Michael Ludwig | cd01979 | 2020-03-17 10:14:48 -0400 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2020 Google LLC |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/gpu/GrBlockAllocator.h" |
| 9 | |
| 10 | #ifdef SK_DEBUG |
| 11 | #include <vector> |
| 12 | #endif |
| 13 | |
| 14 | GrBlockAllocator::GrBlockAllocator(GrowthPolicy policy, size_t blockIncrementBytes, |
| 15 | size_t additionalPreallocBytes) |
| 16 | : fTail(&fHead) |
| 17 | // Round up to the nearest max-aligned value, and then divide so that fBlockSizeIncrement |
| 18 | // can effectively fit higher byte counts in its 16 bits of storage |
| 19 | , fBlockIncrement(SkTo<uint16_t>(GrAlignTo(blockIncrementBytes, kBlockIncrementUnits) |
| 20 | / kBlockIncrementUnits)) |
| 21 | , fGrowthPolicy(static_cast<uint64_t>(policy)) |
| 22 | , fN0((policy == GrowthPolicy::kLinear || policy == GrowthPolicy::kExponential) ? 1 : 0) |
| 23 | , fN1(1) |
| 24 | // The head block always fills remaiing space from GrBlockAllocator's size, because it's |
| 25 | // inline, but can take over the specified number of bytes immediately after it. |
| 26 | , fHead(nullptr, additionalPreallocBytes + BaseHeadBlockSize()) { |
| 27 | SkASSERT(fBlockIncrement >= 1); |
| 28 | SkASSERT(additionalPreallocBytes <= kMaxAllocationSize); |
| 29 | } |
| 30 | |
| 31 | GrBlockAllocator::Block::Block(Block* prev, int allocationSize) |
| 32 | : fNext(nullptr) |
| 33 | , fPrev(prev) |
| 34 | , fSize(allocationSize) |
| 35 | , fCursor(kDataStart) |
| 36 | , fMetadata(0) { |
| 37 | SkASSERT(allocationSize >= (int) sizeof(Block)); |
| 38 | SkDEBUGCODE(fSentinel = kAssignedMarker;) |
| 39 | } |
| 40 | |
| 41 | GrBlockAllocator::Block::~Block() { |
| 42 | SkASSERT(fSentinel == kAssignedMarker); |
| 43 | SkDEBUGCODE(fSentinel = kFreedMarker;) // FWIW |
| 44 | } |
| 45 | |
| 46 | size_t GrBlockAllocator::totalSize() const { |
| 47 | // Use size_t since the sum across all blocks could exceed 'int', even though each block won't |
| 48 | size_t size = offsetof(GrBlockAllocator, fHead); |
| 49 | for (const Block* b : this->blocks()) { |
| 50 | size += b->fSize; |
| 51 | } |
| 52 | SkASSERT(size >= this->preallocSize()); |
| 53 | return size; |
| 54 | } |
| 55 | |
| 56 | size_t GrBlockAllocator::totalUsableSpace() const { |
| 57 | size_t size = 0; |
| 58 | for (const Block* b : this->blocks()) { |
| 59 | size += (b->fSize - kDataStart); |
| 60 | } |
| 61 | SkASSERT(size >= this->preallocUsableSpace()); |
| 62 | return size; |
| 63 | } |
| 64 | |
| 65 | size_t GrBlockAllocator::totalSpaceInUse() const { |
| 66 | size_t size = 0; |
| 67 | for (const Block* b : this->blocks()) { |
| 68 | size += (b->fCursor - kDataStart); |
| 69 | } |
| 70 | SkASSERT(size <= this->totalUsableSpace()); |
| 71 | return size; |
| 72 | } |
| 73 | |
| 74 | GrBlockAllocator::Block* GrBlockAllocator::findOwningBlock(const void* p) { |
| 75 | // When in doubt, search in reverse to find an overlapping block. |
| 76 | uintptr_t ptr = reinterpret_cast<uintptr_t>(p); |
| 77 | for (Block* b : this->rblocks()) { |
| 78 | uintptr_t lowerBound = reinterpret_cast<uintptr_t>(b) + kDataStart; |
| 79 | uintptr_t upperBound = reinterpret_cast<uintptr_t>(b) + b->fSize; |
| 80 | if (lowerBound <= ptr && ptr < upperBound) { |
| 81 | SkASSERT(b->fSentinel == kAssignedMarker); |
| 82 | return b; |
| 83 | } |
| 84 | } |
| 85 | return nullptr; |
| 86 | } |
| 87 | |
| 88 | void GrBlockAllocator::releaseBlock(Block* block) { |
| 89 | if (block->fPrev) { |
| 90 | // Unlink block from the double-linked list of blocks |
| 91 | SkASSERT(block != &fHead); |
| 92 | block->fPrev->fNext = block->fNext; |
| 93 | if (block->fNext) { |
| 94 | SkASSERT(fTail != block); |
| 95 | block->fNext->fPrev = block->fPrev; |
| 96 | } else { |
| 97 | SkASSERT(fTail == block); |
| 98 | fTail = block->fPrev; |
| 99 | } |
| 100 | |
| 101 | delete block; |
| 102 | } else { |
| 103 | // Reset the cursor of the head block so that it can be reused |
| 104 | SkASSERT(block == &fHead); |
| 105 | block->fCursor = kDataStart; |
| 106 | block->fMetadata = 0; |
| 107 | // Unlike in reset(), we don't set the head's next block to null because there are |
| 108 | // potentially heap-allocated blocks that are still connected to it. |
| 109 | } |
| 110 | |
| 111 | // Decrement growth policy (opposite of addBlock()'s increment operations) |
| 112 | GrowthPolicy gp = static_cast<GrowthPolicy>(fGrowthPolicy); |
| 113 | if (fN0 > 0 && (fN1 > 1 || gp == GrowthPolicy::kFibonacci)) { |
| 114 | SkASSERT(gp != GrowthPolicy::kFixed); // fixed never needs undoing, fN0 always is 0 |
| 115 | if (gp == GrowthPolicy::kLinear) { |
| 116 | fN1 = fN1 - fN0; |
| 117 | } else if (gp == GrowthPolicy::kFibonacci) { |
| 118 | // Subtract n0 from n1 to get the prior 2 terms in the fibonacci sequence |
| 119 | int temp = fN1 - fN0; // yields prior fN0 |
| 120 | fN1 = fN1 - temp; // yields prior fN1 |
| 121 | fN0 = temp; |
| 122 | } else { |
| 123 | SkASSERT(gp == GrowthPolicy::kExponential); |
| 124 | // Divide by 2 to undo the 2N update from addBlock |
| 125 | fN1 = fN1 >> 1; |
| 126 | fN0 = fN1; |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | SkASSERT(fN1 >= 1 && fN0 >= 0); |
| 131 | } |
| 132 | |
| 133 | void GrBlockAllocator::reset() { |
| 134 | // We can't use the RBlocks for-range since we're destroying the linked list as we go |
| 135 | Block* toFree = fTail; |
| 136 | while(toFree) { |
| 137 | Block* prev = toFree->fPrev; |
| 138 | if (prev) { |
| 139 | SkASSERT(toFree != &fHead); |
| 140 | delete toFree; |
| 141 | } else { |
| 142 | SkASSERT(toFree == &fHead); |
| 143 | fTail = toFree; |
| 144 | // the head block's prev is already null, it's next block was deleted last iteration |
| 145 | fTail->fNext = nullptr; |
| 146 | fTail->fCursor = kDataStart; |
| 147 | fTail->fMetadata = 0; |
| 148 | } |
| 149 | |
| 150 | toFree = prev; |
| 151 | } |
| 152 | |
| 153 | GrowthPolicy gp = static_cast<GrowthPolicy>(fGrowthPolicy); |
| 154 | fN0 = (gp == GrowthPolicy::kLinear || gp == GrowthPolicy::kExponential) ? 1 : 0; |
| 155 | fN1 = 1; |
| 156 | } |
| 157 | |
| 158 | void GrBlockAllocator::addBlock(int minimumSize, int maxSize) { |
| 159 | SkASSERT(minimumSize > (int) sizeof(Block) && minimumSize <= maxSize); |
| 160 | |
| 161 | // Max positive value for uint:23 storage (decltype(fN0) picks up uint64_t, not uint:23). |
| 162 | static constexpr int kMaxN = (1 << 23) - 1; |
| 163 | static_assert(2 * kMaxN <= std::numeric_limits<int32_t>::max()); // Growth policy won't overflow |
| 164 | |
| 165 | // Calculate the 'next' size per growth policy sequence |
| 166 | GrowthPolicy gp = static_cast<GrowthPolicy>(fGrowthPolicy); |
| 167 | int nextN1 = fN0 + fN1; |
| 168 | int nextN0; |
| 169 | if (gp == GrowthPolicy::kFixed || gp == GrowthPolicy::kLinear) { |
| 170 | nextN0 = fN0; |
| 171 | } else if (gp == GrowthPolicy::kFibonacci) { |
| 172 | nextN0 = fN1; |
| 173 | } else { |
| 174 | SkASSERT(gp == GrowthPolicy::kExponential); |
| 175 | nextN0 = nextN1; |
| 176 | } |
| 177 | fN0 = std::min(kMaxN, nextN0); |
| 178 | fN1 = std::min(kMaxN, nextN1); |
| 179 | |
| 180 | // However, must guard against overflow here, since all the size-based asserts prevented |
| 181 | // alignment/addition overflows, while multiplication requires 2x bits instead of x+1. |
| 182 | int sizeIncrement = fBlockIncrement * kBlockIncrementUnits; |
| 183 | int allocSize; |
| 184 | if (maxSize / sizeIncrement < nextN1) { |
| 185 | // The growth policy would overflow, so use the max. We've already confirmed that maxSize |
| 186 | // will be sufficient for the requested minimumSize |
| 187 | allocSize = maxSize; |
| 188 | } else { |
| 189 | allocSize = std::max(minimumSize, sizeIncrement * nextN1); |
| 190 | // Then round to a nice boundary since the block isn't maxing out: |
| 191 | // if allocSize > 32K, aligns on 4K boundary otherwise aligns on max_align_t, to play |
| 192 | // nicely with jeMalloc (from SkArenaAlloc). |
| 193 | int mask = allocSize > (1 << 15) ? ((1 << 12) - 1) : (kBlockIncrementUnits - 1); |
| 194 | allocSize = std::min((allocSize + mask) & ~mask, maxSize); |
| 195 | } |
| 196 | |
| 197 | // Create new block and append to the linked list of blocks in this allocator |
| 198 | void* mem = operator new(allocSize); |
| 199 | fTail->fNext = new (mem) Block(fTail, allocSize); |
| 200 | fTail = fTail->fNext; |
| 201 | } |
| 202 | |
| 203 | #ifdef SK_DEBUG |
| 204 | void GrBlockAllocator::validate() const { |
| 205 | std::vector<const Block*> blocks; |
| 206 | const Block* prev = nullptr; |
| 207 | for (const Block* block : this->blocks()) { |
| 208 | blocks.push_back(block); |
| 209 | |
| 210 | SkASSERT(kAssignedMarker == block->fSentinel); |
| 211 | SkASSERT(prev == block->fPrev); |
| 212 | if (prev) { |
| 213 | SkASSERT(prev->fNext == block); |
| 214 | } |
| 215 | |
| 216 | SkASSERT(block->fSize >= (int) sizeof(Block)); |
| 217 | SkASSERT(block->fCursor >= kDataStart); |
| 218 | SkASSERT(block->fCursor <= block->fSize); |
| 219 | |
| 220 | prev = block; |
| 221 | } |
| 222 | SkASSERT(prev == fTail); |
| 223 | SkASSERT(blocks.size() > 0); |
| 224 | SkASSERT(blocks[0] == &fHead); |
| 225 | |
| 226 | // Confirm reverse iteration matches forward iteration |
| 227 | size_t j = blocks.size(); |
| 228 | for (const Block* b : this->rblocks()) { |
| 229 | SkASSERT(b == blocks[j - 1]); |
| 230 | j--; |
| 231 | } |
| 232 | SkASSERT(j == 0); |
| 233 | } |
| 234 | #endif |