Chris Dalton | 09a7bb2 | 2018-08-31 19:53:15 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2018 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "GrCCStrokeGeometry.h" |
| 9 | |
| 10 | #include "SkGeometry.h" |
| 11 | #include "SkMathPriv.h" |
| 12 | #include "SkNx.h" |
| 13 | #include "SkStrokeRec.h" |
| 14 | |
| 15 | // This is the maximum distance in pixels that we can stray from the edge of a stroke when |
| 16 | // converting it to flat line segments. |
| 17 | static constexpr float kMaxErrorFromLinearization = 1/8.f; |
| 18 | |
| 19 | static inline float length(const Sk2f& n) { |
| 20 | Sk2f nn = n*n; |
| 21 | return SkScalarSqrt(nn[0] + nn[1]); |
| 22 | } |
| 23 | |
| 24 | static inline Sk2f normalize(const Sk2f& v) { |
| 25 | Sk2f vv = v*v; |
| 26 | vv += SkNx_shuffle<1,0>(vv); |
| 27 | return v * vv.rsqrt(); |
| 28 | } |
| 29 | |
| 30 | static inline void transpose(const Sk2f& a, const Sk2f& b, Sk2f* X, Sk2f* Y) { |
| 31 | float transpose[4]; |
| 32 | a.store(transpose); |
| 33 | b.store(transpose+2); |
| 34 | Sk2f::Load2(transpose, X, Y); |
| 35 | } |
| 36 | |
| 37 | static inline void normalize2(const Sk2f& v0, const Sk2f& v1, SkPoint out[2]) { |
| 38 | Sk2f X, Y; |
| 39 | transpose(v0, v1, &X, &Y); |
| 40 | Sk2f invlength = (X*X + Y*Y).rsqrt(); |
| 41 | Sk2f::Store2(out, Y * invlength, -X * invlength); |
| 42 | } |
| 43 | |
| 44 | static inline float calc_curvature_costheta(const Sk2f& leftTan, const Sk2f& rightTan) { |
| 45 | Sk2f X, Y; |
| 46 | transpose(leftTan, rightTan, &X, &Y); |
| 47 | Sk2f invlength = (X*X + Y*Y).rsqrt(); |
| 48 | Sk2f dotprod = leftTan * rightTan; |
| 49 | return (dotprod[0] + dotprod[1]) * invlength[0] * invlength[1]; |
| 50 | } |
| 51 | |
| 52 | static GrCCStrokeGeometry::Verb join_verb_from_join(SkPaint::Join join) { |
| 53 | using Verb = GrCCStrokeGeometry::Verb; |
| 54 | switch (join) { |
| 55 | case SkPaint::kBevel_Join: |
| 56 | return Verb::kBevelJoin; |
| 57 | case SkPaint::kMiter_Join: |
| 58 | return Verb::kMiterJoin; |
| 59 | case SkPaint::kRound_Join: |
| 60 | return Verb::kRoundJoin; |
| 61 | } |
| 62 | SK_ABORT("Invalid SkPaint::Join."); |
| 63 | return Verb::kBevelJoin; |
| 64 | } |
| 65 | |
| 66 | void GrCCStrokeGeometry::beginPath(const SkStrokeRec& stroke, float strokeDevWidth, |
| 67 | InstanceTallies* tallies) { |
| 68 | SkASSERT(!fInsideContour); |
| 69 | // Client should have already converted the stroke to device space (i.e. width=1 for hairline). |
| 70 | SkASSERT(strokeDevWidth > 0); |
| 71 | |
| 72 | fCurrStrokeRadius = strokeDevWidth/2; |
| 73 | fCurrStrokeJoinVerb = join_verb_from_join(stroke.getJoin()); |
| 74 | fCurrStrokeCapType = stroke.getCap(); |
| 75 | fCurrStrokeTallies = tallies; |
| 76 | |
| 77 | if (Verb::kMiterJoin == fCurrStrokeJoinVerb) { |
| 78 | // We implement miters by placing a triangle-shaped cap on top of a bevel join. Convert the |
| 79 | // "miter limit" to how tall that triangle cap can be. |
| 80 | float m = stroke.getMiter(); |
| 81 | fMiterMaxCapHeightOverWidth = .5f * SkScalarSqrt(m*m - 1); |
| 82 | } |
| 83 | |
| 84 | // Find the angle of curvature where the arc height above a simple line from point A to point B |
| 85 | // is equal to kMaxErrorFromLinearization. |
| 86 | float r = SkTMax(1 - kMaxErrorFromLinearization / fCurrStrokeRadius, 0.f); |
| 87 | fMaxCurvatureCosTheta = 2*r*r - 1; |
| 88 | |
| 89 | fCurrContourFirstPtIdx = -1; |
| 90 | fCurrContourFirstNormalIdx = -1; |
| 91 | |
| 92 | fVerbs.push_back(Verb::kBeginPath); |
| 93 | } |
| 94 | |
| 95 | void GrCCStrokeGeometry::moveTo(SkPoint pt) { |
| 96 | SkASSERT(!fInsideContour); |
| 97 | fCurrContourFirstPtIdx = fPoints.count(); |
| 98 | fCurrContourFirstNormalIdx = fNormals.count(); |
| 99 | fPoints.push_back(pt); |
| 100 | SkDEBUGCODE(fInsideContour = true); |
| 101 | } |
| 102 | |
| 103 | void GrCCStrokeGeometry::lineTo(SkPoint pt) { |
| 104 | SkASSERT(fInsideContour); |
| 105 | this->lineTo(fCurrStrokeJoinVerb, pt); |
| 106 | } |
| 107 | |
| 108 | void GrCCStrokeGeometry::lineTo(Verb leftJoinVerb, SkPoint pt) { |
| 109 | Sk2f tan = Sk2f::Load(&pt) - Sk2f::Load(&fPoints.back()); |
| 110 | if ((tan == 0).allTrue()) { |
| 111 | return; |
| 112 | } |
| 113 | |
| 114 | tan = normalize(tan); |
| 115 | SkVector n = SkVector::Make(tan[1], -tan[0]); |
| 116 | |
| 117 | this->recordLeftJoinIfNotEmpty(leftJoinVerb, n); |
| 118 | fNormals.push_back(n); |
| 119 | |
| 120 | this->recordStroke(Verb::kLinearStroke, 0); |
| 121 | fPoints.push_back(pt); |
| 122 | } |
| 123 | |
| 124 | void GrCCStrokeGeometry::quadraticTo(const SkPoint P[3]) { |
| 125 | SkASSERT(fInsideContour); |
| 126 | this->quadraticTo(fCurrStrokeJoinVerb, P, SkFindQuadMaxCurvature(P)); |
| 127 | } |
| 128 | |
| 129 | // Wang's formula for quadratics (1985) gives us the number of evenly spaced (in the parametric |
| 130 | // sense) line segments that are guaranteed to be within a distance of "kMaxErrorFromLinearization" |
| 131 | // from the actual curve. |
| 132 | static inline float wangs_formula_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) { |
| 133 | static constexpr float k = 2 / (8 * kMaxErrorFromLinearization); |
| 134 | float f = SkScalarSqrt(k * length(p2 - p1*2 + p0)); |
| 135 | return SkScalarCeilToInt(f); |
| 136 | } |
| 137 | |
| 138 | void GrCCStrokeGeometry::quadraticTo(Verb leftJoinVerb, const SkPoint P[3], float maxCurvatureT) { |
| 139 | Sk2f p0 = Sk2f::Load(P); |
| 140 | Sk2f p1 = Sk2f::Load(P+1); |
| 141 | Sk2f p2 = Sk2f::Load(P+2); |
| 142 | |
| 143 | Sk2f tan0 = p1 - p0; |
| 144 | Sk2f tan1 = p2 - p1; |
| 145 | |
| 146 | // Snap to a "lineTo" if the control point is so close to an endpoint that FP error will become |
| 147 | // an issue. |
| 148 | if ((tan0.abs() < SK_ScalarNearlyZero).allTrue() || // p0 ~= p1 |
| 149 | (tan1.abs() < SK_ScalarNearlyZero).allTrue()) { // p1 ~= p2 |
| 150 | this->lineTo(leftJoinVerb, P[2]); |
| 151 | return; |
| 152 | } |
| 153 | |
| 154 | SkPoint normals[2]; |
| 155 | normalize2(tan0, tan1, normals); |
| 156 | |
| 157 | // Decide how many flat line segments to chop the curve into. |
| 158 | int numSegments = wangs_formula_quadratic(p0, p1, p2); |
Chris Dalton | ce038dc | 2018-09-14 14:14:49 -0600 | [diff] [blame^] | 159 | numSegments = SkTMin(numSegments, 1 << kMaxNumLinearSegmentsLog2); |
Chris Dalton | 09a7bb2 | 2018-08-31 19:53:15 +0800 | [diff] [blame] | 160 | if (numSegments <= 1) { |
| 161 | this->rotateTo(leftJoinVerb, normals[0]); |
| 162 | this->lineTo(Verb::kInternalRoundJoin, P[2]); |
| 163 | this->rotateTo(Verb::kInternalRoundJoin, normals[1]); |
| 164 | return; |
| 165 | } |
| 166 | |
| 167 | // At + B gives a vector tangent to the quadratic. |
| 168 | Sk2f A = p0 - p1*2 + p2; |
| 169 | Sk2f B = p1 - p0; |
| 170 | |
| 171 | // Find a line segment that crosses max curvature. |
| 172 | float segmentLength = SkScalarInvert(numSegments); |
| 173 | float leftT = maxCurvatureT - segmentLength/2; |
| 174 | float rightT = maxCurvatureT + segmentLength/2; |
| 175 | Sk2f leftTan, rightTan; |
| 176 | if (leftT <= 0) { |
| 177 | leftT = 0; |
| 178 | leftTan = tan0; |
| 179 | rightT = segmentLength; |
| 180 | rightTan = A*rightT + B; |
| 181 | } else if (rightT >= 1) { |
| 182 | leftT = 1 - segmentLength; |
| 183 | leftTan = A*leftT + B; |
| 184 | rightT = 1; |
| 185 | rightTan = tan1; |
| 186 | } else { |
| 187 | leftTan = A*leftT + B; |
| 188 | rightTan = A*rightT + B; |
| 189 | } |
| 190 | |
| 191 | // Check if curvature is too strong for a triangle strip on the line segment that crosses max |
| 192 | // curvature. If it is, we will chop and convert the segment to a "lineTo" with round joins. |
| 193 | // |
| 194 | // FIXME: This is quite costly and the vast majority of curves only have moderate curvature. We |
| 195 | // would benefit significantly from a quick reject that detects curves that don't need special |
| 196 | // treatment for strong curvature. |
| 197 | bool isCurvatureTooStrong = calc_curvature_costheta(leftTan, rightTan) < fMaxCurvatureCosTheta; |
| 198 | if (isCurvatureTooStrong) { |
| 199 | SkPoint ptsBuffer[5]; |
| 200 | const SkPoint* currQuadratic = P; |
| 201 | |
| 202 | if (leftT > 0) { |
| 203 | SkChopQuadAt(currQuadratic, ptsBuffer, leftT); |
| 204 | this->quadraticTo(leftJoinVerb, ptsBuffer, /*maxCurvatureT=*/1); |
| 205 | if (rightT < 1) { |
| 206 | rightT = (rightT - leftT) / (1 - leftT); |
| 207 | } |
| 208 | currQuadratic = ptsBuffer + 2; |
| 209 | } else { |
| 210 | this->rotateTo(leftJoinVerb, normals[0]); |
| 211 | } |
| 212 | |
| 213 | if (rightT < 1) { |
| 214 | SkChopQuadAt(currQuadratic, ptsBuffer, rightT); |
| 215 | this->lineTo(Verb::kInternalRoundJoin, ptsBuffer[2]); |
| 216 | this->quadraticTo(Verb::kInternalRoundJoin, ptsBuffer + 2, /*maxCurvatureT=*/0); |
| 217 | } else { |
| 218 | this->lineTo(Verb::kInternalRoundJoin, currQuadratic[2]); |
| 219 | this->rotateTo(Verb::kInternalRoundJoin, normals[1]); |
| 220 | } |
| 221 | return; |
| 222 | } |
| 223 | |
| 224 | this->recordLeftJoinIfNotEmpty(leftJoinVerb, normals[0]); |
| 225 | fNormals.push_back_n(2, normals); |
| 226 | |
| 227 | this->recordStroke(Verb::kQuadraticStroke, SkNextLog2(numSegments)); |
| 228 | p1.store(&fPoints.push_back()); |
| 229 | p2.store(&fPoints.push_back()); |
| 230 | } |
| 231 | |
| 232 | void GrCCStrokeGeometry::cubicTo(const SkPoint P[4]) { |
| 233 | SkASSERT(fInsideContour); |
| 234 | float roots[3]; |
| 235 | int numRoots = SkFindCubicMaxCurvature(P, roots); |
| 236 | this->cubicTo(fCurrStrokeJoinVerb, P, |
| 237 | numRoots > 0 ? roots[numRoots/2] : 0, |
| 238 | numRoots > 1 ? roots[0] : kLeftMaxCurvatureNone, |
| 239 | numRoots > 2 ? roots[2] : kRightMaxCurvatureNone); |
| 240 | } |
| 241 | |
| 242 | // Wang's formula for cubics (1985) gives us the number of evenly spaced (in the parametric sense) |
| 243 | // line segments that are guaranteed to be within a distance of "kMaxErrorFromLinearization" |
| 244 | // from the actual curve. |
| 245 | static inline float wangs_formula_cubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
| 246 | const Sk2f& p3) { |
| 247 | static constexpr float k = (3 * 2) / (8 * kMaxErrorFromLinearization); |
| 248 | float f = SkScalarSqrt(k * length(Sk2f::Max((p2 - p1*2 + p0).abs(), |
| 249 | (p3 - p2*2 + p1).abs()))); |
| 250 | return SkScalarCeilToInt(f); |
| 251 | } |
| 252 | |
| 253 | void GrCCStrokeGeometry::cubicTo(Verb leftJoinVerb, const SkPoint P[4], float maxCurvatureT, |
| 254 | float leftMaxCurvatureT, float rightMaxCurvatureT) { |
| 255 | Sk2f p0 = Sk2f::Load(P); |
| 256 | Sk2f p1 = Sk2f::Load(P+1); |
| 257 | Sk2f p2 = Sk2f::Load(P+2); |
| 258 | Sk2f p3 = Sk2f::Load(P+3); |
| 259 | |
| 260 | Sk2f tan0 = p1 - p0; |
| 261 | Sk2f tan1 = p3 - p2; |
| 262 | |
| 263 | // Snap control points to endpoints if they are so close that FP error will become an issue. |
| 264 | if ((tan0.abs() < SK_ScalarNearlyZero).allTrue()) { // p0 ~= p1 |
| 265 | p1 = p0; |
| 266 | tan0 = p2 - p0; |
| 267 | if ((tan0.abs() < SK_ScalarNearlyZero).allTrue()) { // p0 ~= p1 ~= p2 |
| 268 | this->lineTo(leftJoinVerb, P[3]); |
| 269 | return; |
| 270 | } |
| 271 | } |
| 272 | if ((tan1.abs() < SK_ScalarNearlyZero).allTrue()) { // p2 ~= p3 |
| 273 | p2 = p3; |
| 274 | tan1 = p3 - p1; |
| 275 | if ((tan1.abs() < SK_ScalarNearlyZero).allTrue() || // p1 ~= p2 ~= p3 |
| 276 | (p0 == p1).allTrue()) { // p0 ~= p1 AND p2 ~= p3 |
| 277 | this->lineTo(leftJoinVerb, P[3]); |
| 278 | return; |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | SkPoint normals[2]; |
| 283 | normalize2(tan0, tan1, normals); |
| 284 | |
| 285 | // Decide how many flat line segments to chop the curve into. |
| 286 | int numSegments = wangs_formula_cubic(p0, p1, p2, p3); |
Chris Dalton | ce038dc | 2018-09-14 14:14:49 -0600 | [diff] [blame^] | 287 | numSegments = SkTMin(numSegments, 1 << kMaxNumLinearSegmentsLog2); |
Chris Dalton | 09a7bb2 | 2018-08-31 19:53:15 +0800 | [diff] [blame] | 288 | if (numSegments <= 1) { |
| 289 | this->rotateTo(leftJoinVerb, normals[0]); |
| 290 | this->lineTo(leftJoinVerb, P[3]); |
| 291 | this->rotateTo(Verb::kInternalRoundJoin, normals[1]); |
| 292 | return; |
| 293 | } |
| 294 | |
| 295 | // At^2 + Bt + C gives a vector tangent to the cubic. (More specifically, it's the derivative |
| 296 | // minus an irrelevant scale by 3, since all we care about is the direction.) |
| 297 | Sk2f A = p3 + (p1 - p2)*3 - p0; |
| 298 | Sk2f B = (p0 - p1*2 + p2)*2; |
| 299 | Sk2f C = p1 - p0; |
| 300 | |
| 301 | // Find a line segment that crosses max curvature. |
| 302 | float segmentLength = SkScalarInvert(numSegments); |
| 303 | float leftT = maxCurvatureT - segmentLength/2; |
| 304 | float rightT = maxCurvatureT + segmentLength/2; |
| 305 | Sk2f leftTan, rightTan; |
| 306 | if (leftT <= 0) { |
| 307 | leftT = 0; |
| 308 | leftTan = tan0; |
| 309 | rightT = segmentLength; |
| 310 | rightTan = A*rightT*rightT + B*rightT + C; |
| 311 | } else if (rightT >= 1) { |
| 312 | leftT = 1 - segmentLength; |
| 313 | leftTan = A*leftT*leftT + B*leftT + C; |
| 314 | rightT = 1; |
| 315 | rightTan = tan1; |
| 316 | } else { |
| 317 | leftTan = A*leftT*leftT + B*leftT + C; |
| 318 | rightTan = A*rightT*rightT + B*rightT + C; |
| 319 | } |
| 320 | |
| 321 | // Check if curvature is too strong for a triangle strip on the line segment that crosses max |
| 322 | // curvature. If it is, we will chop and convert the segment to a "lineTo" with round joins. |
| 323 | // |
| 324 | // FIXME: This is quite costly and the vast majority of curves only have moderate curvature. We |
| 325 | // would benefit significantly from a quick reject that detects curves that don't need special |
| 326 | // treatment for strong curvature. |
| 327 | bool isCurvatureTooStrong = calc_curvature_costheta(leftTan, rightTan) < fMaxCurvatureCosTheta; |
| 328 | if (isCurvatureTooStrong) { |
| 329 | SkPoint ptsBuffer[7]; |
| 330 | p0.store(ptsBuffer); |
| 331 | p1.store(ptsBuffer + 1); |
| 332 | p2.store(ptsBuffer + 2); |
| 333 | p3.store(ptsBuffer + 3); |
| 334 | const SkPoint* currCubic = ptsBuffer; |
| 335 | |
| 336 | if (leftT > 0) { |
| 337 | SkChopCubicAt(currCubic, ptsBuffer, leftT); |
| 338 | this->cubicTo(leftJoinVerb, ptsBuffer, /*maxCurvatureT=*/1, |
| 339 | (kLeftMaxCurvatureNone != leftMaxCurvatureT) |
| 340 | ? leftMaxCurvatureT/leftT : kLeftMaxCurvatureNone, |
| 341 | kRightMaxCurvatureNone); |
| 342 | if (rightT < 1) { |
| 343 | rightT = (rightT - leftT) / (1 - leftT); |
| 344 | } |
| 345 | if (rightMaxCurvatureT < 1 && kRightMaxCurvatureNone != rightMaxCurvatureT) { |
| 346 | rightMaxCurvatureT = (rightMaxCurvatureT - leftT) / (1 - leftT); |
| 347 | } |
| 348 | currCubic = ptsBuffer + 3; |
| 349 | } else { |
| 350 | this->rotateTo(leftJoinVerb, normals[0]); |
| 351 | } |
| 352 | |
| 353 | if (rightT < 1) { |
| 354 | SkChopCubicAt(currCubic, ptsBuffer, rightT); |
| 355 | this->lineTo(Verb::kInternalRoundJoin, ptsBuffer[3]); |
| 356 | currCubic = ptsBuffer + 3; |
| 357 | this->cubicTo(Verb::kInternalRoundJoin, currCubic, /*maxCurvatureT=*/0, |
| 358 | kLeftMaxCurvatureNone, kRightMaxCurvatureNone); |
| 359 | } else { |
| 360 | this->lineTo(Verb::kInternalRoundJoin, currCubic[3]); |
| 361 | this->rotateTo(Verb::kInternalRoundJoin, normals[1]); |
| 362 | } |
| 363 | return; |
| 364 | } |
| 365 | |
| 366 | // Recurse and check the other two points of max curvature, if any. |
| 367 | if (kRightMaxCurvatureNone != rightMaxCurvatureT) { |
| 368 | this->cubicTo(leftJoinVerb, P, rightMaxCurvatureT, leftMaxCurvatureT, |
| 369 | kRightMaxCurvatureNone); |
| 370 | return; |
| 371 | } |
| 372 | if (kLeftMaxCurvatureNone != leftMaxCurvatureT) { |
| 373 | SkASSERT(kRightMaxCurvatureNone == rightMaxCurvatureT); |
| 374 | this->cubicTo(leftJoinVerb, P, leftMaxCurvatureT, kLeftMaxCurvatureNone, |
| 375 | kRightMaxCurvatureNone); |
| 376 | return; |
| 377 | } |
| 378 | |
| 379 | this->recordLeftJoinIfNotEmpty(leftJoinVerb, normals[0]); |
| 380 | fNormals.push_back_n(2, normals); |
| 381 | |
| 382 | this->recordStroke(Verb::kCubicStroke, SkNextLog2(numSegments)); |
| 383 | p1.store(&fPoints.push_back()); |
| 384 | p2.store(&fPoints.push_back()); |
| 385 | p3.store(&fPoints.push_back()); |
| 386 | } |
| 387 | |
| 388 | void GrCCStrokeGeometry::recordStroke(Verb verb, int numSegmentsLog2) { |
| 389 | SkASSERT(Verb::kLinearStroke != verb || 0 == numSegmentsLog2); |
| 390 | SkASSERT(numSegmentsLog2 <= kMaxNumLinearSegmentsLog2); |
| 391 | fVerbs.push_back(verb); |
| 392 | if (Verb::kLinearStroke != verb) { |
| 393 | SkASSERT(numSegmentsLog2 > 0); |
| 394 | fParams.push_back().fNumLinearSegmentsLog2 = numSegmentsLog2; |
| 395 | } |
| 396 | ++fCurrStrokeTallies->fStrokes[numSegmentsLog2]; |
| 397 | } |
| 398 | |
| 399 | void GrCCStrokeGeometry::rotateTo(Verb leftJoinVerb, SkVector normal) { |
| 400 | this->recordLeftJoinIfNotEmpty(leftJoinVerb, normal); |
| 401 | fNormals.push_back(normal); |
| 402 | } |
| 403 | |
| 404 | void GrCCStrokeGeometry::recordLeftJoinIfNotEmpty(Verb joinVerb, SkVector nextNormal) { |
| 405 | if (fNormals.count() <= fCurrContourFirstNormalIdx) { |
| 406 | // The contour is empty. Nothing to join with. |
| 407 | SkASSERT(fNormals.count() == fCurrContourFirstNormalIdx); |
| 408 | return; |
| 409 | } |
| 410 | |
| 411 | if (Verb::kBevelJoin == joinVerb) { |
| 412 | this->recordBevelJoin(Verb::kBevelJoin); |
| 413 | return; |
| 414 | } |
| 415 | |
| 416 | Sk2f n0 = Sk2f::Load(&fNormals.back()); |
| 417 | Sk2f n1 = Sk2f::Load(&nextNormal); |
| 418 | Sk2f base = n1 - n0; |
| 419 | if ((base.abs() * fCurrStrokeRadius < kMaxErrorFromLinearization).allTrue()) { |
| 420 | // Treat any join as a bevel when the outside corners of the two adjoining strokes are |
| 421 | // close enough to each other. This is important because "miterCapHeightOverWidth" becomes |
| 422 | // unstable when n0 and n1 are nearly equal. |
| 423 | this->recordBevelJoin(joinVerb); |
| 424 | return; |
| 425 | } |
| 426 | |
| 427 | // We implement miters and round joins by placing a triangle-shaped cap on top of a bevel join. |
| 428 | // (For round joins this triangle cap comprises the conic control points.) Find how tall to make |
| 429 | // this triangle cap, relative to its width. |
| 430 | // |
| 431 | // NOTE: This value would be infinite at 180 degrees, but we clamp miterCapHeightOverWidth at |
| 432 | // near-infinity. 180-degree round joins still look perfectly acceptable like this (though |
| 433 | // technically not pure arcs). |
| 434 | Sk2f cross = base * SkNx_shuffle<1,0>(n0); |
| 435 | Sk2f dot = base * n0; |
| 436 | float miterCapHeight = SkScalarAbs(dot[0] + dot[1]); |
| 437 | float miterCapWidth = SkScalarAbs(cross[0] - cross[1]) * 2; |
| 438 | |
| 439 | if (Verb::kMiterJoin == joinVerb) { |
| 440 | if (miterCapHeight > fMiterMaxCapHeightOverWidth * miterCapWidth) { |
| 441 | // This join is tighter than the miter limit. Treat it as a bevel. |
| 442 | this->recordBevelJoin(Verb::kMiterJoin); |
| 443 | return; |
| 444 | } |
| 445 | this->recordMiterJoin(miterCapHeight / miterCapWidth); |
| 446 | return; |
| 447 | } |
| 448 | |
| 449 | SkASSERT(Verb::kRoundJoin == joinVerb || Verb::kInternalRoundJoin == joinVerb); |
| 450 | |
| 451 | // Conic arcs become unstable when they approach 180 degrees. When the conic control point |
| 452 | // begins shooting off to infinity (i.e., height/width > 32), split the conic into two. |
| 453 | static constexpr float kAlmost180Degrees = 32; |
| 454 | if (miterCapHeight > kAlmost180Degrees * miterCapWidth) { |
| 455 | Sk2f bisect = normalize(n0 - n1); |
| 456 | this->rotateTo(joinVerb, SkVector::Make(-bisect[1], bisect[0])); |
| 457 | this->recordLeftJoinIfNotEmpty(joinVerb, nextNormal); |
| 458 | return; |
| 459 | } |
| 460 | |
| 461 | float miterCapHeightOverWidth = miterCapHeight / miterCapWidth; |
| 462 | |
| 463 | // Find the heights of this round join's conic control point as well as the arc itself. |
| 464 | Sk2f X, Y; |
| 465 | transpose(base * base, n0 * n1, &X, &Y); |
| 466 | Sk2f r = Sk2f::Max(X + Y + Sk2f(0, 1), 0.f).sqrt(); |
| 467 | Sk2f heights = SkNx_fma(r, Sk2f(miterCapHeightOverWidth, -SK_ScalarRoot2Over2), Sk2f(0, 1)); |
| 468 | float controlPointHeight = SkScalarAbs(heights[0]); |
| 469 | float curveHeight = heights[1]; |
| 470 | if (curveHeight * fCurrStrokeRadius < kMaxErrorFromLinearization) { |
| 471 | // Treat round joins as bevels when their curvature is nearly flat. |
| 472 | this->recordBevelJoin(joinVerb); |
| 473 | return; |
| 474 | } |
| 475 | |
| 476 | float w = curveHeight / (controlPointHeight - curveHeight); |
| 477 | this->recordRoundJoin(joinVerb, miterCapHeightOverWidth, w); |
| 478 | } |
| 479 | |
| 480 | void GrCCStrokeGeometry::recordBevelJoin(Verb originalJoinVerb) { |
| 481 | if (!IsInternalJoinVerb(originalJoinVerb)) { |
| 482 | fVerbs.push_back(Verb::kBevelJoin); |
| 483 | ++fCurrStrokeTallies->fTriangles; |
| 484 | } else { |
| 485 | fVerbs.push_back(Verb::kInternalBevelJoin); |
| 486 | fCurrStrokeTallies->fTriangles += 2; |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | void GrCCStrokeGeometry::recordMiterJoin(float miterCapHeightOverWidth) { |
| 491 | fVerbs.push_back(Verb::kMiterJoin); |
| 492 | fParams.push_back().fMiterCapHeightOverWidth = miterCapHeightOverWidth; |
| 493 | fCurrStrokeTallies->fTriangles += 2; |
| 494 | } |
| 495 | |
| 496 | void GrCCStrokeGeometry::recordRoundJoin(Verb joinVerb, float miterCapHeightOverWidth, |
| 497 | float conicWeight) { |
| 498 | fVerbs.push_back(joinVerb); |
| 499 | fParams.push_back().fConicWeight = conicWeight; |
| 500 | fParams.push_back().fMiterCapHeightOverWidth = miterCapHeightOverWidth; |
| 501 | if (Verb::kRoundJoin == joinVerb) { |
| 502 | ++fCurrStrokeTallies->fTriangles; |
| 503 | ++fCurrStrokeTallies->fConics; |
| 504 | } else { |
| 505 | SkASSERT(Verb::kInternalRoundJoin == joinVerb); |
| 506 | fCurrStrokeTallies->fTriangles += 2; |
| 507 | fCurrStrokeTallies->fConics += 2; |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | void GrCCStrokeGeometry::closeContour() { |
| 512 | SkASSERT(fInsideContour); |
| 513 | SkASSERT(fPoints.count() > fCurrContourFirstPtIdx); |
| 514 | if (fPoints.back() != fPoints[fCurrContourFirstPtIdx]) { |
| 515 | // Draw a line back to the beginning. |
| 516 | this->lineTo(fCurrStrokeJoinVerb, fPoints[fCurrContourFirstPtIdx]); |
| 517 | } |
| 518 | if (fNormals.count() > fCurrContourFirstNormalIdx) { |
| 519 | // Join the first and last lines. |
| 520 | this->rotateTo(fCurrStrokeJoinVerb,fNormals[fCurrContourFirstNormalIdx]); |
| 521 | } else { |
| 522 | // This contour is empty. Add a bogus normal since the iterator always expects one. |
| 523 | SkASSERT(fNormals.count() == fCurrContourFirstNormalIdx); |
| 524 | fNormals.push_back({0, 0}); |
| 525 | } |
| 526 | fVerbs.push_back(Verb::kEndContour); |
| 527 | SkDEBUGCODE(fInsideContour = false); |
| 528 | } |
| 529 | |
| 530 | void GrCCStrokeGeometry::capContourAndExit() { |
| 531 | SkASSERT(fInsideContour); |
| 532 | if (fCurrContourFirstNormalIdx >= fNormals.count()) { |
| 533 | // This contour is empty. Add a normal in the direction that caps orient on empty geometry. |
| 534 | SkASSERT(fNormals.count() == fCurrContourFirstNormalIdx); |
| 535 | fNormals.push_back({1, 0}); |
| 536 | } |
| 537 | |
| 538 | this->recordCapsIfAny(); |
| 539 | fVerbs.push_back(Verb::kEndContour); |
| 540 | |
| 541 | SkDEBUGCODE(fInsideContour = false); |
| 542 | } |
| 543 | |
| 544 | void GrCCStrokeGeometry::recordCapsIfAny() { |
| 545 | SkASSERT(fInsideContour); |
| 546 | SkASSERT(fCurrContourFirstNormalIdx < fNormals.count()); |
| 547 | |
| 548 | if (SkPaint::kButt_Cap == fCurrStrokeCapType) { |
| 549 | return; |
| 550 | } |
| 551 | |
| 552 | Verb capVerb; |
| 553 | if (SkPaint::kSquare_Cap == fCurrStrokeCapType) { |
| 554 | if (fCurrStrokeRadius * SK_ScalarRoot2Over2 < kMaxErrorFromLinearization) { |
| 555 | return; |
| 556 | } |
| 557 | capVerb = Verb::kSquareCap; |
| 558 | fCurrStrokeTallies->fStrokes[0] += 2; |
| 559 | } else { |
| 560 | SkASSERT(SkPaint::kRound_Cap == fCurrStrokeCapType); |
| 561 | if (fCurrStrokeRadius < kMaxErrorFromLinearization) { |
| 562 | return; |
| 563 | } |
| 564 | capVerb = Verb::kRoundCap; |
| 565 | fCurrStrokeTallies->fTriangles += 2; |
| 566 | fCurrStrokeTallies->fConics += 4; |
| 567 | } |
| 568 | |
| 569 | fVerbs.push_back(capVerb); |
| 570 | fVerbs.push_back(Verb::kEndContour); |
| 571 | |
| 572 | fVerbs.push_back(capVerb); |
| 573 | |
| 574 | // Reserve the space first, since push_back() takes the point by reference and might |
| 575 | // invalidate the reference if the array grows. |
| 576 | fPoints.reserve(fPoints.count() + 1); |
| 577 | fPoints.push_back(fPoints[fCurrContourFirstPtIdx]); |
| 578 | |
| 579 | // Reserve the space first, since push_back() takes the normal by reference and might |
| 580 | // invalidate the reference if the array grows. (Although in this case we should be fine |
| 581 | // since there is a negate operator.) |
| 582 | fNormals.reserve(fNormals.count() + 1); |
| 583 | fNormals.push_back(-fNormals[fCurrContourFirstNormalIdx]); |
| 584 | } |