caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 1 | // http://metamerist.com/cbrt/CubeRoot.cpp |
| 2 | // |
| 3 | |
| 4 | #include <math.h> |
caryclark@google.com | 27accef | 2012-01-25 18:57:23 +0000 | [diff] [blame] | 5 | #include "CubicUtilities.h" |
caryclark@google.com | 639df89 | 2012-01-10 21:46:10 +0000 | [diff] [blame] | 6 | |
| 7 | #define TEST_ALTERNATIVES 0 |
| 8 | #if TEST_ALTERNATIVES |
| 9 | typedef float (*cuberootfnf) (float); |
| 10 | typedef double (*cuberootfnd) (double); |
| 11 | |
| 12 | // estimate bits of precision (32-bit float case) |
| 13 | inline int bits_of_precision(float a, float b) |
| 14 | { |
| 15 | const double kd = 1.0 / log(2.0); |
| 16 | |
| 17 | if (a==b) |
| 18 | return 23; |
| 19 | |
| 20 | const double kdmin = pow(2.0, -23.0); |
| 21 | |
| 22 | double d = fabs(a-b); |
| 23 | if (d < kdmin) |
| 24 | return 23; |
| 25 | |
| 26 | return int(-log(d)*kd); |
| 27 | } |
| 28 | |
| 29 | // estiamte bits of precision (64-bit double case) |
| 30 | inline int bits_of_precision(double a, double b) |
| 31 | { |
| 32 | const double kd = 1.0 / log(2.0); |
| 33 | |
| 34 | if (a==b) |
| 35 | return 52; |
| 36 | |
| 37 | const double kdmin = pow(2.0, -52.0); |
| 38 | |
| 39 | double d = fabs(a-b); |
| 40 | if (d < kdmin) |
| 41 | return 52; |
| 42 | |
| 43 | return int(-log(d)*kd); |
| 44 | } |
| 45 | |
| 46 | // cube root via x^(1/3) |
| 47 | static float pow_cbrtf(float x) |
| 48 | { |
| 49 | return (float) pow(x, 1.0f/3.0f); |
| 50 | } |
| 51 | |
| 52 | // cube root via x^(1/3) |
| 53 | static double pow_cbrtd(double x) |
| 54 | { |
| 55 | return pow(x, 1.0/3.0); |
| 56 | } |
| 57 | |
| 58 | // cube root approximation using bit hack for 32-bit float |
| 59 | static float cbrt_5f(float f) |
| 60 | { |
| 61 | unsigned int* p = (unsigned int *) &f; |
| 62 | *p = *p/3 + 709921077; |
| 63 | return f; |
| 64 | } |
| 65 | #endif |
| 66 | |
| 67 | // cube root approximation using bit hack for 64-bit float |
| 68 | // adapted from Kahan's cbrt |
| 69 | static double cbrt_5d(double d) |
| 70 | { |
| 71 | const unsigned int B1 = 715094163; |
| 72 | double t = 0.0; |
| 73 | unsigned int* pt = (unsigned int*) &t; |
| 74 | unsigned int* px = (unsigned int*) &d; |
| 75 | pt[1]=px[1]/3+B1; |
| 76 | return t; |
| 77 | } |
| 78 | |
| 79 | #if TEST_ALTERNATIVES |
| 80 | // cube root approximation using bit hack for 64-bit float |
| 81 | // adapted from Kahan's cbrt |
| 82 | #if 0 |
| 83 | static double quint_5d(double d) |
| 84 | { |
| 85 | return sqrt(sqrt(d)); |
| 86 | |
| 87 | const unsigned int B1 = 71509416*5/3; |
| 88 | double t = 0.0; |
| 89 | unsigned int* pt = (unsigned int*) &t; |
| 90 | unsigned int* px = (unsigned int*) &d; |
| 91 | pt[1]=px[1]/5+B1; |
| 92 | return t; |
| 93 | } |
| 94 | #endif |
| 95 | |
| 96 | // iterative cube root approximation using Halley's method (float) |
| 97 | static float cbrta_halleyf(const float a, const float R) |
| 98 | { |
| 99 | const float a3 = a*a*a; |
| 100 | const float b= a * (a3 + R + R) / (a3 + a3 + R); |
| 101 | return b; |
| 102 | } |
| 103 | #endif |
| 104 | |
| 105 | // iterative cube root approximation using Halley's method (double) |
| 106 | static double cbrta_halleyd(const double a, const double R) |
| 107 | { |
| 108 | const double a3 = a*a*a; |
| 109 | const double b= a * (a3 + R + R) / (a3 + a3 + R); |
| 110 | return b; |
| 111 | } |
| 112 | |
| 113 | #if TEST_ALTERNATIVES |
| 114 | // iterative cube root approximation using Newton's method (float) |
| 115 | static float cbrta_newtonf(const float a, const float x) |
| 116 | { |
| 117 | // return (1.0 / 3.0) * ((a + a) + x / (a * a)); |
| 118 | return a - (1.0f / 3.0f) * (a - x / (a*a)); |
| 119 | } |
| 120 | |
| 121 | // iterative cube root approximation using Newton's method (double) |
| 122 | static double cbrta_newtond(const double a, const double x) |
| 123 | { |
| 124 | return (1.0/3.0) * (x / (a*a) + 2*a); |
| 125 | } |
| 126 | |
| 127 | // cube root approximation using 1 iteration of Halley's method (double) |
| 128 | static double halley_cbrt1d(double d) |
| 129 | { |
| 130 | double a = cbrt_5d(d); |
| 131 | return cbrta_halleyd(a, d); |
| 132 | } |
| 133 | |
| 134 | // cube root approximation using 1 iteration of Halley's method (float) |
| 135 | static float halley_cbrt1f(float d) |
| 136 | { |
| 137 | float a = cbrt_5f(d); |
| 138 | return cbrta_halleyf(a, d); |
| 139 | } |
| 140 | |
| 141 | // cube root approximation using 2 iterations of Halley's method (double) |
| 142 | static double halley_cbrt2d(double d) |
| 143 | { |
| 144 | double a = cbrt_5d(d); |
| 145 | a = cbrta_halleyd(a, d); |
| 146 | return cbrta_halleyd(a, d); |
| 147 | } |
| 148 | #endif |
| 149 | |
| 150 | // cube root approximation using 3 iterations of Halley's method (double) |
| 151 | static double halley_cbrt3d(double d) |
| 152 | { |
| 153 | double a = cbrt_5d(d); |
| 154 | a = cbrta_halleyd(a, d); |
| 155 | a = cbrta_halleyd(a, d); |
| 156 | return cbrta_halleyd(a, d); |
| 157 | } |
| 158 | |
| 159 | #if TEST_ALTERNATIVES |
| 160 | // cube root approximation using 2 iterations of Halley's method (float) |
| 161 | static float halley_cbrt2f(float d) |
| 162 | { |
| 163 | float a = cbrt_5f(d); |
| 164 | a = cbrta_halleyf(a, d); |
| 165 | return cbrta_halleyf(a, d); |
| 166 | } |
| 167 | |
| 168 | // cube root approximation using 1 iteration of Newton's method (double) |
| 169 | static double newton_cbrt1d(double d) |
| 170 | { |
| 171 | double a = cbrt_5d(d); |
| 172 | return cbrta_newtond(a, d); |
| 173 | } |
| 174 | |
| 175 | // cube root approximation using 2 iterations of Newton's method (double) |
| 176 | static double newton_cbrt2d(double d) |
| 177 | { |
| 178 | double a = cbrt_5d(d); |
| 179 | a = cbrta_newtond(a, d); |
| 180 | return cbrta_newtond(a, d); |
| 181 | } |
| 182 | |
| 183 | // cube root approximation using 3 iterations of Newton's method (double) |
| 184 | static double newton_cbrt3d(double d) |
| 185 | { |
| 186 | double a = cbrt_5d(d); |
| 187 | a = cbrta_newtond(a, d); |
| 188 | a = cbrta_newtond(a, d); |
| 189 | return cbrta_newtond(a, d); |
| 190 | } |
| 191 | |
| 192 | // cube root approximation using 4 iterations of Newton's method (double) |
| 193 | static double newton_cbrt4d(double d) |
| 194 | { |
| 195 | double a = cbrt_5d(d); |
| 196 | a = cbrta_newtond(a, d); |
| 197 | a = cbrta_newtond(a, d); |
| 198 | a = cbrta_newtond(a, d); |
| 199 | return cbrta_newtond(a, d); |
| 200 | } |
| 201 | |
| 202 | // cube root approximation using 2 iterations of Newton's method (float) |
| 203 | static float newton_cbrt1f(float d) |
| 204 | { |
| 205 | float a = cbrt_5f(d); |
| 206 | return cbrta_newtonf(a, d); |
| 207 | } |
| 208 | |
| 209 | // cube root approximation using 2 iterations of Newton's method (float) |
| 210 | static float newton_cbrt2f(float d) |
| 211 | { |
| 212 | float a = cbrt_5f(d); |
| 213 | a = cbrta_newtonf(a, d); |
| 214 | return cbrta_newtonf(a, d); |
| 215 | } |
| 216 | |
| 217 | // cube root approximation using 3 iterations of Newton's method (float) |
| 218 | static float newton_cbrt3f(float d) |
| 219 | { |
| 220 | float a = cbrt_5f(d); |
| 221 | a = cbrta_newtonf(a, d); |
| 222 | a = cbrta_newtonf(a, d); |
| 223 | return cbrta_newtonf(a, d); |
| 224 | } |
| 225 | |
| 226 | // cube root approximation using 4 iterations of Newton's method (float) |
| 227 | static float newton_cbrt4f(float d) |
| 228 | { |
| 229 | float a = cbrt_5f(d); |
| 230 | a = cbrta_newtonf(a, d); |
| 231 | a = cbrta_newtonf(a, d); |
| 232 | a = cbrta_newtonf(a, d); |
| 233 | return cbrta_newtonf(a, d); |
| 234 | } |
| 235 | |
| 236 | static double TestCubeRootf(const char* szName, cuberootfnf cbrt, double rA, double rB, int rN) |
| 237 | { |
| 238 | const int N = rN; |
| 239 | |
| 240 | float dd = float((rB-rA) / N); |
| 241 | |
| 242 | // calculate 1M numbers |
| 243 | int i=0; |
| 244 | float d = (float) rA; |
| 245 | |
| 246 | double s = 0.0; |
| 247 | |
| 248 | for(d=(float) rA, i=0; i<N; i++, d += dd) |
| 249 | { |
| 250 | s += cbrt(d); |
| 251 | } |
| 252 | |
| 253 | double bits = 0.0; |
| 254 | double worstx=0.0; |
| 255 | double worsty=0.0; |
| 256 | int minbits=64; |
| 257 | |
| 258 | for(d=(float) rA, i=0; i<N; i++, d += dd) |
| 259 | { |
| 260 | float a = cbrt((float) d); |
| 261 | float b = (float) pow((double) d, 1.0/3.0); |
| 262 | |
| 263 | int bc = bits_of_precision(a, b); |
| 264 | bits += bc; |
| 265 | |
| 266 | if (b > 1.0e-6) |
| 267 | { |
| 268 | if (bc < minbits) |
| 269 | { |
| 270 | minbits = bc; |
| 271 | worstx = d; |
| 272 | worsty = a; |
| 273 | } |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | bits /= N; |
| 278 | |
| 279 | printf(" %3d mbp %6.3f abp\n", minbits, bits); |
| 280 | |
| 281 | return s; |
| 282 | } |
| 283 | |
| 284 | |
| 285 | static double TestCubeRootd(const char* szName, cuberootfnd cbrt, double rA, double rB, int rN) |
| 286 | { |
| 287 | const int N = rN; |
| 288 | |
| 289 | double dd = (rB-rA) / N; |
| 290 | |
| 291 | int i=0; |
| 292 | |
| 293 | double s = 0.0; |
| 294 | double d = 0.0; |
| 295 | |
| 296 | for(d=rA, i=0; i<N; i++, d += dd) |
| 297 | { |
| 298 | s += cbrt(d); |
| 299 | } |
| 300 | |
| 301 | |
| 302 | double bits = 0.0; |
| 303 | double worstx = 0.0; |
| 304 | double worsty = 0.0; |
| 305 | int minbits = 64; |
| 306 | for(d=rA, i=0; i<N; i++, d += dd) |
| 307 | { |
| 308 | double a = cbrt(d); |
| 309 | double b = pow(d, 1.0/3.0); |
| 310 | |
| 311 | int bc = bits_of_precision(a, b); // min(53, count_matching_bitsd(a, b) - 12); |
| 312 | bits += bc; |
| 313 | |
| 314 | if (b > 1.0e-6) |
| 315 | { |
| 316 | if (bc < minbits) |
| 317 | { |
| 318 | bits_of_precision(a, b); |
| 319 | minbits = bc; |
| 320 | worstx = d; |
| 321 | worsty = a; |
| 322 | } |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | bits /= N; |
| 327 | |
| 328 | printf(" %3d mbp %6.3f abp\n", minbits, bits); |
| 329 | |
| 330 | return s; |
| 331 | } |
| 332 | |
| 333 | static int _tmain() |
| 334 | { |
| 335 | // a million uniform steps through the range from 0.0 to 1.0 |
| 336 | // (doing uniform steps in the log scale would be better) |
| 337 | double a = 0.0; |
| 338 | double b = 1.0; |
| 339 | int n = 1000000; |
| 340 | |
| 341 | printf("32-bit float tests\n"); |
| 342 | printf("----------------------------------------\n"); |
| 343 | TestCubeRootf("cbrt_5f", cbrt_5f, a, b, n); |
| 344 | TestCubeRootf("pow", pow_cbrtf, a, b, n); |
| 345 | TestCubeRootf("halley x 1", halley_cbrt1f, a, b, n); |
| 346 | TestCubeRootf("halley x 2", halley_cbrt2f, a, b, n); |
| 347 | TestCubeRootf("newton x 1", newton_cbrt1f, a, b, n); |
| 348 | TestCubeRootf("newton x 2", newton_cbrt2f, a, b, n); |
| 349 | TestCubeRootf("newton x 3", newton_cbrt3f, a, b, n); |
| 350 | TestCubeRootf("newton x 4", newton_cbrt4f, a, b, n); |
| 351 | printf("\n\n"); |
| 352 | |
| 353 | printf("64-bit double tests\n"); |
| 354 | printf("----------------------------------------\n"); |
| 355 | TestCubeRootd("cbrt_5d", cbrt_5d, a, b, n); |
| 356 | TestCubeRootd("pow", pow_cbrtd, a, b, n); |
| 357 | TestCubeRootd("halley x 1", halley_cbrt1d, a, b, n); |
| 358 | TestCubeRootd("halley x 2", halley_cbrt2d, a, b, n); |
| 359 | TestCubeRootd("halley x 3", halley_cbrt3d, a, b, n); |
| 360 | TestCubeRootd("newton x 1", newton_cbrt1d, a, b, n); |
| 361 | TestCubeRootd("newton x 2", newton_cbrt2d, a, b, n); |
| 362 | TestCubeRootd("newton x 3", newton_cbrt3d, a, b, n); |
| 363 | TestCubeRootd("newton x 4", newton_cbrt4d, a, b, n); |
| 364 | printf("\n\n"); |
| 365 | |
| 366 | return 0; |
| 367 | } |
| 368 | #endif |
| 369 | |
| 370 | double cube_root(double x) { |
| 371 | return halley_cbrt3d(x); |
| 372 | } |
| 373 | |
| 374 | #if TEST_ALTERNATIVES |
| 375 | // http://bytes.com/topic/c/answers/754588-tips-find-cube-root-program-using-c |
| 376 | /* cube root */ |
| 377 | int icbrt(int n) { |
| 378 | int t=0, x=(n+2)/3; /* works for n=0 and n>=1 */ |
| 379 | for(; t!=x;) { |
| 380 | int x3=x*x*x; |
| 381 | t=x; |
| 382 | x*=(2*n + x3); |
| 383 | x/=(2*x3 + n); |
| 384 | } |
| 385 | return x ; /* always(?) equal to floor(n^(1/3)) */ |
| 386 | } |
| 387 | #endif |