blob: 044c0f4d9b03531908931db75f10cc26c620590f [file] [log] [blame]
Brian Osman7c979f52019-02-12 13:27:51 -05001/*
2* Copyright 2019 Google LLC
3*
4* Use of this source code is governed by a BSD-style license that can be
5* found in the LICENSE file.
6*/
7
8#ifndef SkCurve_DEFINED
9#define SkCurve_DEFINED
10
Brian Osman125daa42019-02-20 12:25:20 -050011#include "SkColor.h"
Brian Osmanbdcdf1a2019-03-04 10:55:22 -050012#include "SkParticleData.h"
Brian Osman7c979f52019-02-12 13:27:51 -050013#include "SkScalar.h"
Brian Osman8b6283f2019-02-14 16:55:21 -050014#include "SkTArray.h"
Brian Osman7c979f52019-02-12 13:27:51 -050015
16class SkFieldVisitor;
17class SkRandom;
18
Brian Osmane12e4992019-02-19 15:39:18 -050019/**
20 * SkCurve implements a keyframed 1D function, useful for animating values over time. This pattern
21 * is common in digital content creation tools. An SkCurve might represent rotation, scale, opacity,
22 * or any other scalar quantity.
23 *
24 * An SkCurve has a logical domain of [0, 1], and is made of one or more SkCurveSegments.
25 * Each segment describes the behavior of the curve in some sub-domain. For an SkCurve with N
26 * segments, there are (N - 1) intermediate x-values that subdivide the domain. The first and last
27 * x-values are implicitly 0 and 1:
28 *
29 * 0 ... x[0] ... x[1] ... ... 1
30 * Segment_0 Segment_1 ... Segment_N-1
31 *
32 * Each segment describes a function over [0, 1] - x-values are re-normalized to the segment's
33 * domain when being evaluated. The segments are cubic polynomials, defined by four values (fMin).
34 * These are the values at x=0 and x=1, as well as control points at x=1/3 and x=2/3.
35 *
36 * For segments with fConstant == true, only the first value is used (fMin[0]).
37 *
38 * Each segment has two additional features for creating interesting (and varied) animation:
39 * - A segment can be ranged. Ranged segments have two sets of coefficients, and a random value
40 * taken from the SkRandom will be used to lerp betwen them. Typically, the SkRandom passed to
41 * eval will be in the same state at each call, so this value will be stable. That causes a
42 * ranged SkCurve to produce a single smooth cubic function somewhere within the range defined
43 * by fMin and fMax.
44 * - A segment can be bidirectional. In that case, after a value is computed, it will be negated
45 * 50% of the time.
46 */
47
Brian Osman34d13312019-02-27 11:19:19 -050048enum SkCurveSegmentType {
49 kConstant_SegmentType,
50 kLinear_SegmentType,
51 kCubic_SegmentType,
52};
53
Brian Osman8b6283f2019-02-14 16:55:21 -050054struct SkCurveSegment {
Brian Osman1b20cd82019-02-25 14:15:02 -050055 SkScalar eval(SkScalar x, SkScalar t, bool negate) const;
Brian Osman8b6283f2019-02-14 16:55:21 -050056 void visitFields(SkFieldVisitor* v);
57
58 void setConstant(SkScalar c) {
Brian Osman34d13312019-02-27 11:19:19 -050059 fType = kConstant_SegmentType;
60 fRanged = false;
Brian Osman8b6283f2019-02-14 16:55:21 -050061 fMin[0] = c;
62 }
63
64 SkScalar fMin[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
65 SkScalar fMax[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
66
Brian Osman34d13312019-02-27 11:19:19 -050067 int fType = kConstant_SegmentType;
Brian Osman8b6283f2019-02-14 16:55:21 -050068 bool fRanged = false;
69 bool fBidirectional = false;
70};
Brian Osman7c979f52019-02-12 13:27:51 -050071
72struct SkCurve {
73 SkCurve(SkScalar c = 0.0f) {
Brian Osman8b6283f2019-02-14 16:55:21 -050074 fSegments.push_back().setConstant(c);
Brian Osman7c979f52019-02-12 13:27:51 -050075 }
76
Brian Osmanbdcdf1a2019-03-04 10:55:22 -050077 SkScalar eval(const SkParticleUpdateParams& params, SkParticleState& ps) const;
Brian Osman7c979f52019-02-12 13:27:51 -050078 void visitFields(SkFieldVisitor* v);
Brian Osmane12e4992019-02-19 15:39:18 -050079
Brian Osmanbdcdf1a2019-03-04 10:55:22 -050080 // Parameters that determine our x-value during evaluation
81 SkParticleValue fInput;
82
Brian Osmane12e4992019-02-19 15:39:18 -050083 // It should always be true that (fXValues.count() + 1) == fSegments.count()
Brian Osman8b6283f2019-02-14 16:55:21 -050084 SkTArray<SkScalar, true> fXValues;
85 SkTArray<SkCurveSegment, true> fSegments;
Brian Osman7c979f52019-02-12 13:27:51 -050086};
87
Brian Osman125daa42019-02-20 12:25:20 -050088/**
89 * SkColorCurve is similar to SkCurve, but keyframes 4D values - specifically colors. Because
90 * negative colors rarely make sense, SkColorCurves do not support bidirectional segments, but
91 * support all other features (including cubic interpolation).
92 */
93
94struct SkColorCurveSegment {
95 SkColorCurveSegment() {
96 for (int i = 0; i < 4; ++i) {
97 fMin[i] = { 1.0f, 1.0f, 1.0f, 1.0f };
98 fMax[i] = { 1.0f, 1.0f, 1.0f, 1.0f };
99 }
100 }
101
Brian Osmanbdcdf1a2019-03-04 10:55:22 -0500102 SkColor4f eval(SkScalar x, SkScalar t) const;
Brian Osman125daa42019-02-20 12:25:20 -0500103 void visitFields(SkFieldVisitor* v);
104
105 void setConstant(SkColor4f c) {
Brian Osman34d13312019-02-27 11:19:19 -0500106 fType = kConstant_SegmentType;
Brian Osman125daa42019-02-20 12:25:20 -0500107 fRanged = false;
108 fMin[0] = c;
109 }
110
111 SkColor4f fMin[4];
112 SkColor4f fMax[4];
113
Brian Osman34d13312019-02-27 11:19:19 -0500114 int fType = kConstant_SegmentType;
Brian Osman125daa42019-02-20 12:25:20 -0500115 bool fRanged = false;
116};
117
118struct SkColorCurve {
119 SkColorCurve(SkColor4f c = { 1.0f, 1.0f, 1.0f, 1.0f }) {
120 fSegments.push_back().setConstant(c);
121 }
122
Brian Osmanbdcdf1a2019-03-04 10:55:22 -0500123 SkColor4f eval(const SkParticleUpdateParams& params, SkParticleState& ps) const;
Brian Osman125daa42019-02-20 12:25:20 -0500124 void visitFields(SkFieldVisitor* v);
125
Brian Osmanbdcdf1a2019-03-04 10:55:22 -0500126 SkParticleValue fInput;
Brian Osman125daa42019-02-20 12:25:20 -0500127 SkTArray<SkScalar, true> fXValues;
128 SkTArray<SkColorCurveSegment, true> fSegments;
129};
130
Brian Osman7c979f52019-02-12 13:27:51 -0500131#endif // SkCurve_DEFINED