Chris Dalton | 419a94d | 2017-08-28 10:24:22 -0600 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2017 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 8 | #include "GrCCGeometry.h" |
Chris Dalton | 419a94d | 2017-08-28 10:24:22 -0600 | [diff] [blame] | 9 | |
| 10 | #include "GrTypes.h" |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 11 | #include "GrPathUtils.h" |
Chris Dalton | 419a94d | 2017-08-28 10:24:22 -0600 | [diff] [blame] | 12 | #include <algorithm> |
| 13 | #include <cmath> |
| 14 | #include <cstdlib> |
| 15 | |
| 16 | // We convert between SkPoint and Sk2f freely throughout this file. |
| 17 | GR_STATIC_ASSERT(SK_SCALAR_IS_FLOAT); |
| 18 | GR_STATIC_ASSERT(2 * sizeof(float) == sizeof(SkPoint)); |
| 19 | GR_STATIC_ASSERT(0 == offsetof(SkPoint, fX)); |
| 20 | |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 21 | void GrCCGeometry::beginPath() { |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 22 | SkASSERT(!fBuildingContour); |
| 23 | fVerbs.push_back(Verb::kBeginPath); |
| 24 | } |
| 25 | |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 26 | void GrCCGeometry::beginContour(const SkPoint& pt) { |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 27 | SkASSERT(!fBuildingContour); |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 28 | // Store the current verb count in the fTriangles field for now. When we close the contour we |
| 29 | // will use this value to calculate the actual number of triangles in its fan. |
Chris Dalton | 9f2dab0 | 2018-04-18 14:07:03 -0600 | [diff] [blame] | 30 | fCurrContourTallies = {fVerbs.count(), 0, 0, 0, 0}; |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 31 | |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 32 | fPoints.push_back(pt); |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 33 | fVerbs.push_back(Verb::kBeginContour); |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 34 | fCurrAnchorPoint = pt; |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 35 | |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 36 | SkDEBUGCODE(fBuildingContour = true); |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 37 | } |
| 38 | |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 39 | void GrCCGeometry::lineTo(const SkPoint& pt) { |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 40 | SkASSERT(fBuildingContour); |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 41 | fPoints.push_back(pt); |
| 42 | fVerbs.push_back(Verb::kLineTo); |
| 43 | } |
| 44 | |
| 45 | void GrCCGeometry::appendLine(const Sk2f& endpt) { |
| 46 | endpt.store(&fPoints.push_back()); |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 47 | fVerbs.push_back(Verb::kLineTo); |
| 48 | } |
| 49 | |
Chris Dalton | 419a94d | 2017-08-28 10:24:22 -0600 | [diff] [blame] | 50 | static inline Sk2f normalize(const Sk2f& n) { |
| 51 | Sk2f nn = n*n; |
| 52 | return n * (nn + SkNx_shuffle<1,0>(nn)).rsqrt(); |
| 53 | } |
| 54 | |
| 55 | static inline float dot(const Sk2f& a, const Sk2f& b) { |
| 56 | float product[2]; |
| 57 | (a * b).store(product); |
| 58 | return product[0] + product[1]; |
| 59 | } |
| 60 | |
Chris Dalton | b0601a4 | 2018-04-10 00:23:45 -0600 | [diff] [blame] | 61 | static inline bool are_collinear(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
| 62 | float tolerance = 1/16.f) { // 1/16 of a pixel. |
| 63 | Sk2f l = p2 - p0; // Line from p0 -> p2. |
Chris Dalton | 900cd05 | 2017-09-07 10:36:51 -0600 | [diff] [blame] | 64 | |
Chris Dalton | b0601a4 | 2018-04-10 00:23:45 -0600 | [diff] [blame] | 65 | // lwidth = Manhattan width of l. |
| 66 | Sk2f labs = l.abs(); |
| 67 | float lwidth = labs[0] + labs[1]; |
Chris Dalton | 900cd05 | 2017-09-07 10:36:51 -0600 | [diff] [blame] | 68 | |
Chris Dalton | b0601a4 | 2018-04-10 00:23:45 -0600 | [diff] [blame] | 69 | // d = |p1 - p0| dot | l.y| |
| 70 | // |-l.x| = distance from p1 to l. |
| 71 | Sk2f dd = (p1 - p0) * SkNx_shuffle<1,0>(l); |
| 72 | float d = dd[0] - dd[1]; |
Chris Dalton | 900cd05 | 2017-09-07 10:36:51 -0600 | [diff] [blame] | 73 | |
Chris Dalton | b0601a4 | 2018-04-10 00:23:45 -0600 | [diff] [blame] | 74 | // We are collinear if a box with radius "tolerance", centered on p1, touches the line l. |
| 75 | // To decide this, we check if the distance from p1 to the line is less than the distance from |
| 76 | // p1 to the far corner of this imaginary box, along that same normal vector. |
| 77 | // The far corner of the box can be found at "p1 + sign(n) * tolerance", where n is normal to l: |
| 78 | // |
| 79 | // abs(dot(p1 - p0, n)) <= dot(sign(n) * tolerance, n) |
| 80 | // |
| 81 | // Which reduces to: |
| 82 | // |
| 83 | // abs(d) <= (n.x * sign(n.x) + n.y * sign(n.y)) * tolerance |
| 84 | // abs(d) <= (abs(n.x) + abs(n.y)) * tolerance |
| 85 | // |
| 86 | // Use "<=" in case l == 0. |
| 87 | return std::abs(d) <= lwidth * tolerance; |
| 88 | } |
| 89 | |
| 90 | static inline bool are_collinear(const SkPoint P[4], float tolerance = 1/16.f) { // 1/16 of a pixel. |
| 91 | Sk4f Px, Py; // |Px Py| |p0 - p3| |
| 92 | Sk4f::Load2(P, &Px, &Py); // |. . | = |p1 - p3| |
| 93 | Px -= Px[3]; // |. . | |p2 - p3| |
| 94 | Py -= Py[3]; // |. . | | 0 | |
| 95 | |
| 96 | // Find [lx, ly] = the line from p3 to the furthest-away point from p3. |
| 97 | Sk4f Pwidth = Px.abs() + Py.abs(); // Pwidth = Manhattan width of each point. |
| 98 | int lidx = Pwidth[0] > Pwidth[1] ? 0 : 1; |
| 99 | lidx = Pwidth[lidx] > Pwidth[2] ? lidx : 2; |
| 100 | float lx = Px[lidx], ly = Py[lidx]; |
| 101 | float lwidth = Pwidth[lidx]; // lwidth = Manhattan width of [lx, ly]. |
| 102 | |
| 103 | // |Px Py| |
| 104 | // d = |. . | * | ly| = distances from each point to l (two of the distances will be zero). |
| 105 | // |. . | |-lx| |
| 106 | // |. . | |
| 107 | Sk4f d = Px*ly - Py*lx; |
| 108 | |
| 109 | // We are collinear if boxes with radius "tolerance", centered on all 4 points all touch line l. |
| 110 | // (See the rationale for this formula in the above, 3-point version of this function.) |
| 111 | // Use "<=" in case l == 0. |
| 112 | return (d.abs() <= lwidth * tolerance).allTrue(); |
Chris Dalton | 900cd05 | 2017-09-07 10:36:51 -0600 | [diff] [blame] | 113 | } |
| 114 | |
Chris Dalton | 419a94d | 2017-08-28 10:24:22 -0600 | [diff] [blame] | 115 | // Returns whether the (convex) curve segment is monotonic with respect to [endPt - startPt]. |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 116 | static inline bool is_convex_curve_monotonic(const Sk2f& startPt, const Sk2f& tan0, |
| 117 | const Sk2f& endPt, const Sk2f& tan1) { |
Chris Dalton | 419a94d | 2017-08-28 10:24:22 -0600 | [diff] [blame] | 118 | Sk2f v = endPt - startPt; |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 119 | float dot0 = dot(tan0, v); |
| 120 | float dot1 = dot(tan1, v); |
Chris Dalton | 419a94d | 2017-08-28 10:24:22 -0600 | [diff] [blame] | 121 | |
| 122 | // A small, negative tolerance handles floating-point error in the case when one tangent |
| 123 | // approaches 0 length, meaning the (convex) curve segment is effectively a flat line. |
| 124 | float tolerance = -std::max(std::abs(dot0), std::abs(dot1)) * SK_ScalarNearlyZero; |
| 125 | return dot0 >= tolerance && dot1 >= tolerance; |
| 126 | } |
| 127 | |
Chris Dalton | 9f2dab0 | 2018-04-18 14:07:03 -0600 | [diff] [blame] | 128 | template<int N> static inline SkNx<N,float> lerp(const SkNx<N,float>& a, const SkNx<N,float>& b, |
| 129 | const SkNx<N,float>& t) { |
Chris Dalton | 419a94d | 2017-08-28 10:24:22 -0600 | [diff] [blame] | 130 | return SkNx_fma(t, b - a, a); |
| 131 | } |
| 132 | |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 133 | void GrCCGeometry::quadraticTo(const SkPoint P[3]) { |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 134 | SkASSERT(fBuildingContour); |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 135 | SkASSERT(P[0] == fPoints.back()); |
| 136 | Sk2f p0 = Sk2f::Load(P); |
| 137 | Sk2f p1 = Sk2f::Load(P+1); |
| 138 | Sk2f p2 = Sk2f::Load(P+2); |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 139 | |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 140 | // Don't crunch on the curve if it is nearly flat (or just very small). Flat curves can break |
| 141 | // The monotonic chopping math. |
| 142 | if (are_collinear(p0, p1, p2)) { |
| 143 | this->appendLine(p2); |
| 144 | return; |
| 145 | } |
Chris Dalton | 419a94d | 2017-08-28 10:24:22 -0600 | [diff] [blame] | 146 | |
Chris Dalton | 29011a2 | 2017-09-28 12:08:33 -0600 | [diff] [blame] | 147 | this->appendMonotonicQuadratics(p0, p1, p2); |
| 148 | } |
| 149 | |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 150 | inline void GrCCGeometry::appendMonotonicQuadratics(const Sk2f& p0, const Sk2f& p1, |
| 151 | const Sk2f& p2) { |
Chris Dalton | 419a94d | 2017-08-28 10:24:22 -0600 | [diff] [blame] | 152 | Sk2f tan0 = p1 - p0; |
| 153 | Sk2f tan1 = p2 - p1; |
Chris Dalton | 29011a2 | 2017-09-28 12:08:33 -0600 | [diff] [blame] | 154 | |
Chris Dalton | 419a94d | 2017-08-28 10:24:22 -0600 | [diff] [blame] | 155 | // This should almost always be this case for well-behaved curves in the real world. |
Chris Dalton | 4364653 | 2017-12-07 12:47:02 -0700 | [diff] [blame] | 156 | if (is_convex_curve_monotonic(p0, tan0, p2, tan1)) { |
| 157 | this->appendSingleMonotonicQuadratic(p0, p1, p2); |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 158 | return; |
Chris Dalton | 419a94d | 2017-08-28 10:24:22 -0600 | [diff] [blame] | 159 | } |
| 160 | |
| 161 | // Chop the curve into two segments with equal curvature. To do this we find the T value whose |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 162 | // tangent angle is halfway between tan0 and tan1. |
Chris Dalton | 419a94d | 2017-08-28 10:24:22 -0600 | [diff] [blame] | 163 | Sk2f n = normalize(tan0) - normalize(tan1); |
| 164 | |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 165 | // The midtangent can be found where (dQ(t) dot n) = 0: |
Chris Dalton | 419a94d | 2017-08-28 10:24:22 -0600 | [diff] [blame] | 166 | // |
| 167 | // 0 = (dQ(t) dot n) = | 2*t 1 | * | p0 - 2*p1 + p2 | * | n | |
| 168 | // | -2*p0 + 2*p1 | | . | |
| 169 | // |
| 170 | // = | 2*t 1 | * | tan1 - tan0 | * | n | |
| 171 | // | 2*tan0 | | . | |
| 172 | // |
| 173 | // = 2*t * ((tan1 - tan0) dot n) + (2*tan0 dot n) |
| 174 | // |
| 175 | // t = (tan0 dot n) / ((tan0 - tan1) dot n) |
| 176 | Sk2f dQ1n = (tan0 - tan1) * n; |
| 177 | Sk2f dQ0n = tan0 * n; |
| 178 | Sk2f t = (dQ0n + SkNx_shuffle<1,0>(dQ0n)) / (dQ1n + SkNx_shuffle<1,0>(dQ1n)); |
| 179 | t = Sk2f::Min(Sk2f::Max(t, 0), 1); // Clamp for FP error. |
| 180 | |
| 181 | Sk2f p01 = SkNx_fma(t, tan0, p0); |
| 182 | Sk2f p12 = SkNx_fma(t, tan1, p1); |
| 183 | Sk2f p012 = lerp(p01, p12, t); |
| 184 | |
Chris Dalton | 4364653 | 2017-12-07 12:47:02 -0700 | [diff] [blame] | 185 | this->appendSingleMonotonicQuadratic(p0, p01, p012); |
| 186 | this->appendSingleMonotonicQuadratic(p012, p12, p2); |
| 187 | } |
| 188 | |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 189 | inline void GrCCGeometry::appendSingleMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, |
| 190 | const Sk2f& p2) { |
Chris Dalton | 4364653 | 2017-12-07 12:47:02 -0700 | [diff] [blame] | 191 | SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); |
| 192 | |
| 193 | // Don't send curves to the GPU if we know they are nearly flat (or just very small). |
| 194 | if (are_collinear(p0, p1, p2)) { |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 195 | this->appendLine(p2); |
Chris Dalton | 4364653 | 2017-12-07 12:47:02 -0700 | [diff] [blame] | 196 | return; |
| 197 | } |
| 198 | |
| 199 | p1.store(&fPoints.push_back()); |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 200 | p2.store(&fPoints.push_back()); |
Chris Dalton | 4364653 | 2017-12-07 12:47:02 -0700 | [diff] [blame] | 201 | fVerbs.push_back(Verb::kMonotonicQuadraticTo); |
| 202 | ++fCurrContourTallies.fQuadratics; |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 203 | } |
| 204 | |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 205 | using ExcludedTerm = GrPathUtils::ExcludedTerm; |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 206 | |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 207 | // Calculates the padding to apply around inflection points, in homogeneous parametric coordinates. |
| 208 | // |
| 209 | // More specifically, if the inflection point lies at C(t/s), then C((t +/- returnValue) / s) will |
| 210 | // be the two points on the curve at which a square box with radius "padRadius" will have a corner |
| 211 | // that touches the inflection point's tangent line. |
| 212 | // |
| 213 | // A serpentine cubic has two inflection points, so this method takes Sk2f and computes the padding |
| 214 | // for both in SIMD. |
| 215 | static inline Sk2f calc_inflect_homogeneous_padding(float padRadius, const Sk2f& t, const Sk2f& s, |
| 216 | const SkMatrix& CIT, ExcludedTerm skipTerm) { |
| 217 | SkASSERT(padRadius >= 0); |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 218 | |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 219 | Sk2f Clx = s*s*s; |
| 220 | Sk2f Cly = (ExcludedTerm::kLinearTerm == skipTerm) ? s*s*t*-3 : s*t*t*3; |
| 221 | |
| 222 | Sk2f Lx = CIT[0] * Clx + CIT[3] * Cly; |
| 223 | Sk2f Ly = CIT[1] * Clx + CIT[4] * Cly; |
| 224 | |
| 225 | float ret[2]; |
| 226 | Sk2f bloat = padRadius * (Lx.abs() + Ly.abs()); |
| 227 | (bloat * s >= 0).thenElse(bloat, -bloat).store(ret); |
| 228 | |
| 229 | ret[0] = cbrtf(ret[0]); |
| 230 | ret[1] = cbrtf(ret[1]); |
| 231 | return Sk2f::Load(ret); |
| 232 | } |
| 233 | |
| 234 | static inline void swap_if_greater(float& a, float& b) { |
| 235 | if (a > b) { |
| 236 | std::swap(a, b); |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | // Calculates all parameter values for a loop at which points a square box with radius "padRadius" |
| 241 | // will have a corner that touches a tangent line from the intersection. |
| 242 | // |
| 243 | // T2 must contain the lesser parameter value of the loop intersection in its first component, and |
| 244 | // the greater in its second. |
| 245 | // |
| 246 | // roots[0] will be filled with 1 or 3 sorted parameter values, representing the padding points |
| 247 | // around the first tangent. roots[1] will be filled with the padding points for the second tangent. |
| 248 | static inline void calc_loop_intersect_padding_pts(float padRadius, const Sk2f& T2, |
| 249 | const SkMatrix& CIT, ExcludedTerm skipTerm, |
| 250 | SkSTArray<3, float, true> roots[2]) { |
| 251 | SkASSERT(padRadius >= 0); |
| 252 | SkASSERT(T2[0] <= T2[1]); |
| 253 | SkASSERT(roots[0].empty()); |
| 254 | SkASSERT(roots[1].empty()); |
| 255 | |
| 256 | Sk2f T1 = SkNx_shuffle<1,0>(T2); |
| 257 | Sk2f Cl = (ExcludedTerm::kLinearTerm == skipTerm) ? T2*-2 - T1 : T2*T2 + T2*T1*2; |
| 258 | Sk2f Lx = Cl * CIT[3] + CIT[0]; |
| 259 | Sk2f Ly = Cl * CIT[4] + CIT[1]; |
| 260 | |
| 261 | Sk2f bloat = Sk2f(+.5f * padRadius, -.5f * padRadius) * (Lx.abs() + Ly.abs()); |
| 262 | Sk2f q = (1.f/3) * (T2 - T1); |
| 263 | |
| 264 | Sk2f qqq = q*q*q; |
| 265 | Sk2f discr = qqq*bloat*2 + bloat*bloat; |
| 266 | |
| 267 | float numRoots[2], D[2]; |
| 268 | (discr < 0).thenElse(3, 1).store(numRoots); |
| 269 | (T2 - q).store(D); |
| 270 | |
| 271 | // Values for calculating one root. |
| 272 | float R[2], QQ[2]; |
| 273 | if ((discr >= 0).anyTrue()) { |
| 274 | Sk2f r = qqq + bloat; |
| 275 | Sk2f s = r.abs() + discr.sqrt(); |
| 276 | (r > 0).thenElse(-s, s).store(R); |
| 277 | (q*q).store(QQ); |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 278 | } |
| 279 | |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 280 | // Values for calculating three roots. |
| 281 | float P[2], cosTheta3[2]; |
| 282 | if ((discr < 0).anyTrue()) { |
| 283 | (q.abs() * -2).store(P); |
| 284 | ((q >= 0).thenElse(1, -1) + bloat / qqq.abs()).store(cosTheta3); |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 285 | } |
| 286 | |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 287 | for (int i = 0; i < 2; ++i) { |
| 288 | if (1 == numRoots[i]) { |
| 289 | float A = cbrtf(R[i]); |
| 290 | float B = A != 0 ? QQ[i]/A : 0; |
| 291 | roots[i].push_back(A + B + D[i]); |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 292 | continue; |
| 293 | } |
| 294 | |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 295 | static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3; |
| 296 | float theta = std::acos(cosTheta3[i]) * (1.f/3); |
| 297 | roots[i].push_back(P[i] * std::cos(theta) + D[i]); |
| 298 | roots[i].push_back(P[i] * std::cos(theta + k2PiOver3) + D[i]); |
| 299 | roots[i].push_back(P[i] * std::cos(theta - k2PiOver3) + D[i]); |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 300 | |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 301 | // Sort the three roots. |
| 302 | swap_if_greater(roots[i][0], roots[i][1]); |
| 303 | swap_if_greater(roots[i][1], roots[i][2]); |
| 304 | swap_if_greater(roots[i][0], roots[i][1]); |
| 305 | } |
| 306 | } |
| 307 | |
Chris Dalton | 29011a2 | 2017-09-28 12:08:33 -0600 | [diff] [blame] | 308 | static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) { |
| 309 | Sk2f aa = a*a; |
| 310 | aa += SkNx_shuffle<1,0>(aa); |
| 311 | SkASSERT(aa[0] == aa[1]); |
| 312 | |
| 313 | Sk2f bb = b*b; |
| 314 | bb += SkNx_shuffle<1,0>(bb); |
| 315 | SkASSERT(bb[0] == bb[1]); |
| 316 | |
| 317 | return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b); |
| 318 | } |
| 319 | |
| 320 | static inline bool is_cubic_nearly_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 321 | const Sk2f& p3, Sk2f& tan0, Sk2f& tan1, Sk2f& c) { |
Chris Dalton | 29011a2 | 2017-09-28 12:08:33 -0600 | [diff] [blame] | 322 | tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0); |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 323 | tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1); |
Chris Dalton | 29011a2 | 2017-09-28 12:08:33 -0600 | [diff] [blame] | 324 | |
| 325 | Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0); |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 326 | Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan1, p3); |
Chris Dalton | 29011a2 | 2017-09-28 12:08:33 -0600 | [diff] [blame] | 327 | c = (c1 + c2) * .5f; // Hopefully optimized out if not used? |
| 328 | |
| 329 | return ((c1 - c2).abs() <= 1).allTrue(); |
| 330 | } |
| 331 | |
Chris Dalton | 9f2dab0 | 2018-04-18 14:07:03 -0600 | [diff] [blame] | 332 | // Given a convex curve segment with the following order-2 tangent function: |
| 333 | // |
| 334 | // |C2x C2y| |
| 335 | // tan = some_scale * |dx/dt dy/dt| = |t^2 t 1| * |C1x C1y| |
| 336 | // |C0x C0y| |
| 337 | // |
| 338 | // This function finds the T value whose tangent angle is halfway between the tangents at T=0 and |
| 339 | // T=1 (tan0 and tan1). |
| 340 | static inline float find_midtangent(const Sk2f& tan0, const Sk2f& tan1, |
| 341 | float scale2, const Sk2f& C2, |
| 342 | float scale1, const Sk2f& C1, |
| 343 | float scale0, const Sk2f& C0) { |
| 344 | // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the |
| 345 | // midtangent. 'n' will therefore bisect tan0 and -tan1, giving us the normal to the midtangent. |
| 346 | // |
| 347 | // n dot midtangent = 0 |
| 348 | // |
| 349 | Sk2f n = normalize(tan0) - normalize(tan1); |
| 350 | |
| 351 | // Find the T value at the midtangent. This is a simple quadratic equation: |
| 352 | // |
| 353 | // midtangent dot n = 0 |
| 354 | // |
| 355 | // (|t^2 t 1| * C) dot n = 0 |
| 356 | // |
| 357 | // |t^2 t 1| dot C*n = 0 |
| 358 | // |
| 359 | // First find coeffs = C*n. |
| 360 | Sk4f C[2]; |
| 361 | Sk2f::Store4(C, C2, C1, C0, 0); |
| 362 | Sk4f coeffs = C[0]*n[0] + C[1]*n[1]; |
| 363 | if (1 != scale2 || 1 != scale1 || 1 != scale0) { |
| 364 | coeffs *= Sk4f(scale2, scale1, scale0, 0); |
| 365 | } |
| 366 | |
| 367 | // Now solve the quadratic. |
| 368 | float a = coeffs[0], b = coeffs[1], c = coeffs[2]; |
| 369 | float discr = b*b - 4*a*c; |
| 370 | if (discr < 0) { |
| 371 | return 0; // This will only happen if the curve is a line. |
| 372 | } |
| 373 | |
| 374 | // The roots are q/a and c/q. Pick the one closer to T=.5. |
| 375 | float q = -.5f * (b + copysignf(std::sqrt(discr), b)); |
| 376 | float r = .5f*q*a; |
| 377 | return std::abs(q*q - r) < std::abs(a*c - r) ? q/a : c/q; |
| 378 | } |
| 379 | |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 380 | void GrCCGeometry::cubicTo(const SkPoint P[4], float inflectPad, float loopIntersectPad) { |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 381 | SkASSERT(fBuildingContour); |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 382 | SkASSERT(P[0] == fPoints.back()); |
Chris Dalton | b0601a4 | 2018-04-10 00:23:45 -0600 | [diff] [blame] | 383 | |
| 384 | // Don't crunch on the curve or inflate geometry if it is nearly flat (or just very small). |
| 385 | // Flat curves can break the math below. |
| 386 | if (are_collinear(P)) { |
| 387 | this->lineTo(P[3]); |
| 388 | return; |
| 389 | } |
| 390 | |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 391 | Sk2f p0 = Sk2f::Load(P); |
| 392 | Sk2f p1 = Sk2f::Load(P+1); |
| 393 | Sk2f p2 = Sk2f::Load(P+2); |
| 394 | Sk2f p3 = Sk2f::Load(P+3); |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 395 | |
Chris Dalton | 29011a2 | 2017-09-28 12:08:33 -0600 | [diff] [blame] | 396 | // Also detect near-quadratics ahead of time. |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 397 | Sk2f tan0, tan1, c; |
| 398 | if (is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, c)) { |
Chris Dalton | 29011a2 | 2017-09-28 12:08:33 -0600 | [diff] [blame] | 399 | this->appendMonotonicQuadratics(p0, c, p3); |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 400 | return; |
| 401 | } |
| 402 | |
Chris Dalton | 29011a2 | 2017-09-28 12:08:33 -0600 | [diff] [blame] | 403 | double tt[2], ss[2]; |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 404 | fCurrCubicType = SkClassifyCubic(P, tt, ss); |
Chris Dalton | 29011a2 | 2017-09-28 12:08:33 -0600 | [diff] [blame] | 405 | SkASSERT(!SkCubicIsDegenerate(fCurrCubicType)); // Should have been caught above. |
| 406 | |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 407 | SkMatrix CIT; |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 408 | ExcludedTerm skipTerm = GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(P, &CIT); |
Chris Dalton | 29011a2 | 2017-09-28 12:08:33 -0600 | [diff] [blame] | 409 | SkASSERT(ExcludedTerm::kNonInvertible != skipTerm); // Should have been caught above. |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 410 | SkASSERT(0 == CIT[6]); |
| 411 | SkASSERT(0 == CIT[7]); |
| 412 | SkASSERT(1 == CIT[8]); |
| 413 | |
| 414 | // Each cubic has five different sections (not always inside t=[0..1]): |
| 415 | // |
| 416 | // 1. The section before the first inflection or loop intersection point, with padding. |
| 417 | // 2. The section that passes through the first inflection/intersection (aka the K,L |
| 418 | // intersection point or T=tt[0]/ss[0]). |
| 419 | // 3. The section between the two inflections/intersections, with padding. |
| 420 | // 4. The section that passes through the second inflection/intersection (aka the K,M |
| 421 | // intersection point or T=tt[1]/ss[1]). |
| 422 | // 5. The section after the second inflection/intersection, with padding. |
| 423 | // |
| 424 | // Sections 1,3,5 can be rendered directly using the CCPR cubic shader. |
| 425 | // |
| 426 | // Sections 2 & 4 must be approximated. For loop intersections we render them with |
| 427 | // quadratic(s), and when passing through an inflection point we use a plain old flat line. |
| 428 | // |
| 429 | // We find T0..T3 below to be the dividing points between these five sections. |
| 430 | float T0, T1, T2, T3; |
| 431 | if (SkCubicType::kLoop != fCurrCubicType) { |
| 432 | Sk2f t = Sk2f(static_cast<float>(tt[0]), static_cast<float>(tt[1])); |
| 433 | Sk2f s = Sk2f(static_cast<float>(ss[0]), static_cast<float>(ss[1])); |
| 434 | Sk2f pad = calc_inflect_homogeneous_padding(inflectPad, t, s, CIT, skipTerm); |
| 435 | |
| 436 | float T[2]; |
| 437 | ((t - pad) / s).store(T); |
| 438 | T0 = T[0]; |
| 439 | T2 = T[1]; |
| 440 | |
| 441 | ((t + pad) / s).store(T); |
| 442 | T1 = T[0]; |
| 443 | T3 = T[1]; |
| 444 | } else { |
| 445 | const float T[2] = {static_cast<float>(tt[0]/ss[0]), static_cast<float>(tt[1]/ss[1])}; |
| 446 | SkSTArray<3, float, true> roots[2]; |
| 447 | calc_loop_intersect_padding_pts(loopIntersectPad, Sk2f::Load(T), CIT, skipTerm, roots); |
| 448 | T0 = roots[0].front(); |
| 449 | if (1 == roots[0].count() || 1 == roots[1].count()) { |
| 450 | // The loop is tighter than our desired padding. Collapse the middle section to a point |
| 451 | // somewhere in the middle-ish of the loop and Sections 2 & 4 will approximate the the |
| 452 | // whole thing with quadratics. |
| 453 | T1 = T2 = (T[0] + T[1]) * .5f; |
| 454 | } else { |
| 455 | T1 = roots[0][1]; |
| 456 | T2 = roots[1][1]; |
| 457 | } |
| 458 | T3 = roots[1].back(); |
| 459 | } |
| 460 | |
| 461 | // Guarantee that T0..T3 are monotonic. |
| 462 | if (T0 > T3) { |
| 463 | // This is not a mathematically valid scenario. The only reason it would happen is if |
| 464 | // padding is very small and we have encountered FP rounding error. |
| 465 | T0 = T1 = T2 = T3 = (T0 + T3) / 2; |
| 466 | } else if (T1 > T2) { |
| 467 | // This just means padding before the middle section overlaps the padding after it. We |
| 468 | // collapse the middle section to a single point that splits the difference between the |
| 469 | // overlap in padding. |
| 470 | T1 = T2 = (T1 + T2) / 2; |
| 471 | } |
| 472 | // Clamp T1 & T2 inside T0..T3. The only reason this would be necessary is if we have |
| 473 | // encountered FP rounding error. |
| 474 | T1 = std::max(T0, std::min(T1, T3)); |
| 475 | T2 = std::max(T0, std::min(T2, T3)); |
| 476 | |
| 477 | // Next we chop the cubic up at all T0..T3 inside 0..1 and store the resulting segments. |
| 478 | if (T1 >= 1) { |
| 479 | // Only sections 1 & 2 can be in 0..1. |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 480 | this->chopCubic<&GrCCGeometry::appendMonotonicCubics, |
| 481 | &GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3, T0); |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 482 | return; |
| 483 | } |
| 484 | |
| 485 | if (T2 <= 0) { |
| 486 | // Only sections 4 & 5 can be in 0..1. |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 487 | this->chopCubic<&GrCCGeometry::appendCubicApproximation, |
| 488 | &GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3, T3); |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 489 | return; |
| 490 | } |
| 491 | |
| 492 | Sk2f midp0, midp1; // These hold the first two bezier points of the middle section, if needed. |
| 493 | |
| 494 | if (T1 > 0) { |
| 495 | Sk2f T1T1 = Sk2f(T1); |
| 496 | Sk2f ab1 = lerp(p0, p1, T1T1); |
| 497 | Sk2f bc1 = lerp(p1, p2, T1T1); |
| 498 | Sk2f cd1 = lerp(p2, p3, T1T1); |
| 499 | Sk2f abc1 = lerp(ab1, bc1, T1T1); |
| 500 | Sk2f bcd1 = lerp(bc1, cd1, T1T1); |
| 501 | Sk2f abcd1 = lerp(abc1, bcd1, T1T1); |
| 502 | |
| 503 | // Sections 1 & 2. |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 504 | this->chopCubic<&GrCCGeometry::appendMonotonicCubics, |
| 505 | &GrCCGeometry::appendCubicApproximation>(p0, ab1, abc1, abcd1, T0/T1); |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 506 | |
| 507 | if (T2 >= 1) { |
| 508 | // The rest of the curve is Section 3 (middle section). |
| 509 | this->appendMonotonicCubics(abcd1, bcd1, cd1, p3); |
| 510 | return; |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 511 | } |
| 512 | |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 513 | // Now calculate the first two bezier points of the middle section. The final two will come |
| 514 | // from when we chop the other side, as that is numerically more stable. |
| 515 | midp0 = abcd1; |
| 516 | midp1 = lerp(abcd1, bcd1, Sk2f((T2 - T1) / (1 - T1))); |
| 517 | } else if (T2 >= 1) { |
| 518 | // The entire cubic is Section 3 (middle section). |
| 519 | this->appendMonotonicCubics(p0, p1, p2, p3); |
| 520 | return; |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 521 | } |
| 522 | |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 523 | SkASSERT(T2 > 0 && T2 < 1); |
| 524 | |
| 525 | Sk2f T2T2 = Sk2f(T2); |
| 526 | Sk2f ab2 = lerp(p0, p1, T2T2); |
| 527 | Sk2f bc2 = lerp(p1, p2, T2T2); |
| 528 | Sk2f cd2 = lerp(p2, p3, T2T2); |
| 529 | Sk2f abc2 = lerp(ab2, bc2, T2T2); |
| 530 | Sk2f bcd2 = lerp(bc2, cd2, T2T2); |
| 531 | Sk2f abcd2 = lerp(abc2, bcd2, T2T2); |
| 532 | |
| 533 | if (T1 <= 0) { |
| 534 | // The curve begins at Section 3 (middle section). |
| 535 | this->appendMonotonicCubics(p0, ab2, abc2, abcd2); |
| 536 | } else if (T2 > T1) { |
| 537 | // Section 3 (middle section). |
Chris Dalton | 9f2dab0 | 2018-04-18 14:07:03 -0600 | [diff] [blame] | 538 | Sk2f midp2 = lerp(abc2, abcd2, Sk2f(T1/T2)); |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 539 | this->appendMonotonicCubics(midp0, midp1, midp2, abcd2); |
| 540 | } |
| 541 | |
| 542 | // Sections 4 & 5. |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 543 | this->chopCubic<&GrCCGeometry::appendCubicApproximation, |
| 544 | &GrCCGeometry::appendMonotonicCubics>(abcd2, bcd2, cd2, p3, (T3-T2) / (1-T2)); |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 545 | } |
| 546 | |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 547 | template<GrCCGeometry::AppendCubicFn AppendLeftRight> |
| 548 | inline void GrCCGeometry::chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
| 549 | const Sk2f& p3, const Sk2f& tan0, |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 550 | const Sk2f& tan1, int maxFutureSubdivisions) { |
Chris Dalton | 9f2dab0 | 2018-04-18 14:07:03 -0600 | [diff] [blame] | 551 | float midT = find_midtangent(tan0, tan1, 3, p3 + (p1 - p2)*3 - p0, |
| 552 | 6, p0 - p1*2 + p2, |
| 553 | 3, p1 - p0); |
| 554 | // Use positive logic since NaN fails comparisons. (However midT should not be NaN since we cull |
| 555 | // near-flat cubics in cubicTo().) |
| 556 | if (!(midT > 0 && midT < 1)) { |
| 557 | // The cubic is flat. Otherwise there would be a real midtangent inside T=0..1. |
| 558 | this->appendLine(p3); |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 559 | return; |
| 560 | } |
| 561 | |
Chris Dalton | 9f2dab0 | 2018-04-18 14:07:03 -0600 | [diff] [blame] | 562 | this->chopCubic<AppendLeftRight, AppendLeftRight>(p0, p1, p2, p3, midT, maxFutureSubdivisions); |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 563 | } |
| 564 | |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 565 | template<GrCCGeometry::AppendCubicFn AppendLeft, GrCCGeometry::AppendCubicFn AppendRight> |
| 566 | inline void GrCCGeometry::chopCubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
| 567 | const Sk2f& p3, float T, int maxFutureSubdivisions) { |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 568 | if (T >= 1) { |
| 569 | (this->*AppendLeft)(p0, p1, p2, p3, maxFutureSubdivisions); |
| 570 | return; |
| 571 | } |
| 572 | |
| 573 | if (T <= 0) { |
| 574 | (this->*AppendRight)(p0, p1, p2, p3, maxFutureSubdivisions); |
| 575 | return; |
| 576 | } |
| 577 | |
| 578 | Sk2f TT = T; |
| 579 | Sk2f ab = lerp(p0, p1, TT); |
| 580 | Sk2f bc = lerp(p1, p2, TT); |
| 581 | Sk2f cd = lerp(p2, p3, TT); |
| 582 | Sk2f abc = lerp(ab, bc, TT); |
| 583 | Sk2f bcd = lerp(bc, cd, TT); |
| 584 | Sk2f abcd = lerp(abc, bcd, TT); |
| 585 | (this->*AppendLeft)(p0, ab, abc, abcd, maxFutureSubdivisions); |
| 586 | (this->*AppendRight)(abcd, bcd, cd, p3, maxFutureSubdivisions); |
| 587 | } |
| 588 | |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 589 | void GrCCGeometry::appendMonotonicCubics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
| 590 | const Sk2f& p3, int maxSubdivisions) { |
Chris Dalton | 29011a2 | 2017-09-28 12:08:33 -0600 | [diff] [blame] | 591 | SkASSERT(maxSubdivisions >= 0); |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 592 | if ((p0 == p3).allTrue()) { |
| 593 | return; |
| 594 | } |
| 595 | |
| 596 | if (maxSubdivisions) { |
| 597 | Sk2f tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0); |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 598 | Sk2f tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1); |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 599 | |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 600 | if (!is_convex_curve_monotonic(p0, tan0, p3, tan1)) { |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 601 | this->chopCubicAtMidTangent<&GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3, |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 602 | tan0, tan1, |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 603 | maxSubdivisions - 1); |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 604 | return; |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); |
Chris Dalton | 4364653 | 2017-12-07 12:47:02 -0700 | [diff] [blame] | 609 | |
| 610 | // Don't send curves to the GPU if we know they are nearly flat (or just very small). |
| 611 | // Since the cubic segment is known to be convex at this point, our flatness check is simple. |
| 612 | if (are_collinear(p0, (p1 + p2) * .5f, p3)) { |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 613 | this->appendLine(p3); |
Chris Dalton | 4364653 | 2017-12-07 12:47:02 -0700 | [diff] [blame] | 614 | return; |
| 615 | } |
| 616 | |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 617 | p1.store(&fPoints.push_back()); |
| 618 | p2.store(&fPoints.push_back()); |
| 619 | p3.store(&fPoints.push_back()); |
Chris Dalton | be4ffab | 2017-12-08 10:59:58 -0700 | [diff] [blame] | 620 | fVerbs.push_back(Verb::kMonotonicCubicTo); |
| 621 | ++fCurrContourTallies.fCubics; |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 622 | } |
| 623 | |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 624 | void GrCCGeometry::appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
| 625 | const Sk2f& p3, int maxSubdivisions) { |
Chris Dalton | 29011a2 | 2017-09-28 12:08:33 -0600 | [diff] [blame] | 626 | SkASSERT(maxSubdivisions >= 0); |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 627 | if ((p0 == p3).allTrue()) { |
| 628 | return; |
| 629 | } |
| 630 | |
| 631 | if (SkCubicType::kLoop != fCurrCubicType && SkCubicType::kQuadratic != fCurrCubicType) { |
| 632 | // This section passes through an inflection point, so we can get away with a flat line. |
| 633 | // This can cause some curves to feel slightly more flat when inspected rigorously back and |
| 634 | // forth against another renderer, but for now this seems acceptable given the simplicity. |
| 635 | SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 636 | this->appendLine(p3); |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 637 | return; |
| 638 | } |
| 639 | |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 640 | Sk2f tan0, tan1, c; |
| 641 | if (!is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, c) && maxSubdivisions) { |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 642 | this->chopCubicAtMidTangent<&GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3, |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 643 | tan0, tan1, |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 644 | maxSubdivisions - 1); |
Chris Dalton | 29011a2 | 2017-09-28 12:08:33 -0600 | [diff] [blame] | 645 | return; |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 646 | } |
| 647 | |
Chris Dalton | 4364653 | 2017-12-07 12:47:02 -0700 | [diff] [blame] | 648 | if (maxSubdivisions) { |
| 649 | this->appendMonotonicQuadratics(p0, c, p3); |
| 650 | } else { |
| 651 | this->appendSingleMonotonicQuadratic(p0, c, p3); |
| 652 | } |
Chris Dalton | 7f578bf | 2017-09-05 16:46:48 -0600 | [diff] [blame] | 653 | } |
| 654 | |
Chris Dalton | 9f2dab0 | 2018-04-18 14:07:03 -0600 | [diff] [blame] | 655 | void GrCCGeometry::conicTo(const SkPoint P[3], float w) { |
| 656 | SkASSERT(fBuildingContour); |
| 657 | SkASSERT(P[0] == fPoints.back()); |
| 658 | Sk2f p0 = Sk2f::Load(P); |
| 659 | Sk2f p1 = Sk2f::Load(P+1); |
| 660 | Sk2f p2 = Sk2f::Load(P+2); |
| 661 | |
| 662 | // Don't crunch on the curve if it is nearly flat (or just very small). Collinear control points |
| 663 | // can break the midtangent-finding math below. |
| 664 | if (are_collinear(p0, p1, p2)) { |
| 665 | this->appendLine(p2); |
| 666 | return; |
| 667 | } |
| 668 | |
| 669 | Sk2f tan0 = p1 - p0; |
| 670 | Sk2f tan1 = p2 - p1; |
| 671 | // The derivative of a conic has a cumbersome order-4 denominator. However, this isn't necessary |
| 672 | // if we are only interested in a vector in the same *direction* as a given tangent line. Since |
| 673 | // the denominator scales dx and dy uniformly, we can throw it out completely after evaluating |
| 674 | // the derivative with the standard quotient rule. This leaves us with a simpler quadratic |
| 675 | // function that we use to find the midtangent. |
| 676 | float midT = find_midtangent(tan0, tan1, 1, (w - 1) * (p2 - p0), |
| 677 | 1, (p2 - p0) - 2*w*(p1 - p0), |
| 678 | 1, w*(p1 - p0)); |
| 679 | // Use positive logic since NaN fails comparisons. (However midT should not be NaN since we cull |
| 680 | // near-linear conics above. And while w=0 is flat, it's not a line and has valid midtangents.) |
| 681 | if (!(midT > 0 && midT < 1)) { |
| 682 | // The conic is flat. Otherwise there would be a real midtangent inside T=0..1. |
| 683 | this->appendLine(p2); |
| 684 | return; |
| 685 | } |
| 686 | |
| 687 | // Evaluate the conic at midT. |
| 688 | Sk4f p3d0 = Sk4f(p0[0], p0[1], 1, 0); |
| 689 | Sk4f p3d1 = Sk4f(p1[0], p1[1], 1, 0) * w; |
| 690 | Sk4f p3d2 = Sk4f(p2[0], p2[1], 1, 0); |
| 691 | Sk4f midT4 = midT; |
| 692 | |
| 693 | Sk4f p3d01 = lerp(p3d0, p3d1, midT4); |
| 694 | Sk4f p3d12 = lerp(p3d1, p3d2, midT4); |
| 695 | Sk4f p3d012 = lerp(p3d01, p3d12, midT4); |
| 696 | |
| 697 | Sk2f midpoint = Sk2f(p3d012[0], p3d012[1]) / p3d012[2]; |
| 698 | |
| 699 | if (are_collinear(p0, midpoint, p2, 1) || // Check if the curve is within one pixel of flat. |
| 700 | ((midpoint - p1).abs() < 1).allTrue()) { // Check if the curve is almost a triangle. |
| 701 | // Draw the conic as a triangle instead. Our AA approximation won't do well if the curve |
| 702 | // gets wrapped too tightly, and if we get too close to p1 we will pick up artifacts from |
| 703 | // the implicit function's reflection. |
| 704 | this->appendLine(midpoint); |
| 705 | this->appendLine(p2); |
| 706 | return; |
| 707 | } |
| 708 | |
| 709 | if (!is_convex_curve_monotonic(p0, tan0, p2, tan1)) { |
| 710 | // Chop the conic at midtangent to produce two monotonic segments. |
| 711 | Sk2f ww = Sk2f(p3d01[2], p3d12[2]) * Sk2f(p3d012[2]).rsqrt(); |
| 712 | this->appendMonotonicConic(p0, Sk2f(p3d01[0], p3d01[1]) / p3d01[2], midpoint, ww[0]); |
| 713 | this->appendMonotonicConic(midpoint, Sk2f(p3d12[0], p3d12[1]) / p3d12[2], p2, ww[1]); |
| 714 | return; |
| 715 | } |
| 716 | |
| 717 | this->appendMonotonicConic(p0, p1, p2, w); |
| 718 | } |
| 719 | |
| 720 | void GrCCGeometry::appendMonotonicConic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, float w) { |
| 721 | SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); |
| 722 | |
| 723 | // Don't send curves to the GPU if we know they are nearly flat (or just very small). |
| 724 | if (are_collinear(p0, p1, p2)) { |
| 725 | this->appendLine(p2); |
| 726 | return; |
| 727 | } |
| 728 | |
| 729 | p1.store(&fPoints.push_back()); |
| 730 | p2.store(&fPoints.push_back()); |
| 731 | fConicWeights.push_back(w); |
| 732 | fVerbs.push_back(Verb::kMonotonicConicTo); |
| 733 | ++fCurrContourTallies.fConics; |
| 734 | } |
| 735 | |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 736 | GrCCGeometry::PrimitiveTallies GrCCGeometry::endContour() { |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 737 | SkASSERT(fBuildingContour); |
| 738 | SkASSERT(fVerbs.count() >= fCurrContourTallies.fTriangles); |
| 739 | |
| 740 | // The fTriangles field currently contains this contour's starting verb index. We can now |
| 741 | // use it to calculate the size of the contour's fan. |
| 742 | int fanSize = fVerbs.count() - fCurrContourTallies.fTriangles; |
Chris Dalton | 7ca3b7b | 2018-04-10 00:21:19 -0600 | [diff] [blame] | 743 | if (fPoints.back() == fCurrAnchorPoint) { |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 744 | --fanSize; |
| 745 | fVerbs.push_back(Verb::kEndClosedContour); |
| 746 | } else { |
| 747 | fVerbs.push_back(Verb::kEndOpenContour); |
| 748 | } |
| 749 | |
| 750 | fCurrContourTallies.fTriangles = SkTMax(fanSize - 2, 0); |
| 751 | |
Chris Dalton | 383a2ef | 2018-01-08 17:21:41 -0500 | [diff] [blame] | 752 | SkDEBUGCODE(fBuildingContour = false); |
Chris Dalton | c1e5963 | 2017-09-05 00:30:07 -0600 | [diff] [blame] | 753 | return fCurrContourTallies; |
Chris Dalton | 419a94d | 2017-08-28 10:24:22 -0600 | [diff] [blame] | 754 | } |