commit-bot@chromium.org | 2db7fe7 | 2014-05-07 15:31:40 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2014 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | #include "PathOpsTestCommon.h" |
| 8 | #include "SkIntersections.h" |
| 9 | #include "SkPathOpsCubic.h" |
| 10 | #include "SkPathOpsLine.h" |
| 11 | #include "SkPathOpsQuad.h" |
| 12 | #include "SkRandom.h" |
| 13 | #include "SkReduceOrder.h" |
| 14 | #include "Test.h" |
| 15 | |
| 16 | static bool gPathOpsCubicLineIntersectionIdeasVerbose = false; |
| 17 | |
| 18 | static struct CubicLineFailures { |
| 19 | SkDCubic c; |
| 20 | double t; |
| 21 | SkDPoint p; |
| 22 | } cubicLineFailures[] = { |
| 23 | {{{{-164.3726806640625, 36.826904296875}, {-189.045166015625, -953.2220458984375}, |
| 24 | {926.505859375, -897.36175537109375}, {-139.33489990234375, 204.40771484375}}}, |
| 25 | 0.37329583, {107.54935269006289, -632.13736293162208}}, |
| 26 | {{{{784.056884765625, -554.8350830078125}, {67.5489501953125, 509.0224609375}, |
| 27 | {-447.713134765625, 751.375}, {415.7784423828125, 172.22265625}}}, |
| 28 | 0.660005242, {-32.973148967736151, 478.01341797403569}}, |
| 29 | {{{{-580.6834716796875, -127.044921875}, {-872.8983154296875, -945.54302978515625}, |
| 30 | {260.8092041015625, -909.34991455078125}, {-976.2125244140625, -18.46551513671875}}}, |
| 31 | 0.578826774, {-390.17910153915489, -687.21144412296007}}, |
| 32 | }; |
| 33 | |
| 34 | int cubicLineFailuresCount = (int) SK_ARRAY_COUNT(cubicLineFailures); |
| 35 | |
| 36 | double measuredSteps[] = { |
| 37 | 9.15910731e-007, 8.6600277e-007, 7.4122059e-007, 6.92087618e-007, 8.35290245e-007, |
| 38 | 3.29763199e-007, 5.07547773e-007, 4.41294224e-007, 0, 0, |
| 39 | 3.76879167e-006, 1.06126249e-006, 2.36873967e-006, 1.62421134e-005, 3.09103599e-005, |
| 40 | 4.38917976e-005, 0.000112348938, 0.000243149242, 0.000433174114, 0.00170880232, |
| 41 | 0.00272619724, 0.00518844604, 0.000352621078, 0.00175960064, 0.027875185, |
| 42 | 0.0351329803, 0.103964925, |
| 43 | }; |
| 44 | |
skia.committer@gmail.com | b2c82c9 | 2014-05-08 03:05:29 +0000 | [diff] [blame] | 45 | /* last output : errors=3121 |
commit-bot@chromium.org | 2db7fe7 | 2014-05-07 15:31:40 +0000 | [diff] [blame] | 46 | 9.1796875e-007 8.59375e-007 7.5e-007 6.875e-007 8.4375e-007 |
| 47 | 3.125e-007 5e-007 4.375e-007 0 0 |
| 48 | 3.75e-006 1.09375e-006 2.1875e-006 1.640625e-005 3.0859375e-005 |
| 49 | 4.38964844e-005 0.000112304687 0.000243164063 0.000433181763 0.00170898437 |
| 50 | 0.00272619247 0.00518844604 0.000352621078 0.00175960064 0.027875185 |
| 51 | 0.0351329803 0.103964925 |
| 52 | */ |
| 53 | |
| 54 | static double binary_search(const SkDCubic& cubic, double step, const SkDPoint& pt, double t, |
| 55 | int* iters) { |
| 56 | double firstStep = step; |
| 57 | do { |
| 58 | *iters += 1; |
| 59 | SkDPoint cubicAtT = cubic.ptAtT(t); |
| 60 | if (cubicAtT.approximatelyEqual(pt)) { |
| 61 | break; |
| 62 | } |
| 63 | double calcX = cubicAtT.fX - pt.fX; |
| 64 | double calcY = cubicAtT.fY - pt.fY; |
| 65 | double calcDist = calcX * calcX + calcY * calcY; |
| 66 | if (step == 0) { |
| 67 | SkDebugf("binary search failed: step=%1.9g cubic=", firstStep); |
| 68 | cubic.dump(); |
| 69 | SkDebugf(" t=%1.9g ", t); |
| 70 | pt.dump(); |
| 71 | SkDebugf("\n"); |
| 72 | return -1; |
| 73 | } |
| 74 | double lastStep = step; |
| 75 | step /= 2; |
| 76 | SkDPoint lessPt = cubic.ptAtT(t - lastStep); |
| 77 | double lessX = lessPt.fX - pt.fX; |
| 78 | double lessY = lessPt.fY - pt.fY; |
| 79 | double lessDist = lessX * lessX + lessY * lessY; |
| 80 | // use larger x/y difference to choose step |
| 81 | if (calcDist > lessDist) { |
| 82 | t -= step; |
| 83 | t = SkTMax(0., t); |
| 84 | } else { |
| 85 | SkDPoint morePt = cubic.ptAtT(t + lastStep); |
| 86 | double moreX = morePt.fX - pt.fX; |
| 87 | double moreY = morePt.fY - pt.fY; |
| 88 | double moreDist = moreX * moreX + moreY * moreY; |
| 89 | if (calcDist <= moreDist) { |
| 90 | continue; |
| 91 | } |
| 92 | t += step; |
| 93 | t = SkTMin(1., t); |
| 94 | } |
| 95 | } while (true); |
| 96 | return t; |
| 97 | } |
| 98 | |
| 99 | #if 0 |
| 100 | static bool r2check(double A, double B, double C, double D, double* R2MinusQ3Ptr) { |
| 101 | if (approximately_zero(A) |
| 102 | && approximately_zero_when_compared_to(A, B) |
| 103 | && approximately_zero_when_compared_to(A, C) |
| 104 | && approximately_zero_when_compared_to(A, D)) { // we're just a quadratic |
| 105 | return false; |
| 106 | } |
| 107 | if (approximately_zero_when_compared_to(D, A) |
| 108 | && approximately_zero_when_compared_to(D, B) |
| 109 | && approximately_zero_when_compared_to(D, C)) { // 0 is one root |
| 110 | return false; |
| 111 | } |
| 112 | if (approximately_zero(A + B + C + D)) { // 1 is one root |
| 113 | return false; |
| 114 | } |
| 115 | double a, b, c; |
| 116 | { |
| 117 | double invA = 1 / A; |
| 118 | a = B * invA; |
| 119 | b = C * invA; |
| 120 | c = D * invA; |
| 121 | } |
| 122 | double a2 = a * a; |
| 123 | double Q = (a2 - b * 3) / 9; |
| 124 | double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; |
| 125 | double R2 = R * R; |
| 126 | double Q3 = Q * Q * Q; |
| 127 | double R2MinusQ3 = R2 - Q3; |
| 128 | *R2MinusQ3Ptr = R2MinusQ3; |
| 129 | return true; |
| 130 | } |
| 131 | #endif |
| 132 | |
| 133 | /* What is the relationship between the accuracy of the root in range and the magnitude of all |
| 134 | roots? To find out, create a bunch of cubics, and measure */ |
| 135 | |
| 136 | DEF_TEST(PathOpsCubicLineRoots, reporter) { |
| 137 | if (!gPathOpsCubicLineIntersectionIdeasVerbose) { // slow; exclude it by default |
| 138 | return; |
| 139 | } |
| 140 | SkRandom ran; |
| 141 | double worstStep[256] = {0}; |
| 142 | int errors = 0; |
| 143 | int iters = 0; |
| 144 | double smallestR2 = 0; |
| 145 | double largestR2 = 0; |
| 146 | for (int index = 0; index < 1000000000; ++index) { |
| 147 | SkDPoint origin = {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}; |
| 148 | SkDCubic cubic = {{origin, |
| 149 | {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, |
| 150 | {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, |
| 151 | {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)} |
| 152 | }}; |
| 153 | // construct a line at a known intersection |
| 154 | double t = ran.nextRangeF(0, 1); |
| 155 | SkDPoint pt = cubic.ptAtT(t); |
| 156 | // skip answers with no intersections (although note the bug!) or two, or more |
| 157 | // see if the line / cubic has a fun range of roots |
| 158 | double A, B, C, D; |
| 159 | SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D); |
| 160 | D -= pt.fY; |
| 161 | double allRoots[3] = {0}, validRoots[3] = {0}; |
| 162 | int realRoots = SkDCubic::RootsReal(A, B, C, D, allRoots); |
| 163 | int valid = SkDQuad::AddValidTs(allRoots, realRoots, validRoots); |
| 164 | if (valid != 1) { |
| 165 | continue; |
| 166 | } |
| 167 | if (realRoots == 1) { |
| 168 | continue; |
| 169 | } |
| 170 | t = validRoots[0]; |
| 171 | SkDPoint calcPt = cubic.ptAtT(t); |
| 172 | if (calcPt.approximatelyEqual(pt)) { |
| 173 | continue; |
| 174 | } |
| 175 | #if 0 |
| 176 | double R2MinusQ3; |
| 177 | if (r2check(A, B, C, D, &R2MinusQ3)) { |
| 178 | smallestR2 = SkTMin(smallestR2, R2MinusQ3); |
| 179 | largestR2 = SkTMax(largestR2, R2MinusQ3); |
| 180 | } |
| 181 | #endif |
| 182 | double largest = SkTMax(fabs(allRoots[0]), fabs(allRoots[1])); |
| 183 | if (realRoots == 3) { |
| 184 | largest = SkTMax(largest, fabs(allRoots[2])); |
| 185 | } |
| 186 | int largeBits; |
| 187 | if (largest <= 1) { |
| 188 | #if 0 |
| 189 | SkDebugf("realRoots=%d (%1.9g, %1.9g, %1.9g) valid=%d (%1.9g, %1.9g, %1.9g)\n", |
| 190 | realRoots, allRoots[0], allRoots[1], allRoots[2], valid, validRoots[0], |
| 191 | validRoots[1], validRoots[2]); |
| 192 | #endif |
| 193 | double smallest = SkTMin(allRoots[0], allRoots[1]); |
| 194 | if (realRoots == 3) { |
| 195 | smallest = SkTMin(smallest, allRoots[2]); |
| 196 | } |
| 197 | SK_ALWAYSBREAK(smallest < 0); |
| 198 | SK_ALWAYSBREAK(smallest >= -1); |
| 199 | largeBits = 0; |
| 200 | } else { |
| 201 | frexp(largest, &largeBits); |
| 202 | SK_ALWAYSBREAK(largeBits >= 0); |
| 203 | SK_ALWAYSBREAK(largeBits < 256); |
| 204 | } |
| 205 | double step = 1e-6; |
| 206 | if (largeBits > 21) { |
| 207 | step = 1e-1; |
| 208 | } else if (largeBits > 18) { |
| 209 | step = 1e-2; |
| 210 | } else if (largeBits > 15) { |
| 211 | step = 1e-3; |
| 212 | } else if (largeBits > 12) { |
| 213 | step = 1e-4; |
| 214 | } else if (largeBits > 9) { |
| 215 | step = 1e-5; |
| 216 | } |
| 217 | double diff; |
| 218 | do { |
| 219 | double newT = binary_search(cubic, step, pt, t, &iters); |
| 220 | if (newT >= 0) { |
| 221 | diff = fabs(t - newT); |
| 222 | break; |
| 223 | } |
| 224 | step *= 1.5; |
| 225 | SK_ALWAYSBREAK(step < 1); |
| 226 | } while (true); |
| 227 | worstStep[largeBits] = SkTMax(worstStep[largeBits], diff); |
| 228 | #if 0 |
| 229 | { |
| 230 | cubic.dump(); |
| 231 | SkDebugf("\n"); |
| 232 | SkDLine line = {{{pt.fX - 1, pt.fY}, {pt.fX + 1, pt.fY}}}; |
| 233 | line.dump(); |
| 234 | SkDebugf("\n"); |
| 235 | } |
| 236 | #endif |
| 237 | ++errors; |
| 238 | } |
| 239 | SkDebugf("errors=%d avgIter=%1.9g", errors, (double) iters / errors); |
| 240 | SkDebugf(" steps: "); |
| 241 | int worstLimit = SK_ARRAY_COUNT(worstStep); |
| 242 | while (worstStep[--worstLimit] == 0) ; |
| 243 | for (int idx2 = 0; idx2 <= worstLimit; ++idx2) { |
| 244 | SkDebugf("%1.9g ", worstStep[idx2]); |
| 245 | } |
| 246 | SkDebugf("\n"); |
| 247 | SkDebugf("smallestR2=%1.9g largestR2=%1.9g\n", smallestR2, largestR2); |
| 248 | } |
| 249 | |
| 250 | static double testOneFailure(const CubicLineFailures& failure) { |
| 251 | const SkDCubic& cubic = failure.c; |
| 252 | const SkDPoint& pt = failure.p; |
| 253 | double A, B, C, D; |
| 254 | SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D); |
| 255 | D -= pt.fY; |
| 256 | double allRoots[3] = {0}, validRoots[3] = {0}; |
| 257 | int realRoots = SkDCubic::RootsReal(A, B, C, D, allRoots); |
| 258 | int valid = SkDQuad::AddValidTs(allRoots, realRoots, validRoots); |
| 259 | SK_ALWAYSBREAK(valid == 1); |
| 260 | SK_ALWAYSBREAK(realRoots != 1); |
| 261 | double t = validRoots[0]; |
| 262 | SkDPoint calcPt = cubic.ptAtT(t); |
| 263 | SK_ALWAYSBREAK(!calcPt.approximatelyEqual(pt)); |
| 264 | int iters = 0; |
| 265 | double newT = binary_search(cubic, 0.1, pt, t, &iters); |
| 266 | return newT; |
| 267 | } |
| 268 | |
| 269 | DEF_TEST(PathOpsCubicLineFailures, reporter) { |
| 270 | return; // disable for now |
| 271 | for (int index = 0; index < cubicLineFailuresCount; ++index) { |
| 272 | const CubicLineFailures& failure = cubicLineFailures[index]; |
| 273 | double newT = testOneFailure(failure); |
| 274 | SK_ALWAYSBREAK(newT >= 0); |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | DEF_TEST(PathOpsCubicLineOneFailure, reporter) { |
| 279 | return; // disable for now |
| 280 | const CubicLineFailures& failure = cubicLineFailures[1]; |
| 281 | double newT = testOneFailure(failure); |
| 282 | SK_ALWAYSBREAK(newT >= 0); |
| 283 | } |