John Stiles | dc8ec31 | 2021-01-11 11:05:21 -0500 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2020 Google LLC |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/sksl/SkSLConstantFolder.h" |
| 9 | |
| 10 | #include <limits> |
| 11 | |
| 12 | #include "src/sksl/SkSLContext.h" |
| 13 | #include "src/sksl/SkSLErrorReporter.h" |
| 14 | #include "src/sksl/ir/SkSLBinaryExpression.h" |
| 15 | #include "src/sksl/ir/SkSLBoolLiteral.h" |
| 16 | #include "src/sksl/ir/SkSLConstructor.h" |
| 17 | #include "src/sksl/ir/SkSLExpression.h" |
| 18 | #include "src/sksl/ir/SkSLFloatLiteral.h" |
| 19 | #include "src/sksl/ir/SkSLIntLiteral.h" |
| 20 | #include "src/sksl/ir/SkSLType.h" |
| 21 | #include "src/sksl/ir/SkSLVariable.h" |
| 22 | #include "src/sksl/ir/SkSLVariableReference.h" |
| 23 | |
| 24 | namespace SkSL { |
| 25 | |
| 26 | static std::unique_ptr<Expression> short_circuit_boolean(const Expression& left, |
| 27 | Token::Kind op, |
| 28 | const Expression& right) { |
| 29 | SkASSERT(left.is<BoolLiteral>()); |
| 30 | bool leftVal = left.as<BoolLiteral>().value(); |
| 31 | |
| 32 | if (op == Token::Kind::TK_LOGICALAND) { |
| 33 | // (true && expr) -> (expr) and (false && expr) -> (false) |
| 34 | return leftVal ? right.clone() |
| 35 | : std::make_unique<BoolLiteral>(left.fOffset, /*value=*/false, &left.type()); |
| 36 | } |
| 37 | if (op == Token::Kind::TK_LOGICALOR) { |
| 38 | // (true || expr) -> (true) and (false || expr) -> (expr) |
| 39 | return leftVal ? std::make_unique<BoolLiteral>(left.fOffset, /*value=*/true, &left.type()) |
| 40 | : right.clone(); |
| 41 | } |
| 42 | if (op == Token::Kind::TK_LOGICALXOR && !leftVal) { |
| 43 | // (false ^^ expr) -> (expr) |
| 44 | return right.clone(); |
| 45 | } |
| 46 | |
| 47 | return nullptr; |
| 48 | } |
| 49 | |
| 50 | template <typename T> |
| 51 | static std::unique_ptr<Expression> simplify_vector(const Context& context, |
| 52 | ErrorReporter& errors, |
| 53 | const Expression& left, |
| 54 | Token::Kind op, |
| 55 | const Expression& right) { |
| 56 | SkASSERT(left.type() == right.type()); |
| 57 | const Type& type = left.type(); |
| 58 | |
| 59 | // Handle boolean operations: == != |
| 60 | if (op == Token::Kind::TK_EQEQ || op == Token::Kind::TK_NEQ) { |
| 61 | bool equality = (op == Token::Kind::TK_EQEQ); |
| 62 | |
| 63 | switch (left.compareConstant(right)) { |
| 64 | case Expression::ComparisonResult::kNotEqual: |
| 65 | equality = !equality; |
| 66 | [[fallthrough]]; |
| 67 | |
| 68 | case Expression::ComparisonResult::kEqual: |
| 69 | return std::make_unique<BoolLiteral>(context, left.fOffset, equality); |
| 70 | |
| 71 | case Expression::ComparisonResult::kUnknown: |
| 72 | return nullptr; |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | // Handle floating-point arithmetic: + - * / |
| 77 | const auto vectorComponentwiseFold = [&](auto foldFn) -> std::unique_ptr<Constructor> { |
| 78 | const Type& componentType = type.componentType(); |
| 79 | ExpressionArray args; |
| 80 | args.reserve_back(type.columns()); |
| 81 | for (int i = 0; i < type.columns(); i++) { |
| 82 | T value = foldFn(left.getVecComponent<T>(i), right.getVecComponent<T>(i)); |
| 83 | args.push_back(std::make_unique<Literal<T>>(left.fOffset, value, &componentType)); |
| 84 | } |
| 85 | return std::make_unique<Constructor>(left.fOffset, &type, std::move(args)); |
| 86 | }; |
| 87 | |
| 88 | const auto isVectorDivisionByZero = [&]() -> bool { |
| 89 | for (int i = 0; i < type.columns(); i++) { |
| 90 | if (right.getVecComponent<T>(i) == 0) { |
| 91 | return true; |
| 92 | } |
| 93 | } |
| 94 | return false; |
| 95 | }; |
| 96 | |
| 97 | switch (op) { |
| 98 | case Token::Kind::TK_PLUS: return vectorComponentwiseFold([](T a, T b) { return a + b; }); |
| 99 | case Token::Kind::TK_MINUS: return vectorComponentwiseFold([](T a, T b) { return a - b; }); |
| 100 | case Token::Kind::TK_STAR: return vectorComponentwiseFold([](T a, T b) { return a * b; }); |
| 101 | case Token::Kind::TK_SLASH: { |
| 102 | if (isVectorDivisionByZero()) { |
| 103 | errors.error(right.fOffset, "division by zero"); |
| 104 | return nullptr; |
| 105 | } |
| 106 | return vectorComponentwiseFold([](T a, T b) { return a / b; }); |
| 107 | } |
| 108 | default: |
| 109 | return nullptr; |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | std::unique_ptr<Expression> ConstantFolder::Simplify(const Context& context, |
| 114 | ErrorReporter& errors, |
| 115 | const Expression& left, |
| 116 | Token::Kind op, |
| 117 | const Expression& right) { |
| 118 | // If the left side is a constant boolean literal, the right side does not need to be constant |
| 119 | // for short-circuit optimizations to allow the constant to be folded. |
| 120 | if (left.is<BoolLiteral>() && !right.isCompileTimeConstant()) { |
| 121 | return short_circuit_boolean(left, op, right); |
| 122 | } |
| 123 | |
| 124 | if (right.is<BoolLiteral>() && !left.isCompileTimeConstant()) { |
| 125 | // There aren't side effects in SkSL within expressions, so (left OP right) is equivalent to |
| 126 | // (right OP left) for short-circuit optimizations |
| 127 | // TODO: (true || (a=b)) seems to disqualify the above statement. Test this. |
| 128 | return short_circuit_boolean(right, op, left); |
| 129 | } |
| 130 | |
| 131 | // Other than the short-circuit cases above, constant folding requires both sides to be constant |
| 132 | if (!left.isCompileTimeConstant() || !right.isCompileTimeConstant()) { |
| 133 | return nullptr; |
| 134 | } |
| 135 | |
| 136 | // Perform constant folding on pairs of Booleans. |
| 137 | if (left.is<BoolLiteral>() && right.is<BoolLiteral>()) { |
| 138 | bool leftVal = left.as<BoolLiteral>().value(); |
| 139 | bool rightVal = right.as<BoolLiteral>().value(); |
| 140 | bool result; |
| 141 | switch (op) { |
| 142 | case Token::Kind::TK_LOGICALAND: result = leftVal && rightVal; break; |
| 143 | case Token::Kind::TK_LOGICALOR: result = leftVal || rightVal; break; |
| 144 | case Token::Kind::TK_LOGICALXOR: result = leftVal ^ rightVal; break; |
| 145 | default: return nullptr; |
| 146 | } |
| 147 | return std::make_unique<BoolLiteral>(context, left.fOffset, result); |
| 148 | } |
| 149 | |
| 150 | // Note that we expressly do not worry about precision and overflow here -- we use the maximum |
| 151 | // precision to calculate the results and hope the result makes sense. |
| 152 | // TODO: detect and handle integer overflow properly. |
| 153 | #define RESULT(t, op) std::make_unique<t ## Literal>(context, left.fOffset, \ |
| 154 | leftVal op rightVal) |
| 155 | #define URESULT(t, op) std::make_unique<t ## Literal>(context, left.fOffset, \ |
| 156 | (uint64_t) leftVal op \ |
| 157 | (uint64_t) rightVal) |
| 158 | if (left.is<IntLiteral>() && right.is<IntLiteral>()) { |
| 159 | SKSL_INT leftVal = left.as<IntLiteral>().value(); |
| 160 | SKSL_INT rightVal = right.as<IntLiteral>().value(); |
| 161 | switch (op) { |
| 162 | case Token::Kind::TK_PLUS: return URESULT(Int, +); |
| 163 | case Token::Kind::TK_MINUS: return URESULT(Int, -); |
| 164 | case Token::Kind::TK_STAR: return URESULT(Int, *); |
| 165 | case Token::Kind::TK_SLASH: |
| 166 | if (leftVal == std::numeric_limits<SKSL_INT>::min() && rightVal == -1) { |
| 167 | errors.error(right.fOffset, "arithmetic overflow"); |
| 168 | return nullptr; |
| 169 | } |
| 170 | if (!rightVal) { |
| 171 | errors.error(right.fOffset, "division by zero"); |
| 172 | return nullptr; |
| 173 | } |
| 174 | return RESULT(Int, /); |
| 175 | case Token::Kind::TK_PERCENT: |
| 176 | if (leftVal == std::numeric_limits<SKSL_INT>::min() && rightVal == -1) { |
| 177 | errors.error(right.fOffset, "arithmetic overflow"); |
| 178 | return nullptr; |
| 179 | } |
| 180 | if (!rightVal) { |
| 181 | errors.error(right.fOffset, "division by zero"); |
| 182 | return nullptr; |
| 183 | } |
| 184 | return RESULT(Int, %); |
| 185 | case Token::Kind::TK_BITWISEAND: return RESULT(Int, &); |
| 186 | case Token::Kind::TK_BITWISEOR: return RESULT(Int, |); |
| 187 | case Token::Kind::TK_BITWISEXOR: return RESULT(Int, ^); |
| 188 | case Token::Kind::TK_EQEQ: return RESULT(Bool, ==); |
| 189 | case Token::Kind::TK_NEQ: return RESULT(Bool, !=); |
| 190 | case Token::Kind::TK_GT: return RESULT(Bool, >); |
| 191 | case Token::Kind::TK_GTEQ: return RESULT(Bool, >=); |
| 192 | case Token::Kind::TK_LT: return RESULT(Bool, <); |
| 193 | case Token::Kind::TK_LTEQ: return RESULT(Bool, <=); |
| 194 | case Token::Kind::TK_SHL: |
| 195 | if (rightVal >= 0 && rightVal <= 31) { |
| 196 | return RESULT(Int, <<); |
| 197 | } |
| 198 | errors.error(right.fOffset, "shift value out of range"); |
| 199 | return nullptr; |
| 200 | case Token::Kind::TK_SHR: |
| 201 | if (rightVal >= 0 && rightVal <= 31) { |
| 202 | return RESULT(Int, >>); |
| 203 | } |
| 204 | errors.error(right.fOffset, "shift value out of range"); |
| 205 | return nullptr; |
| 206 | |
| 207 | default: |
| 208 | return nullptr; |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | // Perform constant folding on pairs of floating-point literals. |
| 213 | if (left.is<FloatLiteral>() && right.is<FloatLiteral>()) { |
| 214 | SKSL_FLOAT leftVal = left.as<FloatLiteral>().value(); |
| 215 | SKSL_FLOAT rightVal = right.as<FloatLiteral>().value(); |
| 216 | switch (op) { |
| 217 | case Token::Kind::TK_PLUS: return RESULT(Float, +); |
| 218 | case Token::Kind::TK_MINUS: return RESULT(Float, -); |
| 219 | case Token::Kind::TK_STAR: return RESULT(Float, *); |
| 220 | case Token::Kind::TK_SLASH: |
| 221 | if (rightVal) { |
| 222 | return RESULT(Float, /); |
| 223 | } |
| 224 | errors.error(right.fOffset, "division by zero"); |
| 225 | return nullptr; |
| 226 | case Token::Kind::TK_EQEQ: return RESULT(Bool, ==); |
| 227 | case Token::Kind::TK_NEQ: return RESULT(Bool, !=); |
| 228 | case Token::Kind::TK_GT: return RESULT(Bool, >); |
| 229 | case Token::Kind::TK_GTEQ: return RESULT(Bool, >=); |
| 230 | case Token::Kind::TK_LT: return RESULT(Bool, <); |
| 231 | case Token::Kind::TK_LTEQ: return RESULT(Bool, <=); |
| 232 | default: return nullptr; |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | // Perform constant folding on pairs of vectors. |
| 237 | const Type& leftType = left.type(); |
| 238 | const Type& rightType = right.type(); |
| 239 | if (leftType.isVector() && leftType == rightType) { |
| 240 | if (leftType.componentType().isFloat()) { |
| 241 | return simplify_vector<SKSL_FLOAT>(context, errors, left, op, right); |
| 242 | } |
| 243 | if (leftType.componentType().isInteger()) { |
| 244 | return simplify_vector<SKSL_INT>(context, errors, left, op, right); |
| 245 | } |
| 246 | return nullptr; |
| 247 | } |
| 248 | |
| 249 | // Perform constant folding on pairs of matrices. |
| 250 | if (leftType.isMatrix() && rightType.isMatrix()) { |
| 251 | bool equality; |
| 252 | switch (op) { |
| 253 | case Token::Kind::TK_EQEQ: |
| 254 | equality = true; |
| 255 | break; |
| 256 | case Token::Kind::TK_NEQ: |
| 257 | equality = false; |
| 258 | break; |
| 259 | default: |
| 260 | return nullptr; |
| 261 | } |
| 262 | |
| 263 | switch (left.compareConstant(right)) { |
| 264 | case Expression::ComparisonResult::kNotEqual: |
| 265 | equality = !equality; |
| 266 | [[fallthrough]]; |
| 267 | |
| 268 | case Expression::ComparisonResult::kEqual: |
| 269 | return std::make_unique<BoolLiteral>(context, left.fOffset, equality); |
| 270 | |
| 271 | case Expression::ComparisonResult::kUnknown: |
| 272 | return nullptr; |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | // We aren't able to constant-fold. |
| 277 | #undef RESULT |
| 278 | #undef URESULT |
| 279 | return nullptr; |
| 280 | } |
| 281 | |
| 282 | } // namespace SkSL |