blob: dec22e6c276880d05b9dc31abd4d78552a74ef3d [file] [log] [blame]
Ethan Nicholasceb4d482017-07-10 15:40:20 -04001in vec4 circleRect;
2in float textureRadius;
3in float solidRadius;
4in uniform sampler2D blurProfileSampler;
5
6// The data is formatted as:
7// x, y - the center of the circle
8// z - inner radius that should map to 0th entry in the texture.
9// w - the inverse of the distance over which the texture is stretched.
10uniform vec4 circleData;
11
12@optimizationFlags {
13 kCompatibleWithCoverageAsAlpha_OptimizationFlag
14}
15
16@constructorParams {
17 GrResourceProvider* resourceProvider
18}
19
20@make {
21 static sk_sp<GrFragmentProcessor> Make(GrResourceProvider* resourceProvider,
22 const SkRect& circle, float sigma);
23}
24
25@setData(data) {
26 data.set4f(circleData, circleRect.centerX(), circleRect.centerY(), solidRadius,
27 1.f / textureRadius);
28}
29
30@cpp {
31 #include "GrResourceProvider.h"
32
33 // Computes an unnormalized half kernel (right side). Returns the summation of all the half
34 // kernel values.
35 static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
36 const float invSigma = 1.f / sigma;
37 const float b = -0.5f * invSigma * invSigma;
38 float tot = 0.0f;
39 // Compute half kernel values at half pixel steps out from the center.
40 float t = 0.5f;
41 for (int i = 0; i < halfKernelSize; ++i) {
42 float value = expf(t * t * b);
43 tot += value;
44 halfKernel[i] = value;
45 t += 1.f;
46 }
47 return tot;
48 }
49
50 // Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number
51 // of discrete steps. The half kernel is normalized to sum to 0.5.
52 static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel,
53 int halfKernelSize, float sigma) {
54 // The half kernel should sum to 0.5 not 1.0.
55 const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
56 float sum = 0.f;
57 for (int i = 0; i < halfKernelSize; ++i) {
58 halfKernel[i] /= tot;
59 sum += halfKernel[i];
60 summedHalfKernel[i] = sum;
61 }
62 }
63
64 // Applies the 1D half kernel vertically at points along the x axis to a circle centered at the
65 // origin with radius circleR.
66 void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR,
67 int halfKernelSize, const float* summedHalfKernelTable) {
68 float x = firstX;
69 for (int i = 0; i < numSteps; ++i, x += 1.f) {
70 if (x < -circleR || x > circleR) {
71 results[i] = 0;
72 continue;
73 }
74 float y = sqrtf(circleR * circleR - x * x);
75 // In the column at x we exit the circle at +y and -y
76 // The summed table entry j is actually reflects an offset of j + 0.5.
77 y -= 0.5f;
78 int yInt = SkScalarFloorToInt(y);
79 SkASSERT(yInt >= -1);
80 if (y < 0) {
81 results[i] = (y + 0.5f) * summedHalfKernelTable[0];
82 } else if (yInt >= halfKernelSize - 1) {
83 results[i] = 0.5f;
84 } else {
85 float yFrac = y - yInt;
86 results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
87 yFrac * summedHalfKernelTable[yInt + 1];
88 }
89 }
90 }
91
92 // Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR.
93 // This relies on having a half kernel computed for the Gaussian and a table of applications of
94 // the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX +
95 // halfKernel) passed in as yKernelEvaluations.
96 static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize,
97 const float* yKernelEvaluations) {
98 float acc = 0;
99
100 float x = evalX - halfKernelSize;
101 for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
102 if (x < -circleR || x > circleR) {
103 continue;
104 }
105 float verticalEval = yKernelEvaluations[i];
106 acc += verticalEval * halfKernel[halfKernelSize - i - 1];
107 }
108 for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
109 if (x < -circleR || x > circleR) {
110 continue;
111 }
112 float verticalEval = yKernelEvaluations[i + halfKernelSize];
113 acc += verticalEval * halfKernel[i];
114 }
115 // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about
116 // the x axis).
117 return SkUnitScalarClampToByte(2.f * acc);
118 }
119
120 // This function creates a profile of a blurred circle. It does this by computing a kernel for
121 // half the Gaussian and a matching summed area table. The summed area table is used to compute
122 // an array of vertical applications of the half kernel to the circle along the x axis. The
123 // table of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is
124 // the size of the profile being computed. Then for each of the n profile entries we walk out k
125 // steps in each horizontal direction multiplying the corresponding y evaluation by the half
126 // kernel entry and sum these values to compute the profile entry.
127 static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) {
128 const int numSteps = profileTextureWidth;
129 uint8_t* weights = new uint8_t[numSteps];
130
131 // The full kernel is 6 sigmas wide.
132 int halfKernelSize = SkScalarCeilToInt(6.0f*sigma);
133 // round up to next multiple of 2 and then divide by 2
134 halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
135
136 // Number of x steps at which to apply kernel in y to cover all the profile samples in x.
137 int numYSteps = numSteps + 2 * halfKernelSize;
138
139 SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
140 float* halfKernel = bulkAlloc.get();
141 float* summedKernel = bulkAlloc.get() + halfKernelSize;
142 float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
143 make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
144
145 float firstX = -halfKernelSize + 0.5f;
146 apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
147
148 for (int i = 0; i < numSteps - 1; ++i) {
149 float evalX = i + 0.5f;
150 weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
151 }
152 // Ensure the tail of the Gaussian goes to zero.
153 weights[numSteps - 1] = 0;
154 return weights;
155 }
156
157 static uint8_t* create_half_plane_profile(int profileWidth) {
158 SkASSERT(!(profileWidth & 0x1));
159 // The full kernel is 6 sigmas wide.
160 float sigma = profileWidth / 6.f;
161 int halfKernelSize = profileWidth / 2;
162
163 SkAutoTArray<float> halfKernel(halfKernelSize);
164 uint8_t* profile = new uint8_t[profileWidth];
165
166 // The half kernel should sum to 0.5.
167 const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize,
168 sigma);
169 float sum = 0.f;
170 // Populate the profile from the right edge to the middle.
171 for (int i = 0; i < halfKernelSize; ++i) {
172 halfKernel[halfKernelSize - i - 1] /= tot;
173 sum += halfKernel[halfKernelSize - i - 1];
174 profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
175 }
176 // Populate the profile from the middle to the left edge (by flipping the half kernel and
177 // continuing the summation).
178 for (int i = 0; i < halfKernelSize; ++i) {
179 sum += halfKernel[i];
180 profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
181 }
182 // Ensure tail goes to 0.
183 profile[profileWidth - 1] = 0;
184 return profile;
185 }
186
187 static sk_sp<GrTextureProxy> create_profile_texture(GrResourceProvider* resourceProvider,
188 const SkRect& circle,
189 float sigma,
190 float* solidRadius, float* textureRadius) {
191 float circleR = circle.width() / 2.0f;
192 // Profile textures are cached by the ratio of sigma to circle radius and by the size of the
193 // profile texture (binned by powers of 2).
194 SkScalar sigmaToCircleRRatio = sigma / circleR;
195 // When sigma is really small this becomes a equivalent to convolving a Gaussian with a
196 // half-plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the
197 // Guassian and the profile texture is a just a Gaussian evaluation. However, we haven't yet
198 // implemented this latter optimization.
199 sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f);
200 SkFixed sigmaToCircleRRatioFixed;
201 static const SkScalar kHalfPlaneThreshold = 0.1f;
202 bool useHalfPlaneApprox = false;
203 if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
204 useHalfPlaneApprox = true;
205 sigmaToCircleRRatioFixed = 0;
206 *solidRadius = circleR - 3 * sigma;
207 *textureRadius = 6 * sigma;
208 } else {
209 // Convert to fixed point for the key.
210 sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
211 // We shave off some bits to reduce the number of unique entries. We could probably
212 // shave off more than we do.
213 sigmaToCircleRRatioFixed &= ~0xff;
214 sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
215 sigma = circleR * sigmaToCircleRRatio;
216 *solidRadius = 0;
217 *textureRadius = circleR + 3 * sigma;
218 }
219
220 static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
221 GrUniqueKey key;
222 GrUniqueKey::Builder builder(&key, kDomain, 1);
223 builder[0] = sigmaToCircleRRatioFixed;
224 builder.finish();
225
226 sk_sp<GrTextureProxy> blurProfile = resourceProvider->findProxyByUniqueKey(key);
227 if (!blurProfile) {
228 static constexpr int kProfileTextureWidth = 512;
229 GrSurfaceDesc texDesc;
230 texDesc.fWidth = kProfileTextureWidth;
231 texDesc.fHeight = 1;
232 texDesc.fConfig = kAlpha_8_GrPixelConfig;
233
234 std::unique_ptr<uint8_t[]> profile(nullptr);
235 if (useHalfPlaneApprox) {
236 profile.reset(create_half_plane_profile(kProfileTextureWidth));
237 } else {
238 // Rescale params to the size of the texture we're creating.
239 SkScalar scale = kProfileTextureWidth / *textureRadius;
240 profile.reset(create_circle_profile(sigma * scale, circleR * scale,
241 kProfileTextureWidth));
242 }
243
244 blurProfile = GrSurfaceProxy::MakeDeferred(resourceProvider,
245 texDesc, SkBudgeted::kYes, profile.get(), 0);
246 if (!blurProfile) {
247 return nullptr;
248 }
249
250 resourceProvider->assignUniqueKeyToProxy(key, blurProfile.get());
251 }
252
253 return blurProfile;
254 }
255
256 sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::Make(
257 GrResourceProvider* resourceProvider,
258 const SkRect& circle,
259 float sigma) {
260 float solidRadius;
261 float textureRadius;
262 sk_sp<GrTextureProxy> profile(create_profile_texture(resourceProvider, circle, sigma,
263 &solidRadius, &textureRadius));
264 if (!profile) {
265 return nullptr;
266 }
267 return sk_sp<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor(circle,
268 textureRadius,
269 solidRadius,
270 std::move(profile),
271 resourceProvider));
272 }
273}
274
275void main() {
276 // We just want to compute "(length(vec) - circleData.z + 0.5) * circleData.w" but need to
277 // rearrange for precision.
278 vec2 vec = vec2((sk_FragCoord.x - circleData.x) * circleData.w,
279 (sk_FragCoord.y - circleData.y) * circleData.w);
280 float dist = length(vec) + (0.5 - circleData.z) * circleData.w;
281 sk_OutColor = sk_InColor * texture(blurProfileSampler, vec2(dist, 0.5)).a;
282}
283
284@test(testData) {
285 SkScalar wh = testData->fRandom->nextRangeScalar(100.f, 1000.f);
286 SkScalar sigma = testData->fRandom->nextRangeF(1.f,10.f);
287 SkRect circle = SkRect::MakeWH(wh, wh);
288 return GrCircleBlurFragmentProcessor::Make(testData->resourceProvider(), circle, sigma);
289}