caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | #include "SkIntersections.h" |
| 8 | #include "SkPathOpsLine.h" |
| 9 | #include "SkPathOpsQuad.h" |
| 10 | |
| 11 | /* |
| 12 | Find the interection of a line and quadratic by solving for valid t values. |
| 13 | |
| 14 | From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve |
| 15 | |
| 16 | "A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three |
| 17 | control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where |
| 18 | A, B and C are points and t goes from zero to one. |
| 19 | |
| 20 | This will give you two equations: |
| 21 | |
| 22 | x = a(1 - t)^2 + b(1 - t)t + ct^2 |
| 23 | y = d(1 - t)^2 + e(1 - t)t + ft^2 |
| 24 | |
| 25 | If you add for instance the line equation (y = kx + m) to that, you'll end up |
| 26 | with three equations and three unknowns (x, y and t)." |
| 27 | |
| 28 | Similar to above, the quadratic is represented as |
| 29 | x = a(1-t)^2 + 2b(1-t)t + ct^2 |
| 30 | y = d(1-t)^2 + 2e(1-t)t + ft^2 |
| 31 | and the line as |
| 32 | y = g*x + h |
| 33 | |
| 34 | Using Mathematica, solve for the values of t where the quadratic intersects the |
| 35 | line: |
| 36 | |
| 37 | (in) t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x, |
| 38 | d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - g*x - h, x] |
| 39 | (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 + |
| 40 | g (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2) |
| 41 | (in) Solve[t1 == 0, t] |
| 42 | (out) { |
| 43 | {t -> (-2 d + 2 e + 2 a g - 2 b g - |
| 44 | Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - |
| 45 | 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / |
| 46 | (2 (-d + 2 e - f + a g - 2 b g + c g)) |
| 47 | }, |
| 48 | {t -> (-2 d + 2 e + 2 a g - 2 b g + |
| 49 | Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - |
| 50 | 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / |
| 51 | (2 (-d + 2 e - f + a g - 2 b g + c g)) |
| 52 | } |
| 53 | } |
| 54 | |
| 55 | Using the results above (when the line tends towards horizontal) |
| 56 | A = (-(d - 2*e + f) + g*(a - 2*b + c) ) |
| 57 | B = 2*( (d - e ) - g*(a - b ) ) |
| 58 | C = (-(d ) + g*(a ) + h ) |
| 59 | |
| 60 | If g goes to infinity, we can rewrite the line in terms of x. |
| 61 | x = g'*y + h' |
| 62 | |
| 63 | And solve accordingly in Mathematica: |
| 64 | |
| 65 | (in) t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h', |
| 66 | d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - y, y] |
| 67 | (out) a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 - |
| 68 | g' (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2) |
| 69 | (in) Solve[t2 == 0, t] |
| 70 | (out) { |
| 71 | {t -> (2 a - 2 b - 2 d g' + 2 e g' - |
| 72 | Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - |
| 73 | 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) / |
| 74 | (2 (a - 2 b + c - d g' + 2 e g' - f g')) |
| 75 | }, |
| 76 | {t -> (2 a - 2 b - 2 d g' + 2 e g' + |
| 77 | Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - |
| 78 | 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/ |
| 79 | (2 (a - 2 b + c - d g' + 2 e g' - f g')) |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | Thus, if the slope of the line tends towards vertical, we use: |
| 84 | A = ( (a - 2*b + c) - g'*(d - 2*e + f) ) |
| 85 | B = 2*(-(a - b ) + g'*(d - e ) ) |
| 86 | C = ( (a ) - g'*(d ) - h' ) |
| 87 | */ |
| 88 | |
| 89 | |
| 90 | class LineQuadraticIntersections { |
| 91 | public: |
| 92 | LineQuadraticIntersections(const SkDQuad& q, const SkDLine& l, SkIntersections* i) |
| 93 | : quad(q) |
| 94 | , line(l) |
| 95 | , intersections(i) { |
| 96 | } |
| 97 | |
| 98 | int intersectRay(double roots[2]) { |
| 99 | /* |
| 100 | solve by rotating line+quad so line is horizontal, then finding the roots |
| 101 | set up matrix to rotate quad to x-axis |
| 102 | |cos(a) -sin(a)| |
| 103 | |sin(a) cos(a)| |
| 104 | note that cos(a) = A(djacent) / Hypoteneuse |
| 105 | sin(a) = O(pposite) / Hypoteneuse |
| 106 | since we are computing Ts, we can ignore hypoteneuse, the scale factor: |
| 107 | | A -O | |
| 108 | | O A | |
| 109 | A = line[1].fX - line[0].fX (adjacent side of the right triangle) |
| 110 | O = line[1].fY - line[0].fY (opposite side of the right triangle) |
| 111 | for each of the three points (e.g. n = 0 to 2) |
| 112 | quad[n].fY' = (quad[n].fY - line[0].fY) * A - (quad[n].fX - line[0].fX) * O |
| 113 | */ |
| 114 | double adj = line[1].fX - line[0].fX; |
| 115 | double opp = line[1].fY - line[0].fY; |
| 116 | double r[3]; |
| 117 | for (int n = 0; n < 3; ++n) { |
| 118 | r[n] = (quad[n].fY - line[0].fY) * adj - (quad[n].fX - line[0].fX) * opp; |
| 119 | } |
| 120 | double A = r[2]; |
| 121 | double B = r[1]; |
| 122 | double C = r[0]; |
| 123 | A += C - 2 * B; // A = a - 2*b + c |
| 124 | B -= C; // B = -(b - c) |
| 125 | return SkDQuad::RootsValidT(A, 2 * B, C, roots); |
| 126 | } |
| 127 | |
| 128 | int intersect() { |
| 129 | addEndPoints(); |
| 130 | double rootVals[2]; |
| 131 | int roots = intersectRay(rootVals); |
| 132 | for (int index = 0; index < roots; ++index) { |
| 133 | double quadT = rootVals[index]; |
| 134 | double lineT = findLineT(quadT); |
| 135 | if (PinTs(&quadT, &lineT)) { |
| 136 | SkDPoint pt = line.xyAtT(lineT); |
| 137 | intersections->insert(quadT, lineT, pt); |
| 138 | } |
| 139 | } |
| 140 | return intersections->used(); |
| 141 | } |
| 142 | |
| 143 | int horizontalIntersect(double axisIntercept, double roots[2]) { |
| 144 | double D = quad[2].fY; // f |
| 145 | double E = quad[1].fY; // e |
| 146 | double F = quad[0].fY; // d |
| 147 | D += F - 2 * E; // D = d - 2*e + f |
| 148 | E -= F; // E = -(d - e) |
| 149 | F -= axisIntercept; |
| 150 | return SkDQuad::RootsValidT(D, 2 * E, F, roots); |
| 151 | } |
| 152 | |
| 153 | int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { |
| 154 | addHorizontalEndPoints(left, right, axisIntercept); |
| 155 | double rootVals[2]; |
| 156 | int roots = horizontalIntersect(axisIntercept, rootVals); |
| 157 | for (int index = 0; index < roots; ++index) { |
| 158 | double quadT = rootVals[index]; |
| 159 | SkDPoint pt = quad.xyAtT(quadT); |
| 160 | double lineT = (pt.fX - left) / (right - left); |
| 161 | if (PinTs(&quadT, &lineT)) { |
| 162 | intersections->insert(quadT, lineT, pt); |
| 163 | } |
| 164 | } |
| 165 | if (flipped) { |
| 166 | intersections->flip(); |
| 167 | } |
| 168 | return intersections->used(); |
| 169 | } |
| 170 | |
| 171 | int verticalIntersect(double axisIntercept, double roots[2]) { |
| 172 | double D = quad[2].fX; // f |
| 173 | double E = quad[1].fX; // e |
| 174 | double F = quad[0].fX; // d |
| 175 | D += F - 2 * E; // D = d - 2*e + f |
| 176 | E -= F; // E = -(d - e) |
| 177 | F -= axisIntercept; |
| 178 | return SkDQuad::RootsValidT(D, 2 * E, F, roots); |
| 179 | } |
| 180 | |
| 181 | int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { |
| 182 | addVerticalEndPoints(top, bottom, axisIntercept); |
| 183 | double rootVals[2]; |
| 184 | int roots = verticalIntersect(axisIntercept, rootVals); |
| 185 | for (int index = 0; index < roots; ++index) { |
| 186 | double quadT = rootVals[index]; |
| 187 | SkDPoint pt = quad.xyAtT(quadT); |
| 188 | double lineT = (pt.fY - top) / (bottom - top); |
| 189 | if (PinTs(&quadT, &lineT)) { |
| 190 | intersections->insert(quadT, lineT, pt); |
| 191 | } |
| 192 | } |
| 193 | if (flipped) { |
| 194 | intersections->flip(); |
| 195 | } |
| 196 | return intersections->used(); |
| 197 | } |
| 198 | |
| 199 | protected: |
| 200 | // add endpoints first to get zero and one t values exactly |
| 201 | void addEndPoints() { |
| 202 | for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
| 203 | for (int lIndex = 0; lIndex < 2; lIndex++) { |
| 204 | if (quad[qIndex] == line[lIndex]) { |
| 205 | intersections->insert(qIndex >> 1, lIndex, line[lIndex]); |
| 206 | } |
| 207 | } |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | void addHorizontalEndPoints(double left, double right, double y) { |
| 212 | for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
| 213 | if (quad[qIndex].fY != y) { |
| 214 | continue; |
| 215 | } |
| 216 | if (quad[qIndex].fX == left) { |
| 217 | intersections->insert(qIndex >> 1, 0, quad[qIndex]); |
| 218 | } |
| 219 | if (quad[qIndex].fX == right) { |
| 220 | intersections->insert(qIndex >> 1, 1, quad[qIndex]); |
| 221 | } |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | void addVerticalEndPoints(double top, double bottom, double x) { |
| 226 | for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
| 227 | if (quad[qIndex].fX != x) { |
| 228 | continue; |
| 229 | } |
| 230 | if (quad[qIndex].fY == top) { |
| 231 | intersections->insert(qIndex >> 1, 0, quad[qIndex]); |
| 232 | } |
| 233 | if (quad[qIndex].fY == bottom) { |
| 234 | intersections->insert(qIndex >> 1, 1, quad[qIndex]); |
| 235 | } |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | double findLineT(double t) { |
| 240 | SkDPoint xy = quad.xyAtT(t); |
| 241 | double dx = line[1].fX - line[0].fX; |
| 242 | double dy = line[1].fY - line[0].fY; |
| 243 | if (fabs(dx) > fabs(dy)) { |
| 244 | return (xy.fX - line[0].fX) / dx; |
| 245 | } |
| 246 | return (xy.fY - line[0].fY) / dy; |
| 247 | } |
| 248 | |
| 249 | static bool PinTs(double* quadT, double* lineT) { |
| 250 | if (!approximately_one_or_less(*lineT)) { |
| 251 | return false; |
| 252 | } |
| 253 | if (!approximately_zero_or_more(*lineT)) { |
| 254 | return false; |
| 255 | } |
| 256 | if (precisely_less_than_zero(*quadT)) { |
| 257 | *quadT = 0; |
| 258 | } else if (precisely_greater_than_one(*quadT)) { |
| 259 | *quadT = 1; |
| 260 | } |
| 261 | if (precisely_less_than_zero(*lineT)) { |
| 262 | *lineT = 0; |
| 263 | } else if (precisely_greater_than_one(*lineT)) { |
| 264 | *lineT = 1; |
| 265 | } |
| 266 | return true; |
| 267 | } |
| 268 | |
| 269 | private: |
| 270 | const SkDQuad& quad; |
| 271 | const SkDLine& line; |
| 272 | SkIntersections* intersections; |
| 273 | }; |
| 274 | |
| 275 | // utility for pairs of coincident quads |
| 276 | static double horizontalIntersect(const SkDQuad& quad, const SkDPoint& pt) { |
| 277 | LineQuadraticIntersections q(quad, *(static_cast<SkDLine*>(0)), |
| 278 | static_cast<SkIntersections*>(0)); |
| 279 | double rootVals[2]; |
| 280 | int roots = q.horizontalIntersect(pt.fY, rootVals); |
| 281 | for (int index = 0; index < roots; ++index) { |
| 282 | double t = rootVals[index]; |
| 283 | SkDPoint qPt = quad.xyAtT(t); |
| 284 | if (AlmostEqualUlps(qPt.fX, pt.fX)) { |
| 285 | return t; |
| 286 | } |
| 287 | } |
| 288 | return -1; |
| 289 | } |
| 290 | |
| 291 | static double verticalIntersect(const SkDQuad& quad, const SkDPoint& pt) { |
| 292 | LineQuadraticIntersections q(quad, *(static_cast<SkDLine*>(0)), |
| 293 | static_cast<SkIntersections*>(0)); |
| 294 | double rootVals[2]; |
| 295 | int roots = q.verticalIntersect(pt.fX, rootVals); |
| 296 | for (int index = 0; index < roots; ++index) { |
| 297 | double t = rootVals[index]; |
| 298 | SkDPoint qPt = quad.xyAtT(t); |
| 299 | if (AlmostEqualUlps(qPt.fY, pt.fY)) { |
| 300 | return t; |
| 301 | } |
| 302 | } |
| 303 | return -1; |
| 304 | } |
| 305 | |
| 306 | double SkIntersections::Axial(const SkDQuad& q1, const SkDPoint& p, bool vertical) { |
| 307 | if (vertical) { |
| 308 | return verticalIntersect(q1, p); |
| 309 | } |
| 310 | return horizontalIntersect(q1, p); |
| 311 | } |
| 312 | |
| 313 | int SkIntersections::horizontal(const SkDQuad& quad, double left, double right, double y, |
| 314 | bool flipped) { |
| 315 | LineQuadraticIntersections q(quad, *(static_cast<SkDLine*>(0)), this); |
| 316 | return q.horizontalIntersect(y, left, right, flipped); |
| 317 | } |
| 318 | |
| 319 | int SkIntersections::vertical(const SkDQuad& quad, double top, double bottom, double x, |
| 320 | bool flipped) { |
| 321 | LineQuadraticIntersections q(quad, *(static_cast<SkDLine*>(0)), this); |
| 322 | return q.verticalIntersect(x, top, bottom, flipped); |
| 323 | } |
| 324 | |
| 325 | int SkIntersections::intersect(const SkDQuad& quad, const SkDLine& line) { |
| 326 | LineQuadraticIntersections q(quad, line, this); |
| 327 | return q.intersect(); |
| 328 | } |
| 329 | |
| 330 | int SkIntersections::intersectRay(const SkDQuad& quad, const SkDLine& line) { |
| 331 | LineQuadraticIntersections q(quad, line, this); |
caryclark@google.com | a5e5592 | 2013-05-07 18:51:31 +0000 | [diff] [blame] | 332 | fUsed = q.intersectRay(fT[0]); |
| 333 | for (int index = 0; index < fUsed; ++index) { |
| 334 | fPt[index] = quad.xyAtT(fT[0][index]); |
| 335 | } |
| 336 | return fUsed; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 337 | } |