caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 1 | /* |
| 2 | http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi |
| 3 | */ |
| 4 | |
| 5 | /* |
| 6 | Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2. |
| 7 | Then for degree elevation, the equations are: |
| 8 | |
| 9 | Q0 = P0 |
| 10 | Q1 = 1/3 P0 + 2/3 P1 |
| 11 | Q2 = 2/3 P1 + 1/3 P2 |
| 12 | Q3 = P2 |
| 13 | In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from |
| 14 | the equations above: |
| 15 | |
| 16 | P1 = 3/2 Q1 - 1/2 Q0 |
| 17 | P1 = 3/2 Q2 - 1/2 Q3 |
| 18 | If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since |
| 19 | it's likely not, your best bet is to average them. So, |
| 20 | |
| 21 | P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3 |
| 22 | |
| 23 | |
| 24 | SkDCubic defined by: P1/2 - anchor points, C1/C2 control points |
| 25 | |x| is the euclidean norm of x |
| 26 | mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the |
| 27 | control point at C = (3·C2 - P2 + 3·C1 - P1)/4 |
| 28 | |
| 29 | Algorithm |
| 30 | |
| 31 | pick an absolute precision (prec) |
| 32 | Compute the Tdiv as the root of (cubic) equation |
| 33 | sqrt(3)/18 · |P2 - 3·C2 + 3·C1 - P1|/2 · Tdiv ^ 3 = prec |
| 34 | if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a |
| 35 | quadratic, with a defect less than prec, by the mid-point approximation. |
| 36 | Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv) |
| 37 | 0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point |
| 38 | approximation |
| 39 | Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation |
| 40 | |
| 41 | confirmed by (maybe stolen from) |
| 42 | http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html |
| 43 | // maybe in turn derived from http://www.cccg.ca/proceedings/2004/36.pdf |
| 44 | // also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf |
| 45 | |
| 46 | */ |
| 47 | |
| 48 | #include "SkPathOpsCubic.h" |
| 49 | #include "SkPathOpsLine.h" |
| 50 | #include "SkPathOpsQuad.h" |
| 51 | #include "SkReduceOrder.h" |
| 52 | #include "SkTDArray.h" |
commit-bot@chromium.org | b76d3b6 | 2013-04-22 19:55:19 +0000 | [diff] [blame] | 53 | #include "SkTSort.h" |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 54 | |
| 55 | #define USE_CUBIC_END_POINTS 1 |
| 56 | |
| 57 | static double calc_t_div(const SkDCubic& cubic, double precision, double start) { |
| 58 | const double adjust = sqrt(3.) / 36; |
| 59 | SkDCubic sub; |
| 60 | const SkDCubic* cPtr; |
| 61 | if (start == 0) { |
| 62 | cPtr = &cubic; |
| 63 | } else { |
| 64 | // OPTIMIZE: special-case half-split ? |
| 65 | sub = cubic.subDivide(start, 1); |
| 66 | cPtr = ⊂ |
| 67 | } |
| 68 | const SkDCubic& c = *cPtr; |
| 69 | double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX; |
| 70 | double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY; |
| 71 | double dist = sqrt(dx * dx + dy * dy); |
| 72 | double tDiv3 = precision / (adjust * dist); |
| 73 | double t = SkDCubeRoot(tDiv3); |
| 74 | if (start > 0) { |
| 75 | t = start + (1 - start) * t; |
| 76 | } |
| 77 | return t; |
| 78 | } |
| 79 | |
| 80 | SkDQuad SkDCubic::toQuad() const { |
| 81 | SkDQuad quad; |
| 82 | quad[0] = fPts[0]; |
| 83 | const SkDPoint fromC1 = {(3 * fPts[1].fX - fPts[0].fX) / 2, (3 * fPts[1].fY - fPts[0].fY) / 2}; |
| 84 | const SkDPoint fromC2 = {(3 * fPts[2].fX - fPts[3].fX) / 2, (3 * fPts[2].fY - fPts[3].fY) / 2}; |
| 85 | quad[1].fX = (fromC1.fX + fromC2.fX) / 2; |
| 86 | quad[1].fY = (fromC1.fY + fromC2.fY) / 2; |
| 87 | quad[2] = fPts[3]; |
| 88 | return quad; |
| 89 | } |
| 90 | |
| 91 | static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTDArray<double>* ts) { |
| 92 | double tDiv = calc_t_div(cubic, precision, 0); |
| 93 | if (tDiv >= 1) { |
| 94 | return true; |
| 95 | } |
| 96 | if (tDiv >= 0.5) { |
| 97 | *ts->append() = 0.5; |
| 98 | return true; |
| 99 | } |
| 100 | return false; |
| 101 | } |
| 102 | |
| 103 | static void addTs(const SkDCubic& cubic, double precision, double start, double end, |
| 104 | SkTDArray<double>* ts) { |
| 105 | double tDiv = calc_t_div(cubic, precision, 0); |
| 106 | double parts = ceil(1.0 / tDiv); |
| 107 | for (double index = 0; index < parts; ++index) { |
| 108 | double newT = start + (index / parts) * (end - start); |
| 109 | if (newT > 0 && newT < 1) { |
| 110 | *ts->append() = newT; |
| 111 | } |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | // flavor that returns T values only, deferring computing the quads until they are needed |
| 116 | // FIXME: when called from recursive intersect 2, this could take the original cubic |
| 117 | // and do a more precise job when calling chop at and sub divide by computing the fractional ts. |
| 118 | // it would still take the prechopped cubic for reduce order and find cubic inflections |
| 119 | void SkDCubic::toQuadraticTs(double precision, SkTDArray<double>* ts) const { |
| 120 | SkReduceOrder reducer; |
| 121 | int order = reducer.reduce(*this, SkReduceOrder::kAllow_Quadratics, SkReduceOrder::kFill_Style); |
| 122 | if (order < 3) { |
| 123 | return; |
| 124 | } |
| 125 | double inflectT[5]; |
| 126 | int inflections = findInflections(inflectT); |
| 127 | SkASSERT(inflections <= 2); |
| 128 | if (!endsAreExtremaInXOrY()) { |
| 129 | inflections += findMaxCurvature(&inflectT[inflections]); |
| 130 | SkASSERT(inflections <= 5); |
| 131 | } |
commit-bot@chromium.org | b76d3b6 | 2013-04-22 19:55:19 +0000 | [diff] [blame] | 132 | SkTQSort<double>(inflectT, &inflectT[inflections - 1]); |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 133 | // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its |
| 134 | // own subroutine? |
| 135 | while (inflections && approximately_less_than_zero(inflectT[0])) { |
| 136 | memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections); |
| 137 | } |
| 138 | int start = 0; |
| 139 | do { |
| 140 | int next = start + 1; |
| 141 | if (next >= inflections) { |
| 142 | break; |
| 143 | } |
| 144 | if (!approximately_equal(inflectT[start], inflectT[next])) { |
| 145 | ++start; |
| 146 | continue; |
| 147 | } |
| 148 | memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start)); |
| 149 | } while (true); |
| 150 | while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) { |
| 151 | --inflections; |
| 152 | } |
| 153 | SkDCubicPair pair; |
| 154 | if (inflections == 1) { |
| 155 | pair = chopAt(inflectT[0]); |
| 156 | int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics, |
| 157 | SkReduceOrder::kFill_Style); |
| 158 | if (orderP1 < 2) { |
| 159 | --inflections; |
| 160 | } else { |
| 161 | int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics, |
| 162 | SkReduceOrder::kFill_Style); |
| 163 | if (orderP2 < 2) { |
| 164 | --inflections; |
| 165 | } |
| 166 | } |
| 167 | } |
| 168 | if (inflections == 0 && add_simple_ts(*this, precision, ts)) { |
| 169 | return; |
| 170 | } |
| 171 | if (inflections == 1) { |
| 172 | pair = chopAt(inflectT[0]); |
| 173 | addTs(pair.first(), precision, 0, inflectT[0], ts); |
| 174 | addTs(pair.second(), precision, inflectT[0], 1, ts); |
| 175 | return; |
| 176 | } |
| 177 | if (inflections > 1) { |
| 178 | SkDCubic part = subDivide(0, inflectT[0]); |
| 179 | addTs(part, precision, 0, inflectT[0], ts); |
| 180 | int last = inflections - 1; |
| 181 | for (int idx = 0; idx < last; ++idx) { |
| 182 | part = subDivide(inflectT[idx], inflectT[idx + 1]); |
| 183 | addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts); |
| 184 | } |
| 185 | part = subDivide(inflectT[last], 1); |
| 186 | addTs(part, precision, inflectT[last], 1, ts); |
| 187 | return; |
| 188 | } |
| 189 | addTs(*this, precision, 0, 1, ts); |
| 190 | } |