blob: 2514e6caae21b5fa821d799895dfcb4c2a81353a [file] [log] [blame]
mtklein4a37d082015-09-10 10:38:02 -07001/*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef SkBlitRow_opts_DEFINED
9#define SkBlitRow_opts_DEFINED
10
Mike Kleinc0bd9f92019-04-23 12:05:21 -050011#include "include/private/SkColorData.h"
12#include "include/private/SkVx.h"
13#include "src/core/SkMSAN.h"
Zhenyu Shand2f2c042019-05-22 21:15:43 +080014#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
15 #include <immintrin.h>
mtkleinb4a7dc92016-03-23 06:29:12 -070016
Zhenyu Shand2f2c042019-05-22 21:15:43 +080017 static inline __m256i SkPMSrcOver_AVX2(const __m256i& src, const __m256i& dst) {
18 auto SkAlphaMulQ_AVX2 = [](const __m256i& c, const __m256i& scale) {
19 const __m256i mask = _mm256_set1_epi32(0xFF00FF);
20 __m256i s = _mm256_or_si256(_mm256_slli_epi32(scale, 16), scale);
21
22 // uint32_t rb = ((c & mask) * scale) >> 8
23 __m256i rb = _mm256_and_si256(mask, c);
24 rb = _mm256_mullo_epi16(rb, s);
25 rb = _mm256_srli_epi16(rb, 8);
26
27 // uint32_t ag = ((c >> 8) & mask) * scale
28 __m256i ag = _mm256_srli_epi16(c, 8);
29 ag = _mm256_mullo_epi16(ag, s);
30
31 // (rb & mask) | (ag & ~mask)
32 ag = _mm256_andnot_si256(mask, ag);
33 return _mm256_or_si256(rb, ag);
34 };
35 return _mm256_add_epi32(src,
36 SkAlphaMulQ_AVX2(dst, _mm256_sub_epi32(_mm256_set1_epi32(256),
37 _mm256_srli_epi32(src, 24))));
38 }
39
40#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
Herbert Derbyd8e2b132017-11-29 11:02:07 -050041 #include <immintrin.h>
Mike Kleinf3086f02018-12-04 15:14:28 -050042
43 static inline __m128i SkPMSrcOver_SSE2(const __m128i& src, const __m128i& dst) {
44 auto SkAlphaMulQ_SSE2 = [](const __m128i& c, const __m128i& scale) {
45 const __m128i mask = _mm_set1_epi32(0xFF00FF);
46 __m128i s = _mm_or_si128(_mm_slli_epi32(scale, 16), scale);
47
48 // uint32_t rb = ((c & mask) * scale) >> 8
49 __m128i rb = _mm_and_si128(mask, c);
50 rb = _mm_mullo_epi16(rb, s);
51 rb = _mm_srli_epi16(rb, 8);
52
53 // uint32_t ag = ((c >> 8) & mask) * scale
54 __m128i ag = _mm_srli_epi16(c, 8);
55 ag = _mm_mullo_epi16(ag, s);
56
57 // (rb & mask) | (ag & ~mask)
58 ag = _mm_andnot_si128(mask, ag);
59 return _mm_or_si128(rb, ag);
60 };
61 return _mm_add_epi32(src,
62 SkAlphaMulQ_SSE2(dst, _mm_sub_epi32(_mm_set1_epi32(256),
63 _mm_srli_epi32(src, 24))));
64 }
mtkleinb4a7dc92016-03-23 06:29:12 -070065#endif
mtklein4a37d082015-09-10 10:38:02 -070066
67namespace SK_OPTS_NS {
68
Mike Kleinc33e6dc2019-04-10 11:44:42 -050069// Blend constant color over count src pixels, writing into dst.
70inline void blit_row_color32(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) {
Mike Klein3d507302019-04-15 08:56:06 -050071 constexpr int N = 4; // 8, 16 also reasonable choices
Mike Kleinc33e6dc2019-04-10 11:44:42 -050072 using U32 = skvx::Vec< N, uint32_t>;
73 using U16 = skvx::Vec<4*N, uint16_t>;
74 using U8 = skvx::Vec<4*N, uint8_t>;
75
76 auto kernel = [color](U32 src) {
77 unsigned invA = 255 - SkGetPackedA32(color);
78 invA += invA >> 7;
79 SkASSERT(0 < invA && invA < 256); // We handle alpha == 0 or alpha == 255 specially.
80
81 // (src * invA + (color << 8) + 128) >> 8
82 // Should all fit in 16 bits.
Mike Klein3d507302019-04-15 08:56:06 -050083 U8 s = skvx::bit_pun<U8>(src),
84 a = U8(invA);
85 U16 c = skvx::cast<uint16_t>(skvx::bit_pun<U8>(U32(color))),
86 d = (mull(s,a) + (c << 8) + 128)>>8;
Mike Kleinc33e6dc2019-04-10 11:44:42 -050087 return skvx::bit_pun<U32>(skvx::cast<uint8_t>(d));
88 };
89
90 while (count >= N) {
91 kernel(U32::Load(src)).store(dst);
92 src += N;
93 dst += N;
94 count -= N;
95 }
96 while (count --> 0) {
97 *dst++ = kernel(U32{*src++})[0];
98 }
99}
100
Matteo Franchina132c382017-05-26 18:56:51 +0100101#if defined(SK_ARM_HAS_NEON)
102
103// Return a uint8x8_t value, r, computed as r[i] = SkMulDiv255Round(x[i], y[i]), where r[i], x[i],
104// y[i] are the i-th lanes of the corresponding NEON vectors.
105static inline uint8x8_t SkMulDiv255Round_neon8(uint8x8_t x, uint8x8_t y) {
106 uint16x8_t prod = vmull_u8(x, y);
107 return vraddhn_u16(prod, vrshrq_n_u16(prod, 8));
108}
109
110// The implementations of SkPMSrcOver below perform alpha blending consistently with
111// SkMulDiv255Round. They compute the color components (numbers in the interval [0, 255]) as:
112//
113// result_i = src_i + rint(g(src_alpha, dst_i))
114//
115// where g(x, y) = ((255.0 - x) * y) / 255.0 and rint rounds to the nearest integer.
116
117// In this variant of SkPMSrcOver each NEON register, dst.val[i], src.val[i], contains the value
118// of the same color component for 8 consecutive pixels. The result of this function follows the
119// same convention.
120static inline uint8x8x4_t SkPMSrcOver_neon8(uint8x8x4_t dst, uint8x8x4_t src) {
121 uint8x8_t nalphas = vmvn_u8(src.val[3]);
122 uint8x8x4_t result;
123 result.val[0] = vadd_u8(src.val[0], SkMulDiv255Round_neon8(nalphas, dst.val[0]));
124 result.val[1] = vadd_u8(src.val[1], SkMulDiv255Round_neon8(nalphas, dst.val[1]));
125 result.val[2] = vadd_u8(src.val[2], SkMulDiv255Round_neon8(nalphas, dst.val[2]));
126 result.val[3] = vadd_u8(src.val[3], SkMulDiv255Round_neon8(nalphas, dst.val[3]));
127 return result;
128}
129
130// In this variant of SkPMSrcOver dst and src contain the color components of two consecutive
131// pixels. The return value follows the same convention.
132static inline uint8x8_t SkPMSrcOver_neon2(uint8x8_t dst, uint8x8_t src) {
133 const uint8x8_t alpha_indices = vcreate_u8(0x0707070703030303);
134 uint8x8_t nalphas = vmvn_u8(vtbl1_u8(src, alpha_indices));
135 return vadd_u8(src, SkMulDiv255Round_neon8(nalphas, dst));
136}
137
138#endif
139
Mike Kleincd71f112017-08-23 11:11:55 -0400140/*not static*/ inline
mtkleinb4a7dc92016-03-23 06:29:12 -0700141void blit_row_s32a_opaque(SkPMColor* dst, const SkPMColor* src, int len, U8CPU alpha) {
142 SkASSERT(alpha == 0xFF);
143 sk_msan_assert_initialized(src, src+len);
Zhenyu Shand2f2c042019-05-22 21:15:43 +0800144// Require AVX2 because of AVX2 integer calculation intrinsics in SrcOver
145#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
146 while (len >= 32) {
147 // Load 32 source pixels.
148 auto s0 = _mm256_loadu_si256((const __m256i*)(src) + 0),
149 s1 = _mm256_loadu_si256((const __m256i*)(src) + 1),
150 s2 = _mm256_loadu_si256((const __m256i*)(src) + 2),
151 s3 = _mm256_loadu_si256((const __m256i*)(src) + 3);
mtkleinb4a7dc92016-03-23 06:29:12 -0700152
Zhenyu Shand2f2c042019-05-22 21:15:43 +0800153 const auto alphaMask = _mm256_set1_epi32(0xFF000000);
154
155 auto ORed = _mm256_or_si256(s3, _mm256_or_si256(s2, _mm256_or_si256(s1, s0)));
156 if (_mm256_testz_si256(ORed, alphaMask)) {
157 // All 32 source pixels are transparent. Nothing to do.
158 src += 32;
159 dst += 32;
160 len -= 32;
161 continue;
162 }
163
164 auto d0 = (__m256i*)(dst) + 0,
165 d1 = (__m256i*)(dst) + 1,
166 d2 = (__m256i*)(dst) + 2,
167 d3 = (__m256i*)(dst) + 3;
168
169 auto ANDed = _mm256_and_si256(s3, _mm256_and_si256(s2, _mm256_and_si256(s1, s0)));
170 if (_mm256_testc_si256(ANDed, alphaMask)) {
171 // All 32 source pixels are opaque. SrcOver becomes Src.
172 _mm256_storeu_si256(d0, s0);
173 _mm256_storeu_si256(d1, s1);
174 _mm256_storeu_si256(d2, s2);
175 _mm256_storeu_si256(d3, s3);
176 src += 32;
177 dst += 32;
178 len -= 32;
179 continue;
180 }
181
182 // TODO: This math is wrong.
183 // Do SrcOver.
184 _mm256_storeu_si256(d0, SkPMSrcOver_AVX2(s0, _mm256_loadu_si256(d0)));
185 _mm256_storeu_si256(d1, SkPMSrcOver_AVX2(s1, _mm256_loadu_si256(d1)));
186 _mm256_storeu_si256(d2, SkPMSrcOver_AVX2(s2, _mm256_loadu_si256(d2)));
187 _mm256_storeu_si256(d3, SkPMSrcOver_AVX2(s3, _mm256_loadu_si256(d3)));
188 src += 32;
189 dst += 32;
190 len -= 32;
191 }
192
193#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
mtkleinb4a7dc92016-03-23 06:29:12 -0700194 while (len >= 16) {
195 // Load 16 source pixels.
196 auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0),
197 s1 = _mm_loadu_si128((const __m128i*)(src) + 1),
198 s2 = _mm_loadu_si128((const __m128i*)(src) + 2),
199 s3 = _mm_loadu_si128((const __m128i*)(src) + 3);
200
201 const auto alphaMask = _mm_set1_epi32(0xFF000000);
202
203 auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0)));
204 if (_mm_testz_si128(ORed, alphaMask)) {
205 // All 16 source pixels are transparent. Nothing to do.
206 src += 16;
207 dst += 16;
208 len -= 16;
209 continue;
210 }
211
212 auto d0 = (__m128i*)(dst) + 0,
213 d1 = (__m128i*)(dst) + 1,
214 d2 = (__m128i*)(dst) + 2,
215 d3 = (__m128i*)(dst) + 3;
216
217 auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0)));
218 if (_mm_testc_si128(ANDed, alphaMask)) {
219 // All 16 source pixels are opaque. SrcOver becomes Src.
220 _mm_storeu_si128(d0, s0);
221 _mm_storeu_si128(d1, s1);
222 _mm_storeu_si128(d2, s2);
223 _mm_storeu_si128(d3, s3);
224 src += 16;
225 dst += 16;
226 len -= 16;
227 continue;
228 }
229
230 // TODO: This math is wrong.
231 // Do SrcOver.
232 _mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0)));
233 _mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1)));
234 _mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2)));
235 _mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3)));
236 src += 16;
237 dst += 16;
238 len -= 16;
239 }
240
241#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
242 while (len >= 16) {
243 // Load 16 source pixels.
244 auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0),
245 s1 = _mm_loadu_si128((const __m128i*)(src) + 1),
246 s2 = _mm_loadu_si128((const __m128i*)(src) + 2),
247 s3 = _mm_loadu_si128((const __m128i*)(src) + 3);
248
249 const auto alphaMask = _mm_set1_epi32(0xFF000000);
250
251 auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0)));
252 if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ORed, alphaMask),
253 _mm_setzero_si128()))) {
254 // All 16 source pixels are transparent. Nothing to do.
255 src += 16;
256 dst += 16;
257 len -= 16;
258 continue;
259 }
260
261 auto d0 = (__m128i*)(dst) + 0,
262 d1 = (__m128i*)(dst) + 1,
263 d2 = (__m128i*)(dst) + 2,
264 d3 = (__m128i*)(dst) + 3;
265
266 auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0)));
267 if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ANDed, alphaMask),
268 alphaMask))) {
269 // All 16 source pixels are opaque. SrcOver becomes Src.
270 _mm_storeu_si128(d0, s0);
271 _mm_storeu_si128(d1, s1);
272 _mm_storeu_si128(d2, s2);
273 _mm_storeu_si128(d3, s3);
274 src += 16;
275 dst += 16;
276 len -= 16;
277 continue;
278 }
279
280 // TODO: This math is wrong.
281 // Do SrcOver.
282 _mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0)));
283 _mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1)));
284 _mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2)));
285 _mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3)));
286
287 src += 16;
288 dst += 16;
289 len -= 16;
290 }
291
292#elif defined(SK_ARM_HAS_NEON)
Matteo Franchina132c382017-05-26 18:56:51 +0100293 // Do 8-pixels at a time. A 16-pixels at a time version of this code was also tested, but it
294 // underperformed on some of the platforms under test for inputs with frequent transitions of
295 // alpha (corresponding to changes of the conditions [~]alpha_u64 == 0 below). It may be worth
296 // revisiting the situation in the future.
297 while (len >= 8) {
298 // Load 8 pixels in 4 NEON registers. src_col.val[i] will contain the same color component
299 // for 8 consecutive pixels (e.g. src_col.val[3] will contain all alpha components of 8
300 // pixels).
301 uint8x8x4_t src_col = vld4_u8(reinterpret_cast<const uint8_t*>(src));
302 src += 8;
303 len -= 8;
304
305 // We now detect 2 special cases: the first occurs when all alphas are zero (the 8 pixels
306 // are all transparent), the second when all alphas are fully set (they are all opaque).
307 uint8x8_t alphas = src_col.val[3];
308 uint64_t alphas_u64 = vget_lane_u64(vreinterpret_u64_u8(alphas), 0);
309 if (alphas_u64 == 0) {
310 // All pixels transparent.
311 dst += 8;
mtkleinb4a7dc92016-03-23 06:29:12 -0700312 continue;
313 }
314
Matteo Franchina132c382017-05-26 18:56:51 +0100315 if (~alphas_u64 == 0) {
316 // All pixels opaque.
317 vst4_u8(reinterpret_cast<uint8_t*>(dst), src_col);
318 dst += 8;
mtkleinb4a7dc92016-03-23 06:29:12 -0700319 continue;
320 }
321
Matteo Franchina132c382017-05-26 18:56:51 +0100322 uint8x8x4_t dst_col = vld4_u8(reinterpret_cast<uint8_t*>(dst));
323 vst4_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon8(dst_col, src_col));
324 dst += 8;
mtkleinb4a7dc92016-03-23 06:29:12 -0700325 }
Matteo Franchina132c382017-05-26 18:56:51 +0100326
327 // Deal with leftover pixels.
328 for (; len >= 2; len -= 2, src += 2, dst += 2) {
329 uint8x8_t src2 = vld1_u8(reinterpret_cast<const uint8_t*>(src));
330 uint8x8_t dst2 = vld1_u8(reinterpret_cast<const uint8_t*>(dst));
331 vst1_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon2(dst2, src2));
332 }
333
334 if (len != 0) {
335 uint8x8_t result = SkPMSrcOver_neon2(vcreate_u8(*dst), vcreate_u8(*src));
336 vst1_lane_u32(dst, vreinterpret_u32_u8(result), 0);
337 }
338 return;
mtkleinb4a7dc92016-03-23 06:29:12 -0700339#endif
340
341 while (len-- > 0) {
mtklein3e318122016-06-17 13:47:53 -0700342 // This 0xFF000000 is not semantically necessary, but for compatibility
343 // with chromium:611002 we need to keep it until we figure out where
344 // the non-premultiplied src values (like 0x00FFFFFF) are coming from.
345 // TODO(mtklein): sort this out and assert *src is premul here.
346 if (*src & 0xFF000000) {
mtkleinb4a7dc92016-03-23 06:29:12 -0700347 *dst = (*src >= 0xFF000000) ? *src : SkPMSrcOver(*src, *dst);
348 }
349 src++;
350 dst++;
351 }
352}
353
mtklein4a37d082015-09-10 10:38:02 -0700354} // SK_OPTS_NS
355
356#endif//SkBlitRow_opts_DEFINED