointCount; ++opp) { |
| 70 | int end = (oddMan ^ opp) - oddMan; // choose a value not equal to oddMan |
| 71 | end &= ~(end >> 2); // if the value went negative, set it to zero |
| 72 | endPt[opp - 1] = &fPts[end]; |
| 73 | } |
| 74 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 75 | |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 76 | int SkDQuad::AddValidTs(double s[], int realRoots, double* t) { |
| 77 | int foundRoots = 0; |
| 78 | for (int index = 0; index < realRoots; ++index) { |
| 79 | double tValue = s[index]; |
| 80 | if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) { |
| 81 | if (approximately_less_than_zero(tValue)) { |
| 82 | tValue = 0; |
| 83 | } else if (approximately_greater_than_one(tValue)) { |
| 84 | tValue = 1; |
| 85 | } |
| 86 | for (int idx2 = 0; idx2 < foundRoots; ++idx2) { |
| 87 | if (approximately_equal(t[idx2], tValue)) { |
| 88 | goto nextRoot; |
| 89 | } |
| 90 | } |
| 91 | t[foundRoots++] = tValue; |
| 92 | } |
| 93 | nextRoot: |
| 94 | {} |
| 95 | } |
| 96 | return foundRoots; |
| 97 | } |
| 98 | |
| 99 | // note: caller expects multiple results to be sorted smaller first |
| 100 | // note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting |
| 101 | // analysis of the quadratic equation, suggesting why the following looks at |
| 102 | // the sign of B -- and further suggesting that the greatest loss of precision |
| 103 | // is in b squared less two a c |
| 104 | int SkDQuad::RootsValidT(double A, double B, double C, double t[2]) { |
| 105 | double s[2]; |
| 106 | int realRoots = RootsReal(A, B, C, s); |
| 107 | int foundRoots = AddValidTs(s, realRoots, t); |
| 108 | return foundRoots; |
| 109 | } |
| 110 | |
| 111 | /* |
| 112 | Numeric Solutions (5.6) suggests to solve the quadratic by computing |
| 113 | Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C)) |
| 114 | and using the roots |
| 115 | t1 = Q / A |
| 116 | t2 = C / Q |
| 117 | */ |
| 118 | // this does not discard real roots <= 0 or >= 1 |
| 119 | int SkDQuad::RootsReal(const double A, const double B, const double C, double s[2]) { |
| 120 | const double p = B / (2 * A); |
| 121 | const double q = C / A; |
caryclark | b669300 | 2015-12-16 12:28:35 -0800 | [diff] [blame] | 122 | if (!A || (approximately_zero(A) && (approximately_zero_inverse(p) |
| 123 | || approximately_zero_inverse(q)))) { |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 124 | if (approximately_zero(B)) { |
| 125 | s[0] = 0; |
| 126 | return C == 0; |
| 127 | } |
| 128 | s[0] = -C / B; |
| 129 | return 1; |
| 130 | } |
| 131 | /* normal form: x^2 + px + q = 0 */ |
| 132 | const double p2 = p * p; |
caryclark@google.com | 7eaa53d | 2013-10-02 14:49:34 +0000 | [diff] [blame] | 133 | if (!AlmostDequalUlps(p2, q) && p2 < q) { |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 134 | return 0; |
| 135 | } |
| 136 | double sqrt_D = 0; |
| 137 | if (p2 > q) { |
| 138 | sqrt_D = sqrt(p2 - q); |
| 139 | } |
| 140 | s[0] = sqrt_D - p; |
| 141 | s[1] = -sqrt_D - p; |
caryclark@google.com | 7eaa53d | 2013-10-02 14:49:34 +0000 | [diff] [blame] | 142 | return 1 + !AlmostDequalUlps(s[0], s[1]); |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 143 | } |
| 144 | |
| 145 | bool SkDQuad::isLinear(int startIndex, int endIndex) const { |
| 146 | SkLineParameters lineParameters; |
| 147 | lineParameters.quadEndPoints(*this, startIndex, endIndex); |
| 148 | // FIXME: maybe it's possible to avoid this and compare non-normalized |
| 149 | lineParameters.normalize(); |
| 150 | double distance = lineParameters.controlPtDistance(*this); |
caryclark | 5435929 | 2015-03-26 07:52:43 -0700 | [diff] [blame] | 151 | double tiniest = SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY), |
| 152 | fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY); |
| 153 | double largest = SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY), |
| 154 | fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY); |
| 155 | largest = SkTMax(largest, -tiniest); |
| 156 | return approximately_zero_when_compared_to(distance, largest); |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 157 | } |
| 158 | |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 159 | SkDVector SkDQuad::dxdyAtT(double t) const { |
| 160 | double a = t - 1; |
| 161 | double b = 1 - 2 * t; |
| 162 | double c = t; |
| 163 | SkDVector result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX, |
| 164 | a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY }; |
caryclark | 94c902e | 2015-08-18 07:12:43 -0700 | [diff] [blame] | 165 | if (result.fX == 0 && result.fY == 0) { |
| 166 | if (zero_or_one(t)) { |
| 167 | result = fPts[2] - fPts[0]; |
| 168 | } else { |
| 169 | // incomplete |
| 170 | SkDebugf("!q"); |
| 171 | } |
| 172 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 173 | return result; |
| 174 | } |
| 175 | |
caryclark@google.com | fa2aeee | 2013-07-15 13:29:13 +0000 | [diff] [blame] | 176 | // OPTIMIZE: assert if caller passes in t == 0 / t == 1 ? |
caryclark@google.com | 4fdbb22 | 2013-07-23 15:27:41 +0000 | [diff] [blame] | 177 | SkDPoint SkDQuad::ptAtT(double t) const { |
| 178 | if (0 == t) { |
| 179 | return fPts[0]; |
| 180 | } |
| 181 | if (1 == t) { |
| 182 | return fPts[2]; |
| 183 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 184 | double one_t = 1 - t; |
| 185 | double a = one_t * one_t; |
| 186 | double b = 2 * one_t * t; |
| 187 | double c = t * t; |
| 188 | SkDPoint result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX, |
| 189 | a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY }; |
| 190 | return result; |
| 191 | } |
| 192 | |
caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 193 | static double interp_quad_coords(const double* src, double t) { |
caryclark | 55888e4 | 2016-07-18 10:01:36 -0700 | [diff] [blame] | 194 | if (0 == t) { |
| 195 | return src[0]; |
| 196 | } |
| 197 | if (1 == t) { |
| 198 | return src[4]; |
| 199 | } |
caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 200 | double ab = SkDInterp(src[0], src[2], t); |
| 201 | double bc = SkDInterp(src[2], src[4], t); |
| 202 | double abc = SkDInterp(ab, bc, t); |
| 203 | return abc; |
| 204 | } |
| 205 | |
caryclark | aec2510 | 2015-04-29 08:28:30 -0700 | [diff] [blame] | 206 | bool SkDQuad::monotonicInX() const { |
| 207 | return between(fPts[0].fX, fPts[1].fX, fPts[2].fX); |
| 208 | } |
| 209 | |
caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 210 | bool SkDQuad::monotonicInY() const { |
| 211 | return between(fPts[0].fY, fPts[1].fY, fPts[2].fY); |
| 212 | } |
| 213 | |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 214 | /* |
| 215 | Given a quadratic q, t1, and t2, find a small quadratic segment. |
| 216 | |
| 217 | The new quadratic is defined by A, B, and C, where |
| 218 | A = c[0]*(1 - t1)*(1 - t1) + 2*c[1]*t1*(1 - t1) + c[2]*t1*t1 |
| 219 | C = c[3]*(1 - t1)*(1 - t1) + 2*c[2]*t1*(1 - t1) + c[1]*t1*t1 |
| 220 | |
| 221 | To find B, compute the point halfway between t1 and t2: |
| 222 | |
| 223 | q(at (t1 + t2)/2) == D |
| 224 | |
| 225 | Next, compute where D must be if we know the value of B: |
| 226 | |
| 227 | _12 = A/2 + B/2 |
| 228 | 12_ = B/2 + C/2 |
| 229 | 123 = A/4 + B/2 + C/4 |
| 230 | = D |
| 231 | |
| 232 | Group the known values on one side: |
| 233 | |
| 234 | B = D*2 - A/2 - C/2 |
| 235 | */ |
| 236 | |
caryclark | 55888e4 | 2016-07-18 10:01:36 -0700 | [diff] [blame] | 237 | // OPTIMIZE? : special case t1 = 1 && t2 = 0 |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 238 | SkDQuad SkDQuad::subDivide(double t1, double t2) const { |
caryclark | 55888e4 | 2016-07-18 10:01:36 -0700 | [diff] [blame] | 239 | if (0 == t1 && 1 == t2) { |
| 240 | return *this; |
| 241 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 242 | SkDQuad dst; |
| 243 | double ax = dst[0].fX = interp_quad_coords(&fPts[0].fX, t1); |
| 244 | double ay = dst[0].fY = interp_quad_coords(&fPts[0].fY, t1); |
| 245 | double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2); |
| 246 | double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2); |
| 247 | double cx = dst[2].fX = interp_quad_coords(&fPts[0].fX, t2); |
| 248 | double cy = dst[2].fY = interp_quad_coords(&fPts[0].fY, t2); |
caryclark | 1049f12 | 2015-04-20 08:31:59 -0700 | [diff] [blame] | 249 | /* bx = */ dst[1].fX = 2 * dx - (ax + cx) / 2; |
| 250 | /* by = */ dst[1].fY = 2 * dy - (ay + cy) / 2; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 251 | return dst; |
| 252 | } |
| 253 | |
skia.committer@gmail.com | 8f6ef40 | 2013-06-05 07:01:06 +0000 | [diff] [blame] | 254 | void SkDQuad::align(int endIndex, SkDPoint* dstPt) const { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 255 | if (fPts[endIndex].fX == fPts[1].fX) { |
| 256 | dstPt->fX = fPts[endIndex].fX; |
| 257 | } |
| 258 | if (fPts[endIndex].fY == fPts[1].fY) { |
| 259 | dstPt->fY = fPts[endIndex].fY; |
| 260 | } |
| 261 | } |
| 262 | |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 263 | SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 264 | SkASSERT(t1 != t2); |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 265 | SkDPoint b; |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 266 | SkDQuad sub = subDivide(t1, t2); |
| 267 | SkDLine b0 = {{a, sub[1] + (a - sub[0])}}; |
| 268 | SkDLine b1 = {{c, sub[1] + (c - sub[2])}}; |
| 269 | SkIntersections i; |
| 270 | i.intersectRay(b0, b1); |
commit-bot@chromium.org | 4431e77 | 2014-04-14 17:08:59 +0000 | [diff] [blame] | 271 | if (i.used() == 1 && i[0][0] >= 0 && i[1][0] >= 0) { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 272 | b = i.pt(0); |
| 273 | } else { |
commit-bot@chromium.org | 4431e77 | 2014-04-14 17:08:59 +0000 | [diff] [blame] | 274 | SkASSERT(i.used() <= 2); |
caryclark | 55888e4 | 2016-07-18 10:01:36 -0700 | [diff] [blame] | 275 | return SkDPoint::Mid(b0[1], b1[1]); |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 276 | } |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 277 | if (t1 == 0 || t2 == 0) { |
| 278 | align(0, &b); |
| 279 | } |
| 280 | if (t1 == 1 || t2 == 1) { |
| 281 | align(2, &b); |
| 282 | } |
commit-bot@chromium.org | 4431e77 | 2014-04-14 17:08:59 +0000 | [diff] [blame] | 283 | if (AlmostBequalUlps(b.fX, a.fX)) { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 284 | b.fX = a.fX; |
commit-bot@chromium.org | 4431e77 | 2014-04-14 17:08:59 +0000 | [diff] [blame] | 285 | } else if (AlmostBequalUlps(b.fX, c.fX)) { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 286 | b.fX = c.fX; |
| 287 | } |
commit-bot@chromium.org | 4431e77 | 2014-04-14 17:08:59 +0000 | [diff] [blame] | 288 | if (AlmostBequalUlps(b.fY, a.fY)) { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 289 | b.fY = a.fY; |
commit-bot@chromium.org | 4431e77 | 2014-04-14 17:08:59 +0000 | [diff] [blame] | 290 | } else if (AlmostBequalUlps(b.fY, c.fY)) { |
caryclark@google.com | cffbcc3 | 2013-06-04 17:59:42 +0000 | [diff] [blame] | 291 | b.fY = c.fY; |
| 292 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 293 | return b; |
| 294 | } |
| 295 | |
| 296 | /* classic one t subdivision */ |
| 297 | static void interp_quad_coords(const double* src, double* dst, double t) { |
| 298 | double ab = SkDInterp(src[0], src[2], t); |
| 299 | double bc = SkDInterp(src[2], src[4], t); |
| 300 | dst[0] = src[0]; |
| 301 | dst[2] = ab; |
| 302 | dst[4] = SkDInterp(ab, bc, t); |
| 303 | dst[6] = bc; |
| 304 | dst[8] = src[4]; |
| 305 | } |
| 306 | |
| 307 | SkDQuadPair SkDQuad::chopAt(double t) const |
| 308 | { |
| 309 | SkDQuadPair dst; |
| 310 | interp_quad_coords(&fPts[0].fX, &dst.pts[0].fX, t); |
| 311 | interp_quad_coords(&fPts[0].fY, &dst.pts[0].fY, t); |
| 312 | return dst; |
| 313 | } |
| 314 | |
| 315 | static int valid_unit_divide(double numer, double denom, double* ratio) |
| 316 | { |
| 317 | if (numer < 0) { |
| 318 | numer = -numer; |
| 319 | denom = -denom; |
| 320 | } |
| 321 | if (denom == 0 || numer == 0 || numer >= denom) { |
| 322 | return 0; |
| 323 | } |
| 324 | double r = numer / denom; |
| 325 | if (r == 0) { // catch underflow if numer <<<< denom |
| 326 | return 0; |
| 327 | } |
| 328 | *ratio = r; |
| 329 | return 1; |
| 330 | } |
| 331 | |
| 332 | /** Quad'(t) = At + B, where |
| 333 | A = 2(a - 2b + c) |
| 334 | B = 2(b - a) |
| 335 | Solve for t, only if it fits between 0 < t < 1 |
| 336 | */ |
caryclark | aec2510 | 2015-04-29 08:28:30 -0700 | [diff] [blame] | 337 | int SkDQuad::FindExtrema(const double src[], double tValue[1]) { |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 338 | /* At + B == 0 |
| 339 | t = -B / A |
| 340 | */ |
caryclark | aec2510 | 2015-04-29 08:28:30 -0700 | [diff] [blame] | 341 | double a = src[0]; |
| 342 | double b = src[2]; |
| 343 | double c = src[4]; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 344 | return valid_unit_divide(a - b, a - b - b + c, tValue); |
| 345 | } |
| 346 | |
| 347 | /* Parameterization form, given A*t*t + 2*B*t*(1-t) + C*(1-t)*(1-t) |
| 348 | * |
| 349 | * a = A - 2*B + C |
| 350 | * b = 2*B - 2*C |
| 351 | * c = C |
| 352 | */ |
| 353 | void SkDQuad::SetABC(const double* quad, double* a, double* b, double* c) { |
| 354 | *a = quad[0]; // a = A |
| 355 | *b = 2 * quad[2]; // b = 2*B |
| 356 | *c = quad[4]; // c = C |
| 357 | *b -= *c; // b = 2*B - C |
| 358 | *a -= *b; // a = A - 2*B + C |
| 359 | *b -= *c; // b = 2*B - 2*C |
| 360 | } |