blob: 5d7fc695564fb71376b580cb8c020f933f973268 [file] [log] [blame]
Chris Dalton419a94d2017-08-28 10:24:22 -06001/*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
Chris Dalton383a2ef2018-01-08 17:21:41 -05008#include "GrCCGeometry.h"
Chris Dalton419a94d2017-08-28 10:24:22 -06009
10#include "GrTypes.h"
Chris Dalton7f578bf2017-09-05 16:46:48 -060011#include "GrPathUtils.h"
Chris Dalton419a94d2017-08-28 10:24:22 -060012#include <algorithm>
13#include <cmath>
14#include <cstdlib>
15
16// We convert between SkPoint and Sk2f freely throughout this file.
17GR_STATIC_ASSERT(SK_SCALAR_IS_FLOAT);
18GR_STATIC_ASSERT(2 * sizeof(float) == sizeof(SkPoint));
19GR_STATIC_ASSERT(0 == offsetof(SkPoint, fX));
20
Chris Dalton383a2ef2018-01-08 17:21:41 -050021void GrCCGeometry::beginPath() {
Chris Daltonc1e59632017-09-05 00:30:07 -060022 SkASSERT(!fBuildingContour);
23 fVerbs.push_back(Verb::kBeginPath);
24}
25
Chris Dalton7ca3b7b2018-04-10 00:21:19 -060026void GrCCGeometry::beginContour(const SkPoint& pt) {
Chris Daltonc1e59632017-09-05 00:30:07 -060027 SkASSERT(!fBuildingContour);
Chris Daltonc1e59632017-09-05 00:30:07 -060028 // Store the current verb count in the fTriangles field for now. When we close the contour we
29 // will use this value to calculate the actual number of triangles in its fan.
Chris Dalton84403d72018-02-13 21:46:17 -050030 fCurrContourTallies = {fVerbs.count(), 0, 0, 0};
Chris Daltonc1e59632017-09-05 00:30:07 -060031
Chris Dalton7ca3b7b2018-04-10 00:21:19 -060032 fPoints.push_back(pt);
Chris Daltonc1e59632017-09-05 00:30:07 -060033 fVerbs.push_back(Verb::kBeginContour);
Chris Dalton7ca3b7b2018-04-10 00:21:19 -060034 fCurrAnchorPoint = pt;
Chris Daltonc1e59632017-09-05 00:30:07 -060035
Chris Dalton383a2ef2018-01-08 17:21:41 -050036 SkDEBUGCODE(fBuildingContour = true);
Chris Daltonc1e59632017-09-05 00:30:07 -060037}
38
Chris Dalton7ca3b7b2018-04-10 00:21:19 -060039void GrCCGeometry::lineTo(const SkPoint& pt) {
Chris Daltonc1e59632017-09-05 00:30:07 -060040 SkASSERT(fBuildingContour);
Chris Dalton7ca3b7b2018-04-10 00:21:19 -060041 fPoints.push_back(pt);
42 fVerbs.push_back(Verb::kLineTo);
43}
44
45void GrCCGeometry::appendLine(const Sk2f& endpt) {
46 endpt.store(&fPoints.push_back());
Chris Daltonc1e59632017-09-05 00:30:07 -060047 fVerbs.push_back(Verb::kLineTo);
48}
49
Chris Dalton419a94d2017-08-28 10:24:22 -060050static inline Sk2f normalize(const Sk2f& n) {
51 Sk2f nn = n*n;
52 return n * (nn + SkNx_shuffle<1,0>(nn)).rsqrt();
53}
54
55static inline float dot(const Sk2f& a, const Sk2f& b) {
56 float product[2];
57 (a * b).store(product);
58 return product[0] + product[1];
59}
60
Chris Daltonb0601a42018-04-10 00:23:45 -060061static inline bool are_collinear(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
62 float tolerance = 1/16.f) { // 1/16 of a pixel.
63 Sk2f l = p2 - p0; // Line from p0 -> p2.
Chris Dalton900cd052017-09-07 10:36:51 -060064
Chris Daltonb0601a42018-04-10 00:23:45 -060065 // lwidth = Manhattan width of l.
66 Sk2f labs = l.abs();
67 float lwidth = labs[0] + labs[1];
Chris Dalton900cd052017-09-07 10:36:51 -060068
Chris Daltonb0601a42018-04-10 00:23:45 -060069 // d = |p1 - p0| dot | l.y|
70 // |-l.x| = distance from p1 to l.
71 Sk2f dd = (p1 - p0) * SkNx_shuffle<1,0>(l);
72 float d = dd[0] - dd[1];
Chris Dalton900cd052017-09-07 10:36:51 -060073
Chris Daltonb0601a42018-04-10 00:23:45 -060074 // We are collinear if a box with radius "tolerance", centered on p1, touches the line l.
75 // To decide this, we check if the distance from p1 to the line is less than the distance from
76 // p1 to the far corner of this imaginary box, along that same normal vector.
77 // The far corner of the box can be found at "p1 + sign(n) * tolerance", where n is normal to l:
78 //
79 // abs(dot(p1 - p0, n)) <= dot(sign(n) * tolerance, n)
80 //
81 // Which reduces to:
82 //
83 // abs(d) <= (n.x * sign(n.x) + n.y * sign(n.y)) * tolerance
84 // abs(d) <= (abs(n.x) + abs(n.y)) * tolerance
85 //
86 // Use "<=" in case l == 0.
87 return std::abs(d) <= lwidth * tolerance;
88}
89
90static inline bool are_collinear(const SkPoint P[4], float tolerance = 1/16.f) { // 1/16 of a pixel.
91 Sk4f Px, Py; // |Px Py| |p0 - p3|
92 Sk4f::Load2(P, &Px, &Py); // |. . | = |p1 - p3|
93 Px -= Px[3]; // |. . | |p2 - p3|
94 Py -= Py[3]; // |. . | | 0 |
95
96 // Find [lx, ly] = the line from p3 to the furthest-away point from p3.
97 Sk4f Pwidth = Px.abs() + Py.abs(); // Pwidth = Manhattan width of each point.
98 int lidx = Pwidth[0] > Pwidth[1] ? 0 : 1;
99 lidx = Pwidth[lidx] > Pwidth[2] ? lidx : 2;
100 float lx = Px[lidx], ly = Py[lidx];
101 float lwidth = Pwidth[lidx]; // lwidth = Manhattan width of [lx, ly].
102
103 // |Px Py|
104 // d = |. . | * | ly| = distances from each point to l (two of the distances will be zero).
105 // |. . | |-lx|
106 // |. . |
107 Sk4f d = Px*ly - Py*lx;
108
109 // We are collinear if boxes with radius "tolerance", centered on all 4 points all touch line l.
110 // (See the rationale for this formula in the above, 3-point version of this function.)
111 // Use "<=" in case l == 0.
112 return (d.abs() <= lwidth * tolerance).allTrue();
Chris Dalton900cd052017-09-07 10:36:51 -0600113}
114
Chris Dalton419a94d2017-08-28 10:24:22 -0600115// Returns whether the (convex) curve segment is monotonic with respect to [endPt - startPt].
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600116static inline bool is_convex_curve_monotonic(const Sk2f& startPt, const Sk2f& tan0,
117 const Sk2f& endPt, const Sk2f& tan1) {
Chris Dalton419a94d2017-08-28 10:24:22 -0600118 Sk2f v = endPt - startPt;
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600119 float dot0 = dot(tan0, v);
120 float dot1 = dot(tan1, v);
Chris Dalton419a94d2017-08-28 10:24:22 -0600121
122 // A small, negative tolerance handles floating-point error in the case when one tangent
123 // approaches 0 length, meaning the (convex) curve segment is effectively a flat line.
124 float tolerance = -std::max(std::abs(dot0), std::abs(dot1)) * SK_ScalarNearlyZero;
125 return dot0 >= tolerance && dot1 >= tolerance;
126}
127
128static inline Sk2f lerp(const Sk2f& a, const Sk2f& b, const Sk2f& t) {
129 return SkNx_fma(t, b - a, a);
130}
131
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600132void GrCCGeometry::quadraticTo(const SkPoint P[3]) {
Chris Daltonc1e59632017-09-05 00:30:07 -0600133 SkASSERT(fBuildingContour);
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600134 SkASSERT(P[0] == fPoints.back());
135 Sk2f p0 = Sk2f::Load(P);
136 Sk2f p1 = Sk2f::Load(P+1);
137 Sk2f p2 = Sk2f::Load(P+2);
Chris Daltonc1e59632017-09-05 00:30:07 -0600138
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600139 // Don't crunch on the curve if it is nearly flat (or just very small). Flat curves can break
140 // The monotonic chopping math.
141 if (are_collinear(p0, p1, p2)) {
142 this->appendLine(p2);
143 return;
144 }
Chris Dalton419a94d2017-08-28 10:24:22 -0600145
Chris Dalton29011a22017-09-28 12:08:33 -0600146 this->appendMonotonicQuadratics(p0, p1, p2);
147}
148
Chris Dalton383a2ef2018-01-08 17:21:41 -0500149inline void GrCCGeometry::appendMonotonicQuadratics(const Sk2f& p0, const Sk2f& p1,
150 const Sk2f& p2) {
Chris Dalton419a94d2017-08-28 10:24:22 -0600151 Sk2f tan0 = p1 - p0;
152 Sk2f tan1 = p2 - p1;
Chris Dalton29011a22017-09-28 12:08:33 -0600153
Chris Dalton419a94d2017-08-28 10:24:22 -0600154 // This should almost always be this case for well-behaved curves in the real world.
Chris Dalton43646532017-12-07 12:47:02 -0700155 if (is_convex_curve_monotonic(p0, tan0, p2, tan1)) {
156 this->appendSingleMonotonicQuadratic(p0, p1, p2);
Chris Daltonc1e59632017-09-05 00:30:07 -0600157 return;
Chris Dalton419a94d2017-08-28 10:24:22 -0600158 }
159
160 // Chop the curve into two segments with equal curvature. To do this we find the T value whose
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600161 // tangent angle is halfway between tan0 and tan1.
Chris Dalton419a94d2017-08-28 10:24:22 -0600162 Sk2f n = normalize(tan0) - normalize(tan1);
163
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600164 // The midtangent can be found where (dQ(t) dot n) = 0:
Chris Dalton419a94d2017-08-28 10:24:22 -0600165 //
166 // 0 = (dQ(t) dot n) = | 2*t 1 | * | p0 - 2*p1 + p2 | * | n |
167 // | -2*p0 + 2*p1 | | . |
168 //
169 // = | 2*t 1 | * | tan1 - tan0 | * | n |
170 // | 2*tan0 | | . |
171 //
172 // = 2*t * ((tan1 - tan0) dot n) + (2*tan0 dot n)
173 //
174 // t = (tan0 dot n) / ((tan0 - tan1) dot n)
175 Sk2f dQ1n = (tan0 - tan1) * n;
176 Sk2f dQ0n = tan0 * n;
177 Sk2f t = (dQ0n + SkNx_shuffle<1,0>(dQ0n)) / (dQ1n + SkNx_shuffle<1,0>(dQ1n));
178 t = Sk2f::Min(Sk2f::Max(t, 0), 1); // Clamp for FP error.
179
180 Sk2f p01 = SkNx_fma(t, tan0, p0);
181 Sk2f p12 = SkNx_fma(t, tan1, p1);
182 Sk2f p012 = lerp(p01, p12, t);
183
Chris Dalton43646532017-12-07 12:47:02 -0700184 this->appendSingleMonotonicQuadratic(p0, p01, p012);
185 this->appendSingleMonotonicQuadratic(p012, p12, p2);
186}
187
Chris Dalton383a2ef2018-01-08 17:21:41 -0500188inline void GrCCGeometry::appendSingleMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1,
189 const Sk2f& p2) {
Chris Dalton43646532017-12-07 12:47:02 -0700190 SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
191
192 // Don't send curves to the GPU if we know they are nearly flat (or just very small).
193 if (are_collinear(p0, p1, p2)) {
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600194 this->appendLine(p2);
Chris Dalton43646532017-12-07 12:47:02 -0700195 return;
196 }
197
198 p1.store(&fPoints.push_back());
Chris Daltonc1e59632017-09-05 00:30:07 -0600199 p2.store(&fPoints.push_back());
Chris Dalton43646532017-12-07 12:47:02 -0700200 fVerbs.push_back(Verb::kMonotonicQuadraticTo);
201 ++fCurrContourTallies.fQuadratics;
Chris Daltonc1e59632017-09-05 00:30:07 -0600202}
203
Chris Dalton7f578bf2017-09-05 16:46:48 -0600204using ExcludedTerm = GrPathUtils::ExcludedTerm;
Chris Daltonc1e59632017-09-05 00:30:07 -0600205
Chris Dalton7f578bf2017-09-05 16:46:48 -0600206// Calculates the padding to apply around inflection points, in homogeneous parametric coordinates.
207//
208// More specifically, if the inflection point lies at C(t/s), then C((t +/- returnValue) / s) will
209// be the two points on the curve at which a square box with radius "padRadius" will have a corner
210// that touches the inflection point's tangent line.
211//
212// A serpentine cubic has two inflection points, so this method takes Sk2f and computes the padding
213// for both in SIMD.
214static inline Sk2f calc_inflect_homogeneous_padding(float padRadius, const Sk2f& t, const Sk2f& s,
215 const SkMatrix& CIT, ExcludedTerm skipTerm) {
216 SkASSERT(padRadius >= 0);
Chris Daltonc1e59632017-09-05 00:30:07 -0600217
Chris Dalton7f578bf2017-09-05 16:46:48 -0600218 Sk2f Clx = s*s*s;
219 Sk2f Cly = (ExcludedTerm::kLinearTerm == skipTerm) ? s*s*t*-3 : s*t*t*3;
220
221 Sk2f Lx = CIT[0] * Clx + CIT[3] * Cly;
222 Sk2f Ly = CIT[1] * Clx + CIT[4] * Cly;
223
224 float ret[2];
225 Sk2f bloat = padRadius * (Lx.abs() + Ly.abs());
226 (bloat * s >= 0).thenElse(bloat, -bloat).store(ret);
227
228 ret[0] = cbrtf(ret[0]);
229 ret[1] = cbrtf(ret[1]);
230 return Sk2f::Load(ret);
231}
232
233static inline void swap_if_greater(float& a, float& b) {
234 if (a > b) {
235 std::swap(a, b);
236 }
237}
238
239// Calculates all parameter values for a loop at which points a square box with radius "padRadius"
240// will have a corner that touches a tangent line from the intersection.
241//
242// T2 must contain the lesser parameter value of the loop intersection in its first component, and
243// the greater in its second.
244//
245// roots[0] will be filled with 1 or 3 sorted parameter values, representing the padding points
246// around the first tangent. roots[1] will be filled with the padding points for the second tangent.
247static inline void calc_loop_intersect_padding_pts(float padRadius, const Sk2f& T2,
248 const SkMatrix& CIT, ExcludedTerm skipTerm,
249 SkSTArray<3, float, true> roots[2]) {
250 SkASSERT(padRadius >= 0);
251 SkASSERT(T2[0] <= T2[1]);
252 SkASSERT(roots[0].empty());
253 SkASSERT(roots[1].empty());
254
255 Sk2f T1 = SkNx_shuffle<1,0>(T2);
256 Sk2f Cl = (ExcludedTerm::kLinearTerm == skipTerm) ? T2*-2 - T1 : T2*T2 + T2*T1*2;
257 Sk2f Lx = Cl * CIT[3] + CIT[0];
258 Sk2f Ly = Cl * CIT[4] + CIT[1];
259
260 Sk2f bloat = Sk2f(+.5f * padRadius, -.5f * padRadius) * (Lx.abs() + Ly.abs());
261 Sk2f q = (1.f/3) * (T2 - T1);
262
263 Sk2f qqq = q*q*q;
264 Sk2f discr = qqq*bloat*2 + bloat*bloat;
265
266 float numRoots[2], D[2];
267 (discr < 0).thenElse(3, 1).store(numRoots);
268 (T2 - q).store(D);
269
270 // Values for calculating one root.
271 float R[2], QQ[2];
272 if ((discr >= 0).anyTrue()) {
273 Sk2f r = qqq + bloat;
274 Sk2f s = r.abs() + discr.sqrt();
275 (r > 0).thenElse(-s, s).store(R);
276 (q*q).store(QQ);
Chris Daltonc1e59632017-09-05 00:30:07 -0600277 }
278
Chris Dalton7f578bf2017-09-05 16:46:48 -0600279 // Values for calculating three roots.
280 float P[2], cosTheta3[2];
281 if ((discr < 0).anyTrue()) {
282 (q.abs() * -2).store(P);
283 ((q >= 0).thenElse(1, -1) + bloat / qqq.abs()).store(cosTheta3);
Chris Daltonc1e59632017-09-05 00:30:07 -0600284 }
285
Chris Dalton7f578bf2017-09-05 16:46:48 -0600286 for (int i = 0; i < 2; ++i) {
287 if (1 == numRoots[i]) {
288 float A = cbrtf(R[i]);
289 float B = A != 0 ? QQ[i]/A : 0;
290 roots[i].push_back(A + B + D[i]);
Chris Daltonc1e59632017-09-05 00:30:07 -0600291 continue;
292 }
293
Chris Dalton7f578bf2017-09-05 16:46:48 -0600294 static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3;
295 float theta = std::acos(cosTheta3[i]) * (1.f/3);
296 roots[i].push_back(P[i] * std::cos(theta) + D[i]);
297 roots[i].push_back(P[i] * std::cos(theta + k2PiOver3) + D[i]);
298 roots[i].push_back(P[i] * std::cos(theta - k2PiOver3) + D[i]);
Chris Daltonc1e59632017-09-05 00:30:07 -0600299
Chris Dalton7f578bf2017-09-05 16:46:48 -0600300 // Sort the three roots.
301 swap_if_greater(roots[i][0], roots[i][1]);
302 swap_if_greater(roots[i][1], roots[i][2]);
303 swap_if_greater(roots[i][0], roots[i][1]);
304 }
305}
306
Chris Dalton29011a22017-09-28 12:08:33 -0600307static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) {
308 Sk2f aa = a*a;
309 aa += SkNx_shuffle<1,0>(aa);
310 SkASSERT(aa[0] == aa[1]);
311
312 Sk2f bb = b*b;
313 bb += SkNx_shuffle<1,0>(bb);
314 SkASSERT(bb[0] == bb[1]);
315
316 return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b);
317}
318
319static inline bool is_cubic_nearly_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600320 const Sk2f& p3, Sk2f& tan0, Sk2f& tan1, Sk2f& c) {
Chris Dalton29011a22017-09-28 12:08:33 -0600321 tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600322 tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1);
Chris Dalton29011a22017-09-28 12:08:33 -0600323
324 Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0);
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600325 Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan1, p3);
Chris Dalton29011a22017-09-28 12:08:33 -0600326 c = (c1 + c2) * .5f; // Hopefully optimized out if not used?
327
328 return ((c1 - c2).abs() <= 1).allTrue();
329}
330
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600331void GrCCGeometry::cubicTo(const SkPoint P[4], float inflectPad, float loopIntersectPad) {
Chris Dalton7f578bf2017-09-05 16:46:48 -0600332 SkASSERT(fBuildingContour);
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600333 SkASSERT(P[0] == fPoints.back());
Chris Daltonb0601a42018-04-10 00:23:45 -0600334
335 // Don't crunch on the curve or inflate geometry if it is nearly flat (or just very small).
336 // Flat curves can break the math below.
337 if (are_collinear(P)) {
338 this->lineTo(P[3]);
339 return;
340 }
341
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600342 Sk2f p0 = Sk2f::Load(P);
343 Sk2f p1 = Sk2f::Load(P+1);
344 Sk2f p2 = Sk2f::Load(P+2);
345 Sk2f p3 = Sk2f::Load(P+3);
Chris Dalton7f578bf2017-09-05 16:46:48 -0600346
Chris Dalton29011a22017-09-28 12:08:33 -0600347 // Also detect near-quadratics ahead of time.
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600348 Sk2f tan0, tan1, c;
349 if (is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, c)) {
Chris Dalton29011a22017-09-28 12:08:33 -0600350 this->appendMonotonicQuadratics(p0, c, p3);
Chris Dalton7f578bf2017-09-05 16:46:48 -0600351 return;
352 }
353
Chris Dalton29011a22017-09-28 12:08:33 -0600354 double tt[2], ss[2];
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600355 fCurrCubicType = SkClassifyCubic(P, tt, ss);
Chris Dalton29011a22017-09-28 12:08:33 -0600356 SkASSERT(!SkCubicIsDegenerate(fCurrCubicType)); // Should have been caught above.
357
Chris Dalton7f578bf2017-09-05 16:46:48 -0600358 SkMatrix CIT;
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600359 ExcludedTerm skipTerm = GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(P, &CIT);
Chris Dalton29011a22017-09-28 12:08:33 -0600360 SkASSERT(ExcludedTerm::kNonInvertible != skipTerm); // Should have been caught above.
Chris Dalton7f578bf2017-09-05 16:46:48 -0600361 SkASSERT(0 == CIT[6]);
362 SkASSERT(0 == CIT[7]);
363 SkASSERT(1 == CIT[8]);
364
365 // Each cubic has five different sections (not always inside t=[0..1]):
366 //
367 // 1. The section before the first inflection or loop intersection point, with padding.
368 // 2. The section that passes through the first inflection/intersection (aka the K,L
369 // intersection point or T=tt[0]/ss[0]).
370 // 3. The section between the two inflections/intersections, with padding.
371 // 4. The section that passes through the second inflection/intersection (aka the K,M
372 // intersection point or T=tt[1]/ss[1]).
373 // 5. The section after the second inflection/intersection, with padding.
374 //
375 // Sections 1,3,5 can be rendered directly using the CCPR cubic shader.
376 //
377 // Sections 2 & 4 must be approximated. For loop intersections we render them with
378 // quadratic(s), and when passing through an inflection point we use a plain old flat line.
379 //
380 // We find T0..T3 below to be the dividing points between these five sections.
381 float T0, T1, T2, T3;
382 if (SkCubicType::kLoop != fCurrCubicType) {
383 Sk2f t = Sk2f(static_cast<float>(tt[0]), static_cast<float>(tt[1]));
384 Sk2f s = Sk2f(static_cast<float>(ss[0]), static_cast<float>(ss[1]));
385 Sk2f pad = calc_inflect_homogeneous_padding(inflectPad, t, s, CIT, skipTerm);
386
387 float T[2];
388 ((t - pad) / s).store(T);
389 T0 = T[0];
390 T2 = T[1];
391
392 ((t + pad) / s).store(T);
393 T1 = T[0];
394 T3 = T[1];
395 } else {
396 const float T[2] = {static_cast<float>(tt[0]/ss[0]), static_cast<float>(tt[1]/ss[1])};
397 SkSTArray<3, float, true> roots[2];
398 calc_loop_intersect_padding_pts(loopIntersectPad, Sk2f::Load(T), CIT, skipTerm, roots);
399 T0 = roots[0].front();
400 if (1 == roots[0].count() || 1 == roots[1].count()) {
401 // The loop is tighter than our desired padding. Collapse the middle section to a point
402 // somewhere in the middle-ish of the loop and Sections 2 & 4 will approximate the the
403 // whole thing with quadratics.
404 T1 = T2 = (T[0] + T[1]) * .5f;
405 } else {
406 T1 = roots[0][1];
407 T2 = roots[1][1];
408 }
409 T3 = roots[1].back();
410 }
411
412 // Guarantee that T0..T3 are monotonic.
413 if (T0 > T3) {
414 // This is not a mathematically valid scenario. The only reason it would happen is if
415 // padding is very small and we have encountered FP rounding error.
416 T0 = T1 = T2 = T3 = (T0 + T3) / 2;
417 } else if (T1 > T2) {
418 // This just means padding before the middle section overlaps the padding after it. We
419 // collapse the middle section to a single point that splits the difference between the
420 // overlap in padding.
421 T1 = T2 = (T1 + T2) / 2;
422 }
423 // Clamp T1 & T2 inside T0..T3. The only reason this would be necessary is if we have
424 // encountered FP rounding error.
425 T1 = std::max(T0, std::min(T1, T3));
426 T2 = std::max(T0, std::min(T2, T3));
427
428 // Next we chop the cubic up at all T0..T3 inside 0..1 and store the resulting segments.
429 if (T1 >= 1) {
430 // Only sections 1 & 2 can be in 0..1.
Chris Dalton383a2ef2018-01-08 17:21:41 -0500431 this->chopCubic<&GrCCGeometry::appendMonotonicCubics,
432 &GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3, T0);
Chris Dalton7f578bf2017-09-05 16:46:48 -0600433 return;
434 }
435
436 if (T2 <= 0) {
437 // Only sections 4 & 5 can be in 0..1.
Chris Dalton383a2ef2018-01-08 17:21:41 -0500438 this->chopCubic<&GrCCGeometry::appendCubicApproximation,
439 &GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3, T3);
Chris Dalton7f578bf2017-09-05 16:46:48 -0600440 return;
441 }
442
443 Sk2f midp0, midp1; // These hold the first two bezier points of the middle section, if needed.
444
445 if (T1 > 0) {
446 Sk2f T1T1 = Sk2f(T1);
447 Sk2f ab1 = lerp(p0, p1, T1T1);
448 Sk2f bc1 = lerp(p1, p2, T1T1);
449 Sk2f cd1 = lerp(p2, p3, T1T1);
450 Sk2f abc1 = lerp(ab1, bc1, T1T1);
451 Sk2f bcd1 = lerp(bc1, cd1, T1T1);
452 Sk2f abcd1 = lerp(abc1, bcd1, T1T1);
453
454 // Sections 1 & 2.
Chris Dalton383a2ef2018-01-08 17:21:41 -0500455 this->chopCubic<&GrCCGeometry::appendMonotonicCubics,
456 &GrCCGeometry::appendCubicApproximation>(p0, ab1, abc1, abcd1, T0/T1);
Chris Dalton7f578bf2017-09-05 16:46:48 -0600457
458 if (T2 >= 1) {
459 // The rest of the curve is Section 3 (middle section).
460 this->appendMonotonicCubics(abcd1, bcd1, cd1, p3);
461 return;
Chris Daltonc1e59632017-09-05 00:30:07 -0600462 }
463
Chris Dalton7f578bf2017-09-05 16:46:48 -0600464 // Now calculate the first two bezier points of the middle section. The final two will come
465 // from when we chop the other side, as that is numerically more stable.
466 midp0 = abcd1;
467 midp1 = lerp(abcd1, bcd1, Sk2f((T2 - T1) / (1 - T1)));
468 } else if (T2 >= 1) {
469 // The entire cubic is Section 3 (middle section).
470 this->appendMonotonicCubics(p0, p1, p2, p3);
471 return;
Chris Daltonc1e59632017-09-05 00:30:07 -0600472 }
473
Chris Dalton7f578bf2017-09-05 16:46:48 -0600474 SkASSERT(T2 > 0 && T2 < 1);
475
476 Sk2f T2T2 = Sk2f(T2);
477 Sk2f ab2 = lerp(p0, p1, T2T2);
478 Sk2f bc2 = lerp(p1, p2, T2T2);
479 Sk2f cd2 = lerp(p2, p3, T2T2);
480 Sk2f abc2 = lerp(ab2, bc2, T2T2);
481 Sk2f bcd2 = lerp(bc2, cd2, T2T2);
482 Sk2f abcd2 = lerp(abc2, bcd2, T2T2);
483
484 if (T1 <= 0) {
485 // The curve begins at Section 3 (middle section).
486 this->appendMonotonicCubics(p0, ab2, abc2, abcd2);
487 } else if (T2 > T1) {
488 // Section 3 (middle section).
489 Sk2f midp2 = lerp(abc2, abcd2, T1/T2);
490 this->appendMonotonicCubics(midp0, midp1, midp2, abcd2);
491 }
492
493 // Sections 4 & 5.
Chris Dalton383a2ef2018-01-08 17:21:41 -0500494 this->chopCubic<&GrCCGeometry::appendCubicApproximation,
495 &GrCCGeometry::appendMonotonicCubics>(abcd2, bcd2, cd2, p3, (T3-T2) / (1-T2));
Chris Daltonc1e59632017-09-05 00:30:07 -0600496}
497
Chris Dalton383a2ef2018-01-08 17:21:41 -0500498template<GrCCGeometry::AppendCubicFn AppendLeftRight>
499inline void GrCCGeometry::chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
500 const Sk2f& p3, const Sk2f& tan0,
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600501 const Sk2f& tan1, int maxFutureSubdivisions) {
502 // Find the T value whose tangent is perpendicular to the vector that bisects tan0 and -tan1.
503 Sk2f n = normalize(tan0) - normalize(tan1);
Chris Dalton7f578bf2017-09-05 16:46:48 -0600504
505 float a = 3 * dot(p3 + (p1 - p2)*3 - p0, n);
506 float b = 6 * dot(p0 - p1*2 + p2, n);
507 float c = 3 * dot(p1 - p0, n);
508
509 float discr = b*b - 4*a*c;
510 if (discr < 0) {
511 // If this is the case then the cubic must be nearly flat.
512 (this->*AppendLeftRight)(p0, p1, p2, p3, maxFutureSubdivisions);
513 return;
514 }
515
516 float q = -.5f * (b + copysignf(std::sqrt(discr), b));
517 float m = .5f*q*a;
518 float T = std::abs(q*q - m) < std::abs(a*c - m) ? q/a : c/q;
519
520 this->chopCubic<AppendLeftRight, AppendLeftRight>(p0, p1, p2, p3, T, maxFutureSubdivisions);
521}
522
Chris Dalton383a2ef2018-01-08 17:21:41 -0500523template<GrCCGeometry::AppendCubicFn AppendLeft, GrCCGeometry::AppendCubicFn AppendRight>
524inline void GrCCGeometry::chopCubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
525 const Sk2f& p3, float T, int maxFutureSubdivisions) {
Chris Dalton7f578bf2017-09-05 16:46:48 -0600526 if (T >= 1) {
527 (this->*AppendLeft)(p0, p1, p2, p3, maxFutureSubdivisions);
528 return;
529 }
530
531 if (T <= 0) {
532 (this->*AppendRight)(p0, p1, p2, p3, maxFutureSubdivisions);
533 return;
534 }
535
536 Sk2f TT = T;
537 Sk2f ab = lerp(p0, p1, TT);
538 Sk2f bc = lerp(p1, p2, TT);
539 Sk2f cd = lerp(p2, p3, TT);
540 Sk2f abc = lerp(ab, bc, TT);
541 Sk2f bcd = lerp(bc, cd, TT);
542 Sk2f abcd = lerp(abc, bcd, TT);
543 (this->*AppendLeft)(p0, ab, abc, abcd, maxFutureSubdivisions);
544 (this->*AppendRight)(abcd, bcd, cd, p3, maxFutureSubdivisions);
545}
546
Chris Dalton383a2ef2018-01-08 17:21:41 -0500547void GrCCGeometry::appendMonotonicCubics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
548 const Sk2f& p3, int maxSubdivisions) {
Chris Dalton29011a22017-09-28 12:08:33 -0600549 SkASSERT(maxSubdivisions >= 0);
Chris Dalton7f578bf2017-09-05 16:46:48 -0600550 if ((p0 == p3).allTrue()) {
551 return;
552 }
553
554 if (maxSubdivisions) {
555 Sk2f tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600556 Sk2f tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1);
Chris Dalton7f578bf2017-09-05 16:46:48 -0600557
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600558 if (!is_convex_curve_monotonic(p0, tan0, p3, tan1)) {
Chris Dalton383a2ef2018-01-08 17:21:41 -0500559 this->chopCubicAtMidTangent<&GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3,
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600560 tan0, tan1,
Chris Dalton383a2ef2018-01-08 17:21:41 -0500561 maxSubdivisions - 1);
Chris Dalton7f578bf2017-09-05 16:46:48 -0600562 return;
563 }
564 }
565
566 SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
Chris Dalton43646532017-12-07 12:47:02 -0700567
568 // Don't send curves to the GPU if we know they are nearly flat (or just very small).
569 // Since the cubic segment is known to be convex at this point, our flatness check is simple.
570 if (are_collinear(p0, (p1 + p2) * .5f, p3)) {
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600571 this->appendLine(p3);
Chris Dalton43646532017-12-07 12:47:02 -0700572 return;
573 }
574
Chris Dalton7f578bf2017-09-05 16:46:48 -0600575 p1.store(&fPoints.push_back());
576 p2.store(&fPoints.push_back());
577 p3.store(&fPoints.push_back());
Chris Daltonbe4ffab2017-12-08 10:59:58 -0700578 fVerbs.push_back(Verb::kMonotonicCubicTo);
579 ++fCurrContourTallies.fCubics;
Chris Daltonc1e59632017-09-05 00:30:07 -0600580}
581
Chris Dalton383a2ef2018-01-08 17:21:41 -0500582void GrCCGeometry::appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
583 const Sk2f& p3, int maxSubdivisions) {
Chris Dalton29011a22017-09-28 12:08:33 -0600584 SkASSERT(maxSubdivisions >= 0);
Chris Dalton7f578bf2017-09-05 16:46:48 -0600585 if ((p0 == p3).allTrue()) {
586 return;
587 }
588
589 if (SkCubicType::kLoop != fCurrCubicType && SkCubicType::kQuadratic != fCurrCubicType) {
590 // This section passes through an inflection point, so we can get away with a flat line.
591 // This can cause some curves to feel slightly more flat when inspected rigorously back and
592 // forth against another renderer, but for now this seems acceptable given the simplicity.
593 SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600594 this->appendLine(p3);
Chris Dalton7f578bf2017-09-05 16:46:48 -0600595 return;
596 }
597
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600598 Sk2f tan0, tan1, c;
599 if (!is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, c) && maxSubdivisions) {
Chris Dalton383a2ef2018-01-08 17:21:41 -0500600 this->chopCubicAtMidTangent<&GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3,
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600601 tan0, tan1,
Chris Dalton383a2ef2018-01-08 17:21:41 -0500602 maxSubdivisions - 1);
Chris Dalton29011a22017-09-28 12:08:33 -0600603 return;
Chris Dalton7f578bf2017-09-05 16:46:48 -0600604 }
605
Chris Dalton43646532017-12-07 12:47:02 -0700606 if (maxSubdivisions) {
607 this->appendMonotonicQuadratics(p0, c, p3);
608 } else {
609 this->appendSingleMonotonicQuadratic(p0, c, p3);
610 }
Chris Dalton7f578bf2017-09-05 16:46:48 -0600611}
612
Chris Dalton383a2ef2018-01-08 17:21:41 -0500613GrCCGeometry::PrimitiveTallies GrCCGeometry::endContour() {
Chris Daltonc1e59632017-09-05 00:30:07 -0600614 SkASSERT(fBuildingContour);
615 SkASSERT(fVerbs.count() >= fCurrContourTallies.fTriangles);
616
617 // The fTriangles field currently contains this contour's starting verb index. We can now
618 // use it to calculate the size of the contour's fan.
619 int fanSize = fVerbs.count() - fCurrContourTallies.fTriangles;
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600620 if (fPoints.back() == fCurrAnchorPoint) {
Chris Daltonc1e59632017-09-05 00:30:07 -0600621 --fanSize;
622 fVerbs.push_back(Verb::kEndClosedContour);
623 } else {
624 fVerbs.push_back(Verb::kEndOpenContour);
625 }
626
627 fCurrContourTallies.fTriangles = SkTMax(fanSize - 2, 0);
628
Chris Dalton383a2ef2018-01-08 17:21:41 -0500629 SkDEBUGCODE(fBuildingContour = false);
Chris Daltonc1e59632017-09-05 00:30:07 -0600630 return fCurrContourTallies;
Chris Dalton419a94d2017-08-28 10:24:22 -0600631}