blob: 686d32e063d65f3fc76227614f160abc765b8d53 [file] [log] [blame]
mtklein8317a182015-07-30 07:30:16 -07001/*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "SkOpts.h"
Mike Klein8caa5af2015-08-04 16:48:43 -04009
mtkleinb2a32702015-08-18 10:00:29 -070010#define SK_OPTS_NS sk_sse41
mtkleindce5ce42015-08-04 08:49:21 -070011#include "SkBlurImageFilter_opts.h"
mtkleinb4a7dc92016-03-23 06:29:12 -070012#include "SkBlitRow_opts.h"
herbcc49e592016-05-17 09:57:34 -070013#include "SkBlend_opts.h"
msarettdea03402016-06-16 10:50:55 -070014#include "SkColorXform_opts.h"
mtklein8317a182015-07-30 07:30:16 -070015
mtklein12386d52016-06-13 11:55:57 -070016#ifndef SK_SUPPORT_LEGACY_X86_BLITS
17
18namespace sk_sse41_new {
19
20// An SSE register holding at most 64 bits of useful data in the low lanes.
21struct m64i {
22 __m128i v;
23 /*implicit*/ m64i(__m128i v) : v(v) {}
24 operator __m128i() const { return v; }
25};
26
27// Load 4, 2, or 1 constant pixels or coverages (4x replicated).
28static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); }
29static m64i next2(uint32_t val) { return _mm_set1_epi32(val); }
30static m64i next1(uint32_t val) { return _mm_set1_epi32(val); }
31
32static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); }
33static m64i next2(uint8_t val) { return _mm_set1_epi8(val); }
34static m64i next1(uint8_t val) { return _mm_set1_epi8(val); }
35
36// Load 4, 2, or 1 variable pixels or coverages (4x replicated),
37// incrementing the pointer past what we read.
38static __m128i next4(const uint32_t*& ptr) {
39 auto r = _mm_loadu_si128((const __m128i*)ptr);
40 ptr += 4;
41 return r;
42}
43static m64i next2(const uint32_t*& ptr) {
44 auto r = _mm_loadl_epi64((const __m128i*)ptr);
45 ptr += 2;
46 return r;
47}
48static m64i next1(const uint32_t*& ptr) {
49 auto r = _mm_cvtsi32_si128(*ptr);
50 ptr += 1;
51 return r;
52}
53
54// xyzw -> xxxx yyyy zzzz wwww
55static __m128i replicate_coverage(__m128i xyzw) {
56 return _mm_shuffle_epi8(xyzw, _mm_setr_epi8(0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3));
57}
58
59static __m128i next4(const uint8_t*& ptr) {
60 auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr));
61 ptr += 4;
62 return r;
63}
64static m64i next2(const uint8_t*& ptr) {
65 auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr));
66 ptr += 2;
67 return r;
68}
69static m64i next1(const uint8_t*& ptr) {
70 auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr));
71 ptr += 1;
72 return r;
73}
74
75// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays.
76template <typename Dst, typename Src, typename Cov, typename Fn>
77static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
78 // We don't want to muck with the callers' pointers, so we make them const and copy here.
79 Dst d = dst;
80 Src s = src;
81 Cov c = cov;
82
83 // Writing this as a single while-loop helps hoist loop invariants from fn.
84 while (n) {
85 if (n >= 4) {
86 _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c)));
87 t += 4;
88 n -= 4;
89 continue;
90 }
91 if (n & 2) {
92 _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c)));
93 t += 2;
94 }
95 if (n & 1) {
96 *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c)));
97 }
98 return;
99 }
100}
101
102// packed
103// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
104// unpacked
105
106// Everything on the packed side of the squiggly line deals with densely packed 8-bit data,
107// e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage.
108//
109// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data,
110// e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for coverage,
111// where _ is a zero byte.
112//
113// Adapt<Fn> / adapt(fn) allow the two sides to interoperate,
114// by unpacking arguments, calling fn, then packing the results.
115//
116// This lets us write most of our code in terms of unpacked inputs (considerably simpler)
117// and all the packing and unpacking is handled automatically.
118
119template <typename Fn>
120struct Adapt {
121 Fn fn;
122
123 __m128i operator()(__m128i d, __m128i s, __m128i c) {
124 auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
125 auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); };
126 return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)),
127 fn(hi(d), hi(s), hi(c)));
128 }
129
130 m64i operator()(const m64i& d, const m64i& s, const m64i& c) {
131 auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
132 auto r = fn(lo(d), lo(s), lo(c));
133 return _mm_packus_epi16(r, r);
134 }
135};
136
137template <typename Fn>
138static Adapt<Fn> adapt(Fn&& fn) { return { fn }; }
139
140// These helpers all work exclusively with unpacked 8-bit values,
141// except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the reverse.
142
143// Divide by 255 with rounding.
144// (x+127)/255 == ((x+128)*257)>>16.
145// Sometimes we can be more efficient by breaking this into two parts.
146static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); }
147static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); }
148static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
149
150// (x*y+127)/255, a byte multiply.
151static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)); }
152
153// (255 * x).
154static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x); }
155
156// (255 - x).
157static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); }
158
159// ARGB argb -> AAAA aaaa
160static __m128i alphas(__m128i px) {
161 const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
162 const int _ = ~0;
163 return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_));
164}
165
166// SrcOver, with a constant source and full coverage.
167static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) {
168 // We want to calculate s + (d * inv(alphas(s)) + 127)/255.
169 // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16.
170
171 // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16.
172 // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop.
173 __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()),
174 s_255_128 = div255_part1(mul255(s)),
175 A = inv(alphas(s));
176
177 const uint8_t cov = 0xff;
178 loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) {
179 return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A)));
180 }));
181}
182
183// SrcOver, with a constant source and variable coverage.
184// If the source is opaque, SrcOver becomes Src.
185static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
186 const SkAlpha* cov, size_t covRB,
187 SkColor color, int w, int h) {
188 if (SkColorGetA(color) == 0xFF) {
189 const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color);
190 while (h --> 0) {
191 loop(w, dst, (const SkPMColor*)dst, src, cov,
192 adapt([](__m128i d, __m128i s, __m128i c) {
193 // Src blend mode: a simple lerp from d to s by c.
194 // TODO: try a pmaddubsw version?
195 return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d),
196 _mm_mullo_epi16( c ,s)));
197 }));
198 dst += dstRB / sizeof(*dst);
199 cov += covRB / sizeof(*cov);
200 }
201 } else {
202 const SkPMColor src = SkPreMultiplyColor(color);
203 while (h --> 0) {
204 loop(w, dst, (const SkPMColor*)dst, src, cov,
205 adapt([](__m128i d, __m128i s, __m128i c) {
206 // SrcOver blend mode, with coverage folded into source alpha.
207 __m128i sc = scale(s,c),
208 AC = inv(alphas(sc));
209 return _mm_add_epi16(sc, scale(d,AC));
210 }));
211 dst += dstRB / sizeof(*dst);
212 cov += covRB / sizeof(*cov);
213 }
214 }
215}
216} // namespace sk_sse41_new
217
218#endif
219
mtklein8317a182015-07-30 07:30:16 -0700220namespace SkOpts {
221 void Init_sse41() {
mtklein12386d52016-06-13 11:55:57 -0700222 box_blur_xx = sk_sse41::box_blur_xx;
223 box_blur_xy = sk_sse41::box_blur_xy;
224 box_blur_yx = sk_sse41::box_blur_yx;
225 srcover_srgb_srgb = sk_sse41::srcover_srgb_srgb;
226
227 #ifndef SK_SUPPORT_LEGACY_X86_BLITS
228 blit_row_color32 = sk_sse41_new::blit_row_color32;
229 blit_mask_d32_a8 = sk_sse41_new::blit_mask_d32_a8;
230 #endif
mtkleinb4a7dc92016-03-23 06:29:12 -0700231 blit_row_s32a_opaque = sk_sse41::blit_row_s32a_opaque;
msarettdea03402016-06-16 10:50:55 -0700232
233 color_xform_RGB1_srgb_to_2dot2 = sk_sse41::color_xform_RGB1_srgb_to_2dot2;
234 color_xform_RGB1_2dot2_to_2dot2 = sk_sse41::color_xform_RGB1_2dot2_to_2dot2;
mtklein8317a182015-07-30 07:30:16 -0700235 }
236}