Michael Ludwig | 460eb5e | 2018-10-29 11:09:29 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2018 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "GrQuadPerEdgeAA.h" |
| 9 | #include "GrQuad.h" |
Michael Ludwig | c182b94 | 2018-11-16 10:27:51 -0500 | [diff] [blame] | 10 | #include "GrVertexWriter.h" |
Michael Ludwig | 20e909e | 2018-10-30 10:43:57 -0400 | [diff] [blame] | 11 | #include "glsl/GrGLSLColorSpaceXformHelper.h" |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 12 | #include "glsl/GrGLSLGeometryProcessor.h" |
Michael Ludwig | 20e909e | 2018-10-30 10:43:57 -0400 | [diff] [blame] | 13 | #include "glsl/GrGLSLPrimitiveProcessor.h" |
| 14 | #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| 15 | #include "glsl/GrGLSLVarying.h" |
| 16 | #include "glsl/GrGLSLVertexGeoBuilder.h" |
Michael Ludwig | 460eb5e | 2018-10-29 11:09:29 -0400 | [diff] [blame] | 17 | #include "SkNx.h" |
| 18 | |
Michael Ludwig | f995c05 | 2018-11-26 15:24:29 -0500 | [diff] [blame] | 19 | #define AI SK_ALWAYS_INLINE |
| 20 | |
Michael Ludwig | 460eb5e | 2018-10-29 11:09:29 -0400 | [diff] [blame] | 21 | namespace { |
| 22 | |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 23 | // Helper data types since there is a lot of information that needs to be passed around to |
| 24 | // avoid recalculation in the different procedures for tessellating an AA quad. |
| 25 | |
| 26 | struct Vertices { |
| 27 | // X, Y, and W coordinates in device space. If not perspective, w should be set to 1.f |
| 28 | Sk4f fX, fY, fW; |
| 29 | // U, V, and R coordinates representing local quad. Ignored depending on uvrCount (0, 1, 2). |
| 30 | Sk4f fU, fV, fR; |
| 31 | int fUVRCount; |
| 32 | }; |
| 33 | |
| 34 | struct QuadMetadata { |
| 35 | // Normalized edge vectors of the device space quad, ordered L, B, T, R (i.e. nextCCW(x) - x). |
| 36 | Sk4f fDX, fDY; |
| 37 | // 1 / edge length of the device space quad |
| 38 | Sk4f fInvLengths; |
| 39 | // Edge mask (set to all 1s if aa flags is kAll), otherwise 1.f if edge was AA, 0.f if non-AA. |
| 40 | Sk4f fMask; |
| 41 | }; |
| 42 | |
| 43 | struct Edges { |
| 44 | // a * x + b * y + c = 0; positive distance is inside the quad; ordered LBTR. |
| 45 | Sk4f fA, fB, fC; |
| 46 | // Whether or not the edge normals had to be flipped to preserve positive distance on the inside |
| 47 | bool fFlipped; |
| 48 | }; |
| 49 | |
| 50 | static constexpr float kTolerance = 1e-2f; |
| 51 | |
Michael Ludwig | f995c05 | 2018-11-26 15:24:29 -0500 | [diff] [blame] | 52 | static AI Sk4f fma(const Sk4f& f, const Sk4f& m, const Sk4f& a) { |
| 53 | return SkNx_fma<4, float>(f, m, a); |
| 54 | } |
| 55 | |
| 56 | // These rotate the points/edge values either clockwise or counterclockwise assuming tri strip |
| 57 | // order. |
| 58 | static AI Sk4f nextCW(const Sk4f& v) { |
| 59 | return SkNx_shuffle<2, 0, 3, 1>(v); |
| 60 | } |
| 61 | |
| 62 | static AI Sk4f nextCCW(const Sk4f& v) { |
| 63 | return SkNx_shuffle<1, 3, 0, 2>(v); |
| 64 | } |
| 65 | |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 66 | // Replaces zero-length 'bad' edge vectors with the reversed opposite edge vector. |
| 67 | // e3 may be null if only 2D edges need to be corrected for. |
| 68 | static AI void correct_bad_edges(const Sk4f& bad, Sk4f* e1, Sk4f* e2, Sk4f* e3) { |
| 69 | if (bad.anyTrue()) { |
| 70 | // Want opposite edges, L B T R -> R T B L but with flipped sign to preserve winding |
| 71 | *e1 = bad.thenElse(-SkNx_shuffle<3, 2, 1, 0>(*e1), *e1); |
| 72 | *e2 = bad.thenElse(-SkNx_shuffle<3, 2, 1, 0>(*e2), *e2); |
| 73 | if (e3) { |
| 74 | *e3 = bad.thenElse(-SkNx_shuffle<3, 2, 1, 0>(*e3), *e3); |
| 75 | } |
| 76 | } |
Michael Ludwig | f995c05 | 2018-11-26 15:24:29 -0500 | [diff] [blame] | 77 | } |
| 78 | |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 79 | // Replace 'bad' coordinates by rotating CCW to get the next point. c3 may be null for 2D points. |
| 80 | static AI void correct_bad_coords(const Sk4f& bad, Sk4f* c1, Sk4f* c2, Sk4f* c3) { |
| 81 | if (bad.anyTrue()) { |
| 82 | *c1 = bad.thenElse(nextCCW(*c1), *c1); |
| 83 | *c2 = bad.thenElse(nextCCW(*c2), *c2); |
| 84 | if (c3) { |
| 85 | *c3 = bad.thenElse(nextCCW(*c3), *c3); |
| 86 | } |
| 87 | } |
Michael Ludwig | 4921dc3 | 2018-12-03 14:57:29 +0000 | [diff] [blame] | 88 | } |
| 89 | |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 90 | static AI QuadMetadata get_metadata(const Vertices& vertices, GrQuadAAFlags aaFlags) { |
| 91 | Sk4f dx = nextCCW(vertices.fX) - vertices.fX; |
| 92 | Sk4f dy = nextCCW(vertices.fY) - vertices.fY; |
| 93 | Sk4f invLengths = fma(dx, dx, dy * dy).rsqrt(); |
| 94 | |
| 95 | Sk4f mask = aaFlags == GrQuadAAFlags::kAll ? Sk4f(1.f) : |
| 96 | Sk4f((GrQuadAAFlags::kLeft & aaFlags) ? 1.f : 0.f, |
| 97 | (GrQuadAAFlags::kBottom & aaFlags) ? 1.f : 0.f, |
| 98 | (GrQuadAAFlags::kTop & aaFlags) ? 1.f : 0.f, |
| 99 | (GrQuadAAFlags::kRight & aaFlags) ? 1.f : 0.f); |
| 100 | return { dx * invLengths, dy * invLengths, invLengths, mask }; |
| 101 | } |
| 102 | |
| 103 | static AI Edges get_edge_equations(const QuadMetadata& metadata, const Vertices& vertices) { |
| 104 | Sk4f dx = metadata.fDX; |
| 105 | Sk4f dy = metadata.fDY; |
| 106 | // Correct for bad edges by copying adjacent edge information into the bad component |
| 107 | correct_bad_edges(metadata.fInvLengths >= 1.f / kTolerance, &dx, &dy, nullptr); |
| 108 | |
| 109 | Sk4f c = fma(dx, vertices.fY, -dy * vertices.fX); |
| 110 | // Make sure normals point into the shape |
| 111 | Sk4f test = fma(dy, nextCW(vertices.fX), fma(-dx, nextCW(vertices.fY), c)); |
| 112 | if ((test < -kTolerance).anyTrue()) { |
| 113 | return {-dy, dx, -c, true}; |
| 114 | } else { |
| 115 | return {dy, -dx, c, false}; |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | // Sets 'outset' to the magnitude of outset/inset to adjust each corner of a quad given the |
| 120 | // edge angles and lengths. If the quad is too small, has empty edges, or too sharp of angles, |
| 121 | // false is returned and the degenerate slow-path should be used. |
| 122 | static bool get_optimized_outset(const QuadMetadata& metadata, bool rectilinear, Sk4f* outset) { |
| 123 | if (rectilinear) { |
| 124 | *outset = 0.5f; |
| 125 | // Stay in the fast path as long as all edges are at least a pixel long (so 1/len <= 1) |
| 126 | return (metadata.fInvLengths <= 1.f).allTrue(); |
| 127 | } |
| 128 | |
| 129 | if ((metadata.fInvLengths >= 1.f / kTolerance).anyTrue()) { |
| 130 | // Have an empty edge from a degenerate quad, so there's no hope |
| 131 | return false; |
| 132 | } |
| 133 | |
| 134 | // The distance the point needs to move is 1/2sin(theta), where theta is the angle between the |
| 135 | // two edges at that point. cos(theta) is equal to dot(dxy, nextCW(dxy)) |
| 136 | Sk4f cosTheta = fma(metadata.fDX, nextCW(metadata.fDX), metadata.fDY * nextCW(metadata.fDY)); |
| 137 | // If the angle is too shallow between edges, go through the degenerate path, otherwise adding |
| 138 | // and subtracting very large vectors in almost opposite directions leads to float errors |
| 139 | if ((cosTheta.abs() >= 0.9f).anyTrue()) { |
| 140 | return false; |
| 141 | } |
| 142 | *outset = 0.5f * (1.f - cosTheta * cosTheta).rsqrt(); // 1/2sin(theta) |
| 143 | |
| 144 | // When outsetting or insetting, the current edge's AA adds to the length: |
| 145 | // cos(pi - theta)/2sin(theta) + cos(pi-ccw(theta))/2sin(ccw(theta)) |
| 146 | // Moving an adjacent edge updates the length by 1/2sin(theta|ccw(theta)) |
| 147 | Sk4f halfTanTheta = -cosTheta * (*outset); // cos(pi - theta) = -cos(theta) |
| 148 | Sk4f edgeAdjust = metadata.fMask * (halfTanTheta + nextCCW(halfTanTheta)) + |
| 149 | nextCCW(metadata.fMask) * nextCCW(*outset) + |
| 150 | nextCW(metadata.fMask) * (*outset); |
| 151 | // If either outsetting (plus edgeAdjust) or insetting (minus edgeAdjust) make edgeLen negative |
| 152 | // then use the slow path |
| 153 | Sk4f threshold = 0.1f - metadata.fInvLengths.invert(); |
| 154 | return (edgeAdjust > threshold).allTrue() && (edgeAdjust < -threshold).allTrue(); |
| 155 | } |
| 156 | |
| 157 | // Ignores the quad's fW, use outset_projected_vertices if it's known to need 3D. |
| 158 | static AI void outset_vertices(const Sk4f& outset, const QuadMetadata& metadata, Vertices* quad) { |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 159 | // The mask is rotated compared to the outsets and edge vectors, since if the edge is "on" |
| 160 | // both its points need to be moved along their other edge vectors. |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 161 | auto maskedOutset = -outset * nextCW(metadata.fMask); |
| 162 | auto maskedOutsetCW = outset * metadata.fMask; |
| 163 | // x = x + outset * mask * nextCW(xdiff) - outset * nextCW(mask) * xdiff |
| 164 | quad->fX += fma(maskedOutsetCW, nextCW(metadata.fDX), maskedOutset * metadata.fDX); |
| 165 | quad->fY += fma(maskedOutsetCW, nextCW(metadata.fDY), maskedOutset * metadata.fDY); |
| 166 | if (quad->fUVRCount > 0) { |
Michael Ludwig | f995c05 | 2018-11-26 15:24:29 -0500 | [diff] [blame] | 167 | // We want to extend the texture coords by the same proportion as the positions. |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 168 | maskedOutset *= metadata.fInvLengths; |
| 169 | maskedOutsetCW *= nextCW(metadata.fInvLengths); |
| 170 | Sk4f du = nextCCW(quad->fU) - quad->fU; |
| 171 | Sk4f dv = nextCCW(quad->fV) - quad->fV; |
| 172 | quad->fU += fma(maskedOutsetCW, nextCW(du), maskedOutset * du); |
| 173 | quad->fV += fma(maskedOutsetCW, nextCW(dv), maskedOutset * dv); |
| 174 | if (quad->fUVRCount == 3) { |
| 175 | Sk4f dr = nextCCW(quad->fR) - quad->fR; |
| 176 | quad->fR += fma(maskedOutsetCW, nextCW(dr), maskedOutset * dr); |
Michael Ludwig | f995c05 | 2018-11-26 15:24:29 -0500 | [diff] [blame] | 177 | } |
| 178 | } |
| 179 | } |
| 180 | |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 181 | // Updates (x,y,w) to be at (x2d,y2d) once projected. Updates (u,v,r) to match if provided. |
| 182 | // Gracefully handles 2D content if *w holds all 1s. |
| 183 | static void outset_projected_vertices(const Sk4f& x2d, const Sk4f& y2d, |
| 184 | GrQuadAAFlags aaFlags, Vertices* quad) { |
| 185 | // Left to right, in device space, for each point |
| 186 | Sk4f e1x = SkNx_shuffle<2, 3, 2, 3>(quad->fX) - SkNx_shuffle<0, 1, 0, 1>(quad->fX); |
| 187 | Sk4f e1y = SkNx_shuffle<2, 3, 2, 3>(quad->fY) - SkNx_shuffle<0, 1, 0, 1>(quad->fY); |
| 188 | Sk4f e1w = SkNx_shuffle<2, 3, 2, 3>(quad->fW) - SkNx_shuffle<0, 1, 0, 1>(quad->fW); |
| 189 | correct_bad_edges(fma(e1x, e1x, e1y * e1y) < kTolerance * kTolerance, &e1x, &e1y, &e1w); |
| 190 | |
| 191 | // // Top to bottom, in device space, for each point |
| 192 | Sk4f e2x = SkNx_shuffle<1, 1, 3, 3>(quad->fX) - SkNx_shuffle<0, 0, 2, 2>(quad->fX); |
| 193 | Sk4f e2y = SkNx_shuffle<1, 1, 3, 3>(quad->fY) - SkNx_shuffle<0, 0, 2, 2>(quad->fY); |
| 194 | Sk4f e2w = SkNx_shuffle<1, 1, 3, 3>(quad->fW) - SkNx_shuffle<0, 0, 2, 2>(quad->fW); |
| 195 | correct_bad_edges(fma(e2x, e2x, e2y * e2y) < kTolerance * kTolerance, &e2x, &e2y, &e2w); |
| 196 | |
| 197 | // Can only move along e1 and e2 to reach the new 2D point, so we have |
| 198 | // x2d = (x + a*e1x + b*e2x) / (w + a*e1w + b*e2w) and |
| 199 | // y2d = (y + a*e1y + b*e2y) / (w + a*e1w + b*e2w) for some a, b |
| 200 | // This can be rewritten to a*c1x + b*c2x + c3x = 0; a * c1y + b*c2y + c3y = 0, where |
| 201 | // the cNx and cNy coefficients are: |
| 202 | Sk4f c1x = e1w * x2d - e1x; |
| 203 | Sk4f c1y = e1w * y2d - e1y; |
| 204 | Sk4f c2x = e2w * x2d - e2x; |
| 205 | Sk4f c2y = e2w * y2d - e2y; |
| 206 | Sk4f c3x = quad->fW * x2d - quad->fX; |
| 207 | Sk4f c3y = quad->fW * y2d - quad->fY; |
| 208 | |
| 209 | // Solve for a and b |
| 210 | Sk4f a, b, denom; |
| 211 | if (aaFlags == GrQuadAAFlags::kAll) { |
| 212 | // When every edge is outset/inset, each corner can use both edge vectors |
| 213 | denom = c1x * c2y - c2x * c1y; |
| 214 | a = (c2x * c3y - c3x * c2y) / denom; |
| 215 | b = (c3x * c1y - c1x * c3y) / denom; |
| 216 | } else { |
| 217 | // Force a or b to be 0 if that edge cannot be used due to non-AA |
| 218 | // FIXME requires the extra > 0.f, since Sk4f's thenElse only works if true values have |
| 219 | // all their bits set to 1. |
| 220 | Sk4f aMask = Sk4f((aaFlags & GrQuadAAFlags::kLeft) ? 1.f : 0.f, |
| 221 | (aaFlags & GrQuadAAFlags::kLeft) ? 1.f : 0.f, |
| 222 | (aaFlags & GrQuadAAFlags::kRight) ? 1.f : 0.f, |
| 223 | (aaFlags & GrQuadAAFlags::kRight) ? 1.f : 0.f) > 0.f; |
| 224 | Sk4f bMask = Sk4f((aaFlags & GrQuadAAFlags::kTop) ? 1.f : 0.f, |
| 225 | (aaFlags & GrQuadAAFlags::kBottom) ? 1.f : 0.f, |
| 226 | (aaFlags & GrQuadAAFlags::kTop) ? 1.f : 0.f, |
| 227 | (aaFlags & GrQuadAAFlags::kBottom) ? 1.f : 0.f) > 0.f; |
| 228 | |
| 229 | // When aMask[i]&bMask[i], then a[i], b[i], denom[i] match the kAll case. |
| 230 | // When aMask[i]&!bMask[i], then b[i] = 0, a[i] = -c3x/c1x or -c3y/c1y, using better denom |
| 231 | // When !aMask[i]&bMask[i], then a[i] = 0, b[i] = -c3x/c2x or -c3y/c2y, "" |
| 232 | // When !aMask[i]&!bMask[i], then both a[i] = 0 and b[i] = 0 |
| 233 | Sk4f useC1x = c1x.abs() > c1y.abs(); |
| 234 | Sk4f useC2x = c2x.abs() > c2y.abs(); |
| 235 | // -------- A & B ------ --------- A & !B --------- |
| 236 | denom = aMask.thenElse(bMask.thenElse(c1x * c2y - c2x * c1y, useC1x.thenElse(c1x, c1y)), |
| 237 | // ------- !A & B ---------- - !A & !B - |
| 238 | bMask.thenElse(useC2x.thenElse(c2x, c2y), 1.0f)); |
| 239 | // -------- A & B ------ ---------- A & !B ---------- |
| 240 | a = aMask.thenElse(bMask.thenElse(c2x * c3y - c3x * c2y, useC1x.thenElse(-c3x, -c3y)), |
| 241 | // - !A - |
| 242 | 0.0f) / denom; |
| 243 | // -------- A & B ------ ---------- !A & B ---------- |
| 244 | b = bMask.thenElse(aMask.thenElse(c3x * c1y - c1x * c3y, useC2x.thenElse(-c3x, -c3y)), |
| 245 | // - !B - |
| 246 | 0.0f) / denom; |
| 247 | } |
| 248 | |
| 249 | quad->fX += a * e1x + b * e2x; |
| 250 | quad->fY += a * e1y + b * e2y; |
| 251 | quad->fW += a * e1w + b * e2w; |
| 252 | correct_bad_coords(denom.abs() < kTolerance, &quad->fX, &quad->fY, &quad->fW); |
| 253 | |
| 254 | if (quad->fUVRCount > 0) { |
| 255 | // Calculate R here so it can be corrected with U and V in case it's needed later |
| 256 | Sk4f e1u = SkNx_shuffle<2, 3, 2, 3>(quad->fU) - SkNx_shuffle<0, 1, 0, 1>(quad->fU); |
| 257 | Sk4f e1v = SkNx_shuffle<2, 3, 2, 3>(quad->fV) - SkNx_shuffle<0, 1, 0, 1>(quad->fV); |
| 258 | Sk4f e1r = SkNx_shuffle<2, 3, 2, 3>(quad->fR) - SkNx_shuffle<0, 1, 0, 1>(quad->fR); |
| 259 | correct_bad_edges(fma(e1u, e1u, e1v * e1v) < kTolerance * kTolerance, &e1u, &e1v, &e1r); |
| 260 | |
| 261 | Sk4f e2u = SkNx_shuffle<1, 1, 3, 3>(quad->fU) - SkNx_shuffle<0, 0, 2, 2>(quad->fU); |
| 262 | Sk4f e2v = SkNx_shuffle<1, 1, 3, 3>(quad->fV) - SkNx_shuffle<0, 0, 2, 2>(quad->fV); |
| 263 | Sk4f e2r = SkNx_shuffle<1, 1, 3, 3>(quad->fR) - SkNx_shuffle<0, 0, 2, 2>(quad->fR); |
| 264 | correct_bad_edges(fma(e2u, e2u, e2v * e2v) < kTolerance * kTolerance, &e2u, &e2v, &e2r); |
| 265 | |
| 266 | quad->fU += a * e1u + b * e2u; |
| 267 | quad->fV += a * e1v + b * e2v; |
| 268 | if (quad->fUVRCount == 3) { |
| 269 | quad->fR += a * e1r + b * e2r; |
| 270 | correct_bad_coords(denom.abs() < kTolerance, &quad->fU, &quad->fV, &quad->fR); |
| 271 | } else { |
| 272 | correct_bad_coords(denom.abs() < kTolerance, &quad->fU, &quad->fV, nullptr); |
Michael Ludwig | f995c05 | 2018-11-26 15:24:29 -0500 | [diff] [blame] | 273 | } |
| 274 | } |
| 275 | } |
| 276 | |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 277 | // Calculate area of intersection between quad (xs, ys) and a pixel at 'pixelCenter'. |
| 278 | // a, b, c are edge equations of the quad, flipped is true if the line equations had their normals |
| 279 | // reversed to correct for matrix transforms. |
| 280 | static float get_exact_coverage(const SkPoint& pixelCenter, const Vertices& quad, |
| 281 | const Edges& edges) { |
| 282 | // Ordering of vertices given default tri-strip that produces CCW points |
| 283 | static const int kCCW[] = {0, 1, 3, 2}; |
| 284 | // Ordering of vertices given inverted tri-strip that produces CCW |
| 285 | static const int kFlippedCCW[] = {0, 2, 3, 1}; |
| 286 | |
| 287 | // Edge boundaries of the pixel |
| 288 | float left = pixelCenter.fX - 0.5f; |
| 289 | float right = pixelCenter.fX + 0.5f; |
| 290 | float top = pixelCenter.fY - 0.5f; |
| 291 | float bot = pixelCenter.fY + 0.5f; |
| 292 | |
| 293 | // Whether or not the 4 corners of the pixel are inside the quad geometry. Variable names are |
| 294 | // intentional to work easily with the helper macros. |
| 295 | bool topleftInside = ((edges.fA * left + edges.fB * top + edges.fC) >= 0.f).allTrue(); |
| 296 | bool botleftInside = ((edges.fA * left + edges.fB * bot + edges.fC) >= 0.f).allTrue(); |
| 297 | bool botrightInside = ((edges.fA * right + edges.fB * bot + edges.fC) >= 0.f).allTrue(); |
| 298 | bool toprightInside = ((edges.fA * right + edges.fB * top + edges.fC) >= 0.f).allTrue(); |
| 299 | if (topleftInside && botleftInside && botrightInside && toprightInside) { |
| 300 | // Quad fully contains the pixel, so we know the area will be 1.f |
| 301 | return 1.f; |
| 302 | } |
| 303 | |
| 304 | // Track whether or not the quad vertices in (xs, ys) are on the proper sides of l, t, r, and b |
| 305 | Sk4i leftValid = SkNx_cast<int32_t>(quad.fX >= left); |
| 306 | Sk4i rightValid = SkNx_cast<int32_t>(quad.fX <= right); |
| 307 | Sk4i topValid = SkNx_cast<int32_t>(quad.fY >= top); |
| 308 | Sk4i botValid = SkNx_cast<int32_t>(quad.fY <= bot); |
| 309 | |
| 310 | // Intercepts of quad lines with the 4 pixel edges |
| 311 | Sk4f leftCross = -(edges.fC + edges.fA * left) / edges.fB; |
| 312 | Sk4f rightCross = -(edges.fC + edges.fA * right) / edges.fB; |
| 313 | Sk4f topCross = -(edges.fC + edges.fB * top) / edges.fA; |
| 314 | Sk4f botCross = -(edges.fC + edges.fB * bot) / edges.fA; |
| 315 | |
| 316 | // State for implicitly tracking the intersection boundary and area |
| 317 | SkPoint firstPoint = {0.f, 0.f}; |
| 318 | SkPoint lastPoint = {0.f, 0.f}; |
| 319 | bool intersected = false; |
| 320 | float area = 0.f; |
| 321 | |
| 322 | // Adds a point to the intersection hull, remembering first point (for closing) and the |
| 323 | // current point, and updates the running area total. |
| 324 | // See http://mathworld.wolfram.com/PolygonArea.html |
| 325 | auto accumulate = [&](const SkPoint& p) { |
| 326 | if (intersected) { |
| 327 | float da = lastPoint.fX * p.fY - p.fX * lastPoint.fY; |
| 328 | area += da; |
| 329 | } else { |
| 330 | firstPoint = p; |
| 331 | intersected = true; |
| 332 | } |
| 333 | lastPoint = p; |
| 334 | }; |
| 335 | |
| 336 | // Used during iteration over the quad points to check if edge intersections are valid and |
| 337 | // should be accumulated. |
| 338 | #define ADD_EDGE_CROSSING_X(SIDE) \ |
| 339 | do { \ |
| 340 | if (SIDE##Cross[ei] >= top && SIDE##Cross[ei] <= bot) { \ |
| 341 | accumulate({SIDE, SIDE##Cross[ei]}); \ |
| 342 | addedIntersection = true; \ |
| 343 | } \ |
| 344 | } while(false) |
| 345 | #define ADD_EDGE_CROSSING_Y(SIDE) \ |
| 346 | do { \ |
| 347 | if (SIDE##Cross[ei] >= left && SIDE##Cross[ei] <= right) { \ |
| 348 | accumulate({SIDE##Cross[ei], SIDE}); \ |
| 349 | addedIntersection = true; \ |
| 350 | } \ |
| 351 | } while(false) |
| 352 | #define TEST_EDGES(SIDE, AXIS, I, NI) \ |
| 353 | do { \ |
| 354 | if (!SIDE##Valid[I] && SIDE##Valid[NI]) { \ |
| 355 | ADD_EDGE_CROSSING_##AXIS(SIDE); \ |
| 356 | crossedEdges = true; \ |
| 357 | } \ |
| 358 | } while(false) |
| 359 | // Used during iteration over the quad points to check if a pixel corner should be included |
| 360 | // in the intersection boundary |
| 361 | #define ADD_CORNER(CHECK, SIDE_LR, SIDE_TB) \ |
| 362 | if (!CHECK##Valid[i] || !CHECK##Valid[ni]) { \ |
| 363 | if (SIDE_TB##SIDE_LR##Inside) { \ |
| 364 | accumulate({SIDE_LR, SIDE_TB}); \ |
| 365 | } \ |
| 366 | } |
| 367 | #define TEST_CORNER_X(SIDE, I, NI) \ |
| 368 | do { \ |
| 369 | if (!SIDE##Valid[I] && SIDE##Valid[NI]) { \ |
| 370 | ADD_CORNER(top, SIDE, top) else ADD_CORNER(bot, SIDE, bot) \ |
| 371 | } \ |
| 372 | } while(false) |
| 373 | #define TEST_CORNER_Y(SIDE, I, NI) \ |
| 374 | do { \ |
| 375 | if (!SIDE##Valid[I] && SIDE##Valid[NI]) { \ |
| 376 | ADD_CORNER(left, left, SIDE) else ADD_CORNER(right, right, SIDE) \ |
| 377 | } \ |
| 378 | } while(false) |
| 379 | |
| 380 | // Iterate over the 4 points of the quad, adding valid intersections with the pixel edges |
| 381 | // or adding interior pixel corners as it goes. This automatically keeps all accumulated points |
| 382 | // in CCW ordering so the area can be calculated on the fly and there's no need to store the |
| 383 | // list of hull points. This is somewhat inspired by the Sutherland-Hodgman algorithm but since |
| 384 | // there are only 4 points in each source polygon, there is no point list maintenance. |
| 385 | for (int j = 0; j < 4; ++j) { |
| 386 | // Current vertex |
| 387 | int i = edges.fFlipped ? kFlippedCCW[j] : kCCW[j]; |
| 388 | // Moving to this vertex |
| 389 | int ni = edges.fFlipped ? kFlippedCCW[(j + 1) % 4] : kCCW[(j + 1) % 4]; |
| 390 | // Index in edge vectors corresponding to move from i to ni |
| 391 | int ei = edges.fFlipped ? ni : i; |
| 392 | |
| 393 | bool crossedEdges = false; |
| 394 | bool addedIntersection = false; |
| 395 | |
| 396 | // First check if there are any outside -> inside edge crossings. There can be 0, 1, or 2. |
| 397 | // 2 can occur if one crossing is still outside the pixel, or if they both go through |
| 398 | // the corner (in which case a duplicate point is added, but that doesn't change area). |
| 399 | |
| 400 | // Outside to inside crossing |
| 401 | TEST_EDGES(left, X, i, ni); |
| 402 | TEST_EDGES(right, X, i, ni); |
| 403 | TEST_EDGES(top, Y, i, ni); |
| 404 | TEST_EDGES(bot, Y, i, ni); |
| 405 | // Inside to outside crossing (swapping ni and i in the boolean test) |
| 406 | TEST_EDGES(left, X, ni, i); |
| 407 | TEST_EDGES(right, X, ni, i); |
| 408 | TEST_EDGES(top, Y, ni, i); |
| 409 | TEST_EDGES(bot, Y, ni, i); |
| 410 | |
| 411 | // If we crossed edges but didn't add any intersections, check the corners of the pixel. |
| 412 | // If the pixel corners are inside the quad, include them in the boundary. |
| 413 | if (crossedEdges && !addedIntersection) { |
| 414 | // This can lead to repeated points, but those just accumulate zero area |
| 415 | TEST_CORNER_X(left, i, ni); |
| 416 | TEST_CORNER_X(right, i, ni); |
| 417 | TEST_CORNER_Y(top, i, ni); |
| 418 | TEST_CORNER_Y(bot, i, ni); |
| 419 | |
| 420 | TEST_CORNER_X(left, ni, i); |
| 421 | TEST_CORNER_X(right, ni, i); |
| 422 | TEST_CORNER_Y(top, ni, i); |
| 423 | TEST_CORNER_Y(bot, ni, i); |
| 424 | } |
| 425 | |
| 426 | // Lastly, if the next point is completely inside the pixel it gets included in the boundary |
| 427 | if (leftValid[ni] && rightValid[ni] && topValid[ni] && botValid[ni]) { |
| 428 | accumulate({quad.fX[ni], quad.fY[ni]}); |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | #undef TEST_CORNER_Y |
| 433 | #undef TEST_CORNER_X |
| 434 | #undef ADD_CORNER |
| 435 | |
| 436 | #undef TEST_EDGES |
| 437 | #undef ADD_EDGE_CROSSING_Y |
| 438 | #undef ADD_EDGE_CROSSING_X |
| 439 | |
| 440 | // After all points have been considered, close the boundary to get final area. If we never |
| 441 | // added any points, it means the quad didn't intersect the pixel rectangle. |
| 442 | if (intersected) { |
| 443 | // Final equation for area of convex polygon is to multiply by -1/2 (minus since the points |
| 444 | // were in CCW order). |
| 445 | accumulate(firstPoint); |
| 446 | return -0.5f * area; |
| 447 | } else { |
| 448 | return 0.f; |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | // Outsets or insets xs/ys in place. To be used when the interior is very small, edges are near |
| 453 | // parallel, or edges are very short/zero-length. Returns coverage for each vertex. |
| 454 | // Requires (dx, dy) to already be fixed for empty edges. |
| 455 | static Sk4f compute_degenerate_quad(GrQuadAAFlags aaFlags, const Sk4f& mask, const Edges& edges, |
| 456 | bool outset, Vertices* quad) { |
| 457 | // Move the edge 1/2 pixel in or out depending on 'outset'. |
| 458 | Sk4f oc = edges.fC + mask * (outset ? 0.5f : -0.5f); |
| 459 | |
| 460 | // There are 6 points that we care about to determine the final shape of the polygon, which |
| 461 | // are the intersections between (e0,e2), (e1,e0), (e2,e3), (e3,e1) (corresponding to the |
| 462 | // 4 corners), and (e1, e2), (e0, e3) (representing the intersections of opposite edges). |
| 463 | Sk4f denom = edges.fA * nextCW(edges.fB) - edges.fB * nextCW(edges.fA); |
| 464 | Sk4f px = (edges.fB * nextCW(oc) - oc * nextCW(edges.fB)) / denom; |
| 465 | Sk4f py = (oc * nextCW(edges.fA) - edges.fA * nextCW(oc)) / denom; |
| 466 | correct_bad_coords(denom.abs() < kTolerance, &px, &py, nullptr); |
| 467 | |
| 468 | // Calculate the signed distances from these 4 corners to the other two edges that did not |
| 469 | // define the intersection. So p(0) is compared to e3,e1, p(1) to e3,e2 , p(2) to e0,e1, and |
| 470 | // p(3) to e0,e2 |
| 471 | Sk4f dists1 = px * SkNx_shuffle<3, 3, 0, 0>(edges.fA) + |
| 472 | py * SkNx_shuffle<3, 3, 0, 0>(edges.fB) + |
| 473 | SkNx_shuffle<3, 3, 0, 0>(oc); |
| 474 | Sk4f dists2 = px * SkNx_shuffle<1, 2, 1, 2>(edges.fA) + |
| 475 | py * SkNx_shuffle<1, 2, 1, 2>(edges.fB) + |
| 476 | SkNx_shuffle<1, 2, 1, 2>(oc); |
| 477 | |
| 478 | // If all the distances are >= 0, the 4 corners form a valid quadrilateral, so use them as |
| 479 | // the 4 points. If any point is on the wrong side of both edges, the interior has collapsed |
| 480 | // and we need to use a central point to represent it. If all four points are only on the |
| 481 | // wrong side of 1 edge, one edge has crossed over another and we use a line to represent it. |
| 482 | // Otherwise, use a triangle that replaces the bad points with the intersections of |
| 483 | // (e1, e2) or (e0, e3) as needed. |
| 484 | Sk4f d1v0 = dists1 < kTolerance; |
| 485 | Sk4f d2v0 = dists2 < kTolerance; |
| 486 | // FIXME(michaelludwig): Sk4f has anyTrue() and allTrue(), but not & or |. Sk4i has & or | but |
| 487 | // not anyTrue() and allTrue(). Moving to SkVx from SkNx will clean this up. |
| 488 | Sk4i d1And2 = SkNx_cast<int32_t>(d1v0) & SkNx_cast<int32_t>(d2v0); |
| 489 | Sk4i d1Or2 = SkNx_cast<int32_t>(d1v0) | SkNx_cast<int32_t>(d2v0); |
| 490 | |
| 491 | Sk4f coverage; |
| 492 | if (!d1Or2[0] && !d1Or2[1] && !d1Or2[2] && !d1Or2[3]) { |
| 493 | // Every dists1 and dists2 >= kTolerance so it's not degenerate, use all 4 corners as-is |
| 494 | // and use full coverage |
| 495 | coverage = 1.f; |
| 496 | } else if (d1And2[0] || d1And2[1] || d1And2[2] || d1And2[2]) { |
| 497 | // A point failed against two edges, so reduce the shape to a single point, which we take as |
| 498 | // the center of the original quad to ensure it is contained in the intended geometry. Since |
| 499 | // it has collapsed, we know the shape cannot cover a pixel so update the coverage. |
| 500 | SkPoint center = {0.25f * (quad->fX[0] + quad->fX[1] + quad->fX[2] + quad->fX[3]), |
| 501 | 0.25f * (quad->fY[0] + quad->fY[1] + quad->fY[2] + quad->fY[3])}; |
| 502 | coverage = get_exact_coverage(center, *quad, edges); |
| 503 | px = center.fX; |
| 504 | py = center.fY; |
| 505 | } else if (d1Or2[0] && d1Or2[1] && d1Or2[2] && d1Or2[3]) { |
| 506 | // Degenerates to a line. Compare p[2] and p[3] to edge 0. If they are on the wrong side, |
| 507 | // that means edge 0 and 3 crossed, and otherwise edge 1 and 2 crossed. |
| 508 | if (dists1[2] < kTolerance && dists1[3] < kTolerance) { |
| 509 | // Edges 0 and 3 have crossed over, so make the line from average of (p0,p2) and (p1,p3) |
| 510 | px = 0.5f * (SkNx_shuffle<0, 1, 0, 1>(px) + SkNx_shuffle<2, 3, 2, 3>(px)); |
| 511 | py = 0.5f * (SkNx_shuffle<0, 1, 0, 1>(py) + SkNx_shuffle<2, 3, 2, 3>(py)); |
| 512 | float mc02 = get_exact_coverage({px[0], py[0]}, *quad, edges); |
| 513 | float mc13 = get_exact_coverage({px[1], py[1]}, *quad, edges); |
| 514 | coverage = Sk4f(mc02, mc13, mc02, mc13); |
| 515 | } else { |
| 516 | // Edges 1 and 2 have crossed over, so make the line from average of (p0,p1) and (p2,p3) |
| 517 | px = 0.5f * (SkNx_shuffle<0, 0, 2, 2>(px) + SkNx_shuffle<1, 1, 3, 3>(px)); |
| 518 | py = 0.5f * (SkNx_shuffle<0, 0, 2, 2>(py) + SkNx_shuffle<1, 1, 3, 3>(py)); |
| 519 | float mc01 = get_exact_coverage({px[0], py[0]}, *quad, edges); |
| 520 | float mc23 = get_exact_coverage({px[2], py[2]}, *quad, edges); |
| 521 | coverage = Sk4f(mc01, mc01, mc23, mc23); |
| 522 | } |
| 523 | } else { |
| 524 | // This turns into a triangle. Replace corners as needed with the intersections between |
| 525 | // (e0,e3) and (e1,e2), which must now be calculated |
| 526 | Sk2f eDenom = SkNx_shuffle<0, 1>(edges.fA) * SkNx_shuffle<3, 2>(edges.fB) - |
| 527 | SkNx_shuffle<0, 1>(edges.fB) * SkNx_shuffle<3, 2>(edges.fA); |
| 528 | Sk2f ex = (SkNx_shuffle<0, 1>(edges.fB) * SkNx_shuffle<3, 2>(oc) - |
| 529 | SkNx_shuffle<0, 1>(oc) * SkNx_shuffle<3, 2>(edges.fB)) / eDenom; |
| 530 | Sk2f ey = (SkNx_shuffle<0, 1>(oc) * SkNx_shuffle<3, 2>(edges.fA) - |
| 531 | SkNx_shuffle<0, 1>(edges.fA) * SkNx_shuffle<3, 2>(oc)) / eDenom; |
| 532 | |
| 533 | if (SkScalarAbs(eDenom[0]) > kTolerance) { |
| 534 | px = d1v0.thenElse(ex[0], px); |
| 535 | py = d1v0.thenElse(ey[0], py); |
| 536 | } |
| 537 | if (SkScalarAbs(eDenom[1]) > kTolerance) { |
| 538 | px = d2v0.thenElse(ex[1], px); |
| 539 | py = d2v0.thenElse(ey[1], py); |
| 540 | } |
| 541 | |
| 542 | coverage = 1.f; |
| 543 | } |
| 544 | |
| 545 | outset_projected_vertices(px, py, aaFlags, quad); |
| 546 | return coverage; |
Michael Ludwig | f995c05 | 2018-11-26 15:24:29 -0500 | [diff] [blame] | 547 | } |
| 548 | |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 549 | // Computes the vertices for the two nested quads used to create AA edges. The original single quad |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 550 | // should be duplicated as input in 'inner' and 'outer', and the resulting quad frame will be |
| 551 | // stored in-place on return. Returns per-vertex coverage for the inner vertices. |
| 552 | static Sk4f compute_nested_quad_vertices(GrQuadAAFlags aaFlags, bool rectilinear, |
| 553 | Vertices* inner, Vertices* outer) { |
| 554 | SkASSERT(inner->fUVRCount == 0 || inner->fUVRCount == 2 || inner->fUVRCount == 3); |
| 555 | SkASSERT(outer->fUVRCount == inner->fUVRCount); |
Michael Ludwig | 460eb5e | 2018-10-29 11:09:29 -0400 | [diff] [blame] | 556 | |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 557 | QuadMetadata metadata = get_metadata(*inner, aaFlags); |
Michael Ludwig | 460eb5e | 2018-10-29 11:09:29 -0400 | [diff] [blame] | 558 | |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 559 | // When outsetting, we want the new edge to be .5px away from the old line, which means the |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 560 | // corners may need to be adjusted by more than .5px if the matrix had sheer. This adjustment |
| 561 | // is only computed if there are no empty edges, and it may signal going through the slow path. |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 562 | Sk4f outset = 0.5f; |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 563 | if (get_optimized_outset(metadata, rectilinear, &outset)) { |
| 564 | // Since it's not subpixel, outsetting and insetting are trivial vector additions. |
| 565 | outset_vertices(outset, metadata, outer); |
| 566 | outset_vertices(-outset, metadata, inner); |
| 567 | return 1.f; |
Michael Ludwig | 460eb5e | 2018-10-29 11:09:29 -0400 | [diff] [blame] | 568 | } |
Michael Ludwig | 4921dc3 | 2018-12-03 14:57:29 +0000 | [diff] [blame] | 569 | |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 570 | // Only compute edge equations once since they are the same for inner and outer quads |
| 571 | Edges edges = get_edge_equations(metadata, *inner); |
Michael Ludwig | f995c05 | 2018-11-26 15:24:29 -0500 | [diff] [blame] | 572 | |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 573 | // Calculate both outset and inset, returning the coverage reported for the inset, since the |
| 574 | // outset will always have 0.0f. |
| 575 | compute_degenerate_quad(aaFlags, metadata.fMask, edges, true, outer); |
| 576 | return compute_degenerate_quad(aaFlags, metadata.fMask, edges, false, inner); |
Michael Ludwig | f995c05 | 2018-11-26 15:24:29 -0500 | [diff] [blame] | 577 | } |
| 578 | |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 579 | // Generalizes compute_nested_quad_vertices to extrapolate local coords such that after perspective |
| 580 | // division of the device coordinates, the original local coordinate value is at the original |
| 581 | // un-outset device position. |
| 582 | static Sk4f compute_nested_persp_quad_vertices(const GrQuadAAFlags aaFlags, Vertices* inner, |
| 583 | Vertices* outer) { |
| 584 | SkASSERT(inner->fUVRCount == 0 || inner->fUVRCount == 2 || inner->fUVRCount == 3); |
| 585 | SkASSERT(outer->fUVRCount == inner->fUVRCount); |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 586 | |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 587 | // Calculate the projected 2D quad and use it to form projeccted inner/outer quads |
| 588 | // Don't use Sk4f.invert() here because it does not preserve 1/1 == 1, which creates rendering |
| 589 | // mismatches for 2D content that was batched into a 3D op, vs. 2D on its own. |
| 590 | Sk4f iw = 1.0f / inner->fW; |
| 591 | Sk4f x2d = inner->fX * iw; |
| 592 | Sk4f y2d = inner->fY * iw; |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 593 | |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 594 | Vertices inner2D = { x2d, y2d, /*w*/ 1.f, 0.f, 0.f, 0.f, 0 }; // No uvr outsetting in 2D |
| 595 | Vertices outer2D = inner2D; |
Michael Ludwig | 460eb5e | 2018-10-29 11:09:29 -0400 | [diff] [blame] | 596 | |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 597 | Sk4f coverage = compute_nested_quad_vertices(aaFlags, /* rect */ false, &inner2D, &outer2D); |
Michael Ludwig | 460eb5e | 2018-10-29 11:09:29 -0400 | [diff] [blame] | 598 | |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 599 | // Now map from the 2D inset/outset back to 3D and update the local coordinates as well |
| 600 | outset_projected_vertices(inner2D.fX, inner2D.fY, aaFlags, inner); |
| 601 | outset_projected_vertices(outer2D.fX, outer2D.fY, aaFlags, outer); |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 602 | |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 603 | return coverage; |
Eric Boren | 98cb159 | 2018-11-26 18:38:05 +0000 | [diff] [blame] | 604 | } |
| 605 | |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 606 | enum class CoverageMode { |
| 607 | kNone, |
| 608 | kWithPosition, |
| 609 | kWithColor |
| 610 | }; |
| 611 | |
| 612 | static CoverageMode get_mode_for_spec(const GrQuadPerEdgeAA::VertexSpec& spec) { |
| 613 | if (spec.usesCoverageAA()) { |
| 614 | if (spec.compatibleWithAlphaAsCoverage() && spec.hasVertexColors()) { |
| 615 | return CoverageMode::kWithColor; |
| 616 | } else { |
| 617 | return CoverageMode::kWithPosition; |
| 618 | } |
Michael Ludwig | 553e9a9 | 2018-11-29 12:38:35 -0500 | [diff] [blame] | 619 | } else { |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 620 | return CoverageMode::kNone; |
Michael Ludwig | 553e9a9 | 2018-11-29 12:38:35 -0500 | [diff] [blame] | 621 | } |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 622 | } |
Michael Ludwig | 553e9a9 | 2018-11-29 12:38:35 -0500 | [diff] [blame] | 623 | |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 624 | // Writes four vertices in triangle strip order, including the additional data for local |
| 625 | // coordinates, domain, color, and coverage as needed to satisfy the vertex spec. |
| 626 | static void write_quad(GrVertexWriter* vb, const GrQuadPerEdgeAA::VertexSpec& spec, |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 627 | CoverageMode mode, Sk4f coverage, |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 628 | SkPMColor4f color4f, bool wideColor, |
| 629 | const SkRect& domain, |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 630 | const Vertices& quad) { |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 631 | static constexpr auto If = GrVertexWriter::If<float>; |
| 632 | |
Michael Ludwig | 553e9a9 | 2018-11-29 12:38:35 -0500 | [diff] [blame] | 633 | for (int i = 0; i < 4; ++i) { |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 634 | // save position, this is a float2 or float3 or float4 depending on the combination of |
| 635 | // perspective and coverage mode. |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 636 | vb->write(quad.fX[i], quad.fY[i], |
| 637 | If(spec.deviceQuadType() == GrQuadType::kPerspective, quad.fW[i]), |
| 638 | If(mode == CoverageMode::kWithPosition, coverage[i])); |
Michael Ludwig | 4921dc3 | 2018-12-03 14:57:29 +0000 | [diff] [blame] | 639 | |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 640 | // save color |
| 641 | if (spec.hasVertexColors()) { |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 642 | vb->write(GrVertexColor( |
| 643 | color4f * (mode == CoverageMode::kWithColor ? coverage[i] : 1.f), wideColor)); |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 644 | } |
| 645 | |
| 646 | // save local position |
| 647 | if (spec.hasLocalCoords()) { |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 648 | vb->write(quad.fU[i], quad.fV[i], |
| 649 | If(spec.localQuadType() == GrQuadType::kPerspective, quad.fR[i])); |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 650 | } |
| 651 | |
| 652 | // save the domain |
| 653 | if (spec.hasDomain()) { |
| 654 | vb->write(domain); |
| 655 | } |
| 656 | } |
| 657 | } |
| 658 | |
| 659 | GR_DECLARE_STATIC_UNIQUE_KEY(gAAFillRectIndexBufferKey); |
| 660 | |
| 661 | static const int kVertsPerAAFillRect = 8; |
| 662 | static const int kIndicesPerAAFillRect = 30; |
| 663 | |
Brian Salomon | dbf7072 | 2019-02-07 11:31:24 -0500 | [diff] [blame] | 664 | static sk_sp<const GrGpuBuffer> get_index_buffer(GrResourceProvider* resourceProvider) { |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 665 | GR_DEFINE_STATIC_UNIQUE_KEY(gAAFillRectIndexBufferKey); |
| 666 | |
| 667 | // clang-format off |
| 668 | static const uint16_t gFillAARectIdx[] = { |
| 669 | 0, 1, 2, 1, 3, 2, |
| 670 | 0, 4, 1, 4, 5, 1, |
| 671 | 0, 6, 4, 0, 2, 6, |
| 672 | 2, 3, 6, 3, 7, 6, |
| 673 | 1, 5, 3, 3, 5, 7, |
| 674 | }; |
| 675 | // clang-format on |
| 676 | |
| 677 | GR_STATIC_ASSERT(SK_ARRAY_COUNT(gFillAARectIdx) == kIndicesPerAAFillRect); |
| 678 | return resourceProvider->findOrCreatePatternedIndexBuffer( |
| 679 | gFillAARectIdx, kIndicesPerAAFillRect, GrQuadPerEdgeAA::kNumAAQuadsInIndexBuffer, |
| 680 | kVertsPerAAFillRect, gAAFillRectIndexBufferKey); |
Michael Ludwig | 553e9a9 | 2018-11-29 12:38:35 -0500 | [diff] [blame] | 681 | } |
| 682 | |
Michael Ludwig | 460eb5e | 2018-10-29 11:09:29 -0400 | [diff] [blame] | 683 | } // anonymous namespace |
| 684 | |
Michael Ludwig | c182b94 | 2018-11-16 10:27:51 -0500 | [diff] [blame] | 685 | namespace GrQuadPerEdgeAA { |
| 686 | |
| 687 | ////////////////// Tessellate Implementation |
| 688 | |
| 689 | void* Tessellate(void* vertices, const VertexSpec& spec, const GrPerspQuad& deviceQuad, |
Brian Osman | 3d139a4 | 2018-11-19 10:42:10 -0500 | [diff] [blame] | 690 | const SkPMColor4f& color4f, const GrPerspQuad& localQuad, const SkRect& domain, |
Michael Ludwig | c182b94 | 2018-11-16 10:27:51 -0500 | [diff] [blame] | 691 | GrQuadAAFlags aaFlags) { |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 692 | bool wideColor = GrQuadPerEdgeAA::ColorType::kHalf == spec.colorType(); |
| 693 | CoverageMode mode = get_mode_for_spec(spec); |
Michael Ludwig | 460eb5e | 2018-10-29 11:09:29 -0400 | [diff] [blame] | 694 | |
Michael Ludwig | f995c05 | 2018-11-26 15:24:29 -0500 | [diff] [blame] | 695 | // Load position data into Sk4fs (always x, y, and load w to avoid branching down the road) |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 696 | Vertices outer; |
| 697 | outer.fX = deviceQuad.x4f(); |
| 698 | outer.fY = deviceQuad.y4f(); |
| 699 | outer.fW = deviceQuad.w4f(); // Guaranteed to be 1f if it's not perspective |
Michael Ludwig | 460eb5e | 2018-10-29 11:09:29 -0400 | [diff] [blame] | 700 | |
| 701 | // Load local position data into Sk4fs (either none, just u,v or all three) |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 702 | outer.fUVRCount = spec.localDimensionality(); |
Michael Ludwig | c182b94 | 2018-11-16 10:27:51 -0500 | [diff] [blame] | 703 | if (spec.hasLocalCoords()) { |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 704 | outer.fU = localQuad.x4f(); |
| 705 | outer.fV = localQuad.y4f(); |
| 706 | outer.fR = localQuad.w4f(); // Will be ignored if the local quad type isn't perspective |
Michael Ludwig | 460eb5e | 2018-10-29 11:09:29 -0400 | [diff] [blame] | 707 | } |
| 708 | |
Michael Ludwig | c182b94 | 2018-11-16 10:27:51 -0500 | [diff] [blame] | 709 | GrVertexWriter vb{vertices}; |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 710 | if (spec.usesCoverageAA()) { |
| 711 | SkASSERT(mode == CoverageMode::kWithPosition || mode == CoverageMode::kWithColor); |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 712 | // Must calculate two new quads, an outset and inset by .5 in projected device space, so |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 713 | // duplicate the original quad for the inner space |
| 714 | Vertices inner = outer; |
Michael Ludwig | c182b94 | 2018-11-16 10:27:51 -0500 | [diff] [blame] | 715 | |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 716 | Sk4f maxCoverage = 1.f; |
| 717 | if (spec.deviceQuadType() == GrQuadType::kPerspective) { |
| 718 | // For perspective, send quads with all edges non-AA through the tessellation to ensure |
| 719 | // their corners are processed the same as adjacent quads. This approach relies on |
| 720 | // solving edge equations to reconstruct corners, which can create seams if an inner |
| 721 | // fully non-AA quad is not similarly processed. |
| 722 | maxCoverage = compute_nested_persp_quad_vertices(aaFlags, &inner, &outer); |
| 723 | } else if (aaFlags != GrQuadAAFlags::kNone) { |
| 724 | // In 2D, the simpler corner math does not cause issues with seaming against non-AA |
| 725 | // inner quads. |
| 726 | maxCoverage = compute_nested_quad_vertices( |
| 727 | aaFlags, spec.deviceQuadType() <= GrQuadType::kRectilinear, &inner, &outer); |
| 728 | } |
| 729 | // NOTE: could provide an even more optimized tessellation function for axis-aligned |
| 730 | // rects since the positions can be outset by constants without doing vector math, |
| 731 | // except it must handle identifying the winding of the quad vertices if the transform |
| 732 | // applied a mirror, etc. The current 2D case is already adequately fast. |
Michael Ludwig | 460eb5e | 2018-10-29 11:09:29 -0400 | [diff] [blame] | 733 | |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 734 | // Write two quads for inner and outer, inner will use the |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 735 | write_quad(&vb, spec, mode, maxCoverage, color4f, wideColor, domain, inner); |
| 736 | write_quad(&vb, spec, mode, 0.f, color4f, wideColor, domain, outer); |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 737 | } else { |
| 738 | // No outsetting needed, just write a single quad with full coverage |
| 739 | SkASSERT(mode == CoverageMode::kNone); |
Michael Ludwig | e6266a2 | 2019-03-07 11:24:32 -0500 | [diff] [blame^] | 740 | write_quad(&vb, spec, mode, 1.f, color4f, wideColor, domain, outer); |
Michael Ludwig | 460eb5e | 2018-10-29 11:09:29 -0400 | [diff] [blame] | 741 | } |
Michael Ludwig | c182b94 | 2018-11-16 10:27:51 -0500 | [diff] [blame] | 742 | |
| 743 | return vb.fPtr; |
Michael Ludwig | 460eb5e | 2018-10-29 11:09:29 -0400 | [diff] [blame] | 744 | } |
Michael Ludwig | 20e909e | 2018-10-30 10:43:57 -0400 | [diff] [blame] | 745 | |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 746 | bool ConfigureMeshIndices(GrMeshDrawOp::Target* target, GrMesh* mesh, const VertexSpec& spec, |
| 747 | int quadCount) { |
| 748 | if (spec.usesCoverageAA()) { |
| 749 | // AA quads use 8 vertices, basically nested rectangles |
Brian Salomon | dbf7072 | 2019-02-07 11:31:24 -0500 | [diff] [blame] | 750 | sk_sp<const GrGpuBuffer> ibuffer = get_index_buffer(target->resourceProvider()); |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 751 | if (!ibuffer) { |
| 752 | return false; |
| 753 | } |
| 754 | |
| 755 | mesh->setPrimitiveType(GrPrimitiveType::kTriangles); |
Brian Salomon | 12d2264 | 2019-01-29 14:38:50 -0500 | [diff] [blame] | 756 | mesh->setIndexedPatterned(std::move(ibuffer), kIndicesPerAAFillRect, kVertsPerAAFillRect, |
| 757 | quadCount, kNumAAQuadsInIndexBuffer); |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 758 | } else { |
| 759 | // Non-AA quads use 4 vertices, and regular triangle strip layout |
| 760 | if (quadCount > 1) { |
Brian Salomon | dbf7072 | 2019-02-07 11:31:24 -0500 | [diff] [blame] | 761 | sk_sp<const GrGpuBuffer> ibuffer = target->resourceProvider()->refQuadIndexBuffer(); |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 762 | if (!ibuffer) { |
| 763 | return false; |
| 764 | } |
| 765 | |
| 766 | mesh->setPrimitiveType(GrPrimitiveType::kTriangles); |
Brian Salomon | 12d2264 | 2019-01-29 14:38:50 -0500 | [diff] [blame] | 767 | mesh->setIndexedPatterned(std::move(ibuffer), 6, 4, quadCount, |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 768 | GrResourceProvider::QuadCountOfQuadBuffer()); |
| 769 | } else { |
| 770 | mesh->setPrimitiveType(GrPrimitiveType::kTriangleStrip); |
| 771 | mesh->setNonIndexedNonInstanced(4); |
| 772 | } |
| 773 | } |
| 774 | |
| 775 | return true; |
| 776 | } |
| 777 | |
Michael Ludwig | c182b94 | 2018-11-16 10:27:51 -0500 | [diff] [blame] | 778 | ////////////////// VertexSpec Implementation |
Michael Ludwig | 20e909e | 2018-10-30 10:43:57 -0400 | [diff] [blame] | 779 | |
Michael Ludwig | c182b94 | 2018-11-16 10:27:51 -0500 | [diff] [blame] | 780 | int VertexSpec::deviceDimensionality() const { |
| 781 | return this->deviceQuadType() == GrQuadType::kPerspective ? 3 : 2; |
| 782 | } |
| 783 | |
| 784 | int VertexSpec::localDimensionality() const { |
| 785 | return fHasLocalCoords ? (this->localQuadType() == GrQuadType::kPerspective ? 3 : 2) : 0; |
| 786 | } |
| 787 | |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 788 | ////////////////// Geometry Processor Implementation |
Michael Ludwig | c182b94 | 2018-11-16 10:27:51 -0500 | [diff] [blame] | 789 | |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 790 | class QuadPerEdgeAAGeometryProcessor : public GrGeometryProcessor { |
| 791 | public: |
Michael Ludwig | 20e909e | 2018-10-30 10:43:57 -0400 | [diff] [blame] | 792 | |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 793 | static sk_sp<GrGeometryProcessor> Make(const VertexSpec& spec) { |
| 794 | return sk_sp<QuadPerEdgeAAGeometryProcessor>(new QuadPerEdgeAAGeometryProcessor(spec)); |
Michael Ludwig | 20e909e | 2018-10-30 10:43:57 -0400 | [diff] [blame] | 795 | } |
| 796 | |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 797 | static sk_sp<GrGeometryProcessor> Make(const VertexSpec& vertexSpec, const GrShaderCaps& caps, |
| 798 | GrTextureType textureType, GrPixelConfig textureConfig, |
Greg Daniel | 7a82edf | 2018-12-04 10:54:34 -0500 | [diff] [blame] | 799 | const GrSamplerState& samplerState, |
| 800 | uint32_t extraSamplerKey, |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 801 | sk_sp<GrColorSpaceXform> textureColorSpaceXform) { |
| 802 | return sk_sp<QuadPerEdgeAAGeometryProcessor>(new QuadPerEdgeAAGeometryProcessor( |
Greg Daniel | 7a82edf | 2018-12-04 10:54:34 -0500 | [diff] [blame] | 803 | vertexSpec, caps, textureType, textureConfig, samplerState, extraSamplerKey, |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 804 | std::move(textureColorSpaceXform))); |
Michael Ludwig | 20e909e | 2018-10-30 10:43:57 -0400 | [diff] [blame] | 805 | } |
| 806 | |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 807 | const char* name() const override { return "QuadPerEdgeAAGeometryProcessor"; } |
Michael Ludwig | 024e262 | 2018-11-30 13:25:55 -0500 | [diff] [blame] | 808 | |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 809 | void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override { |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 810 | // domain, texturing, device-dimensions are single bit flags |
| 811 | uint32_t x = fDomain.isInitialized() ? 0 : 1; |
| 812 | x |= fSampler.isInitialized() ? 0 : 2; |
| 813 | x |= fNeedsPerspective ? 0 : 4; |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 814 | // local coords require 2 bits (3 choices), 00 for none, 01 for 2d, 10 for 3d |
| 815 | if (fLocalCoord.isInitialized()) { |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 816 | x |= kFloat3_GrVertexAttribType == fLocalCoord.cpuType() ? 8 : 16; |
Brian Osman | 78dc72c | 2018-12-03 13:20:43 +0000 | [diff] [blame] | 817 | } |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 818 | // similar for colors, 00 for none, 01 for bytes, 10 for half-floats |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 819 | if (fColor.isInitialized()) { |
| 820 | x |= kUByte4_norm_GrVertexAttribType == fColor.cpuType() ? 32 : 64; |
| 821 | } |
| 822 | // and coverage mode, 00 for none, 01 for withposition, 10 for withcolor |
| 823 | if (fCoverageMode != CoverageMode::kNone) { |
| 824 | x |= CoverageMode::kWithPosition == fCoverageMode ? 128 : 256; |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 825 | } |
| 826 | |
| 827 | b->add32(GrColorSpaceXform::XformKey(fTextureColorSpaceXform.get())); |
| 828 | b->add32(x); |
Brian Osman | 78dc72c | 2018-12-03 13:20:43 +0000 | [diff] [blame] | 829 | } |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 830 | |
| 831 | GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps& caps) const override { |
| 832 | class GLSLProcessor : public GrGLSLGeometryProcessor { |
| 833 | public: |
| 834 | void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& proc, |
| 835 | FPCoordTransformIter&& transformIter) override { |
| 836 | const auto& gp = proc.cast<QuadPerEdgeAAGeometryProcessor>(); |
| 837 | if (gp.fLocalCoord.isInitialized()) { |
| 838 | this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter); |
| 839 | } |
| 840 | fTextureColorSpaceXformHelper.setData(pdman, gp.fTextureColorSpaceXform.get()); |
| 841 | } |
| 842 | |
| 843 | private: |
| 844 | void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
| 845 | using Interpolation = GrGLSLVaryingHandler::Interpolation; |
| 846 | |
| 847 | const auto& gp = args.fGP.cast<QuadPerEdgeAAGeometryProcessor>(); |
| 848 | fTextureColorSpaceXformHelper.emitCode(args.fUniformHandler, |
| 849 | gp.fTextureColorSpaceXform.get()); |
| 850 | |
| 851 | args.fVaryingHandler->emitAttributes(gp); |
| 852 | |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 853 | if (gp.fCoverageMode == CoverageMode::kWithPosition) { |
| 854 | // Strip last channel from the vertex attribute to remove coverage and get the |
| 855 | // actual position |
| 856 | if (gp.fNeedsPerspective) { |
| 857 | args.fVertBuilder->codeAppendf("float3 position = %s.xyz;", |
| 858 | gp.fPosition.name()); |
| 859 | } else { |
| 860 | args.fVertBuilder->codeAppendf("float2 position = %s.xy;", |
| 861 | gp.fPosition.name()); |
| 862 | } |
| 863 | gpArgs->fPositionVar = {"position", |
| 864 | gp.fNeedsPerspective ? kFloat3_GrSLType |
| 865 | : kFloat2_GrSLType, |
| 866 | GrShaderVar::kNone_TypeModifier}; |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 867 | } else { |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 868 | // No coverage to eliminate |
| 869 | gpArgs->fPositionVar = gp.fPosition.asShaderVar(); |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 870 | } |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 871 | |
| 872 | // Handle local coordinates if they exist |
| 873 | if (gp.fLocalCoord.isInitialized()) { |
| 874 | // NOTE: If the only usage of local coordinates is for the inline texture fetch |
| 875 | // before FPs, then there are no registered FPCoordTransforms and this ends up |
| 876 | // emitting nothing, so there isn't a duplication of local coordinates |
| 877 | this->emitTransforms(args.fVertBuilder, |
| 878 | args.fVaryingHandler, |
| 879 | args.fUniformHandler, |
| 880 | gp.fLocalCoord.asShaderVar(), |
| 881 | args.fFPCoordTransformHandler); |
| 882 | } |
| 883 | |
| 884 | // Solid color before any texturing gets modulated in |
| 885 | if (gp.fColor.isInitialized()) { |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 886 | // The color cannot be flat if the varying coverage has been modulated into it |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 887 | args.fVaryingHandler->addPassThroughAttribute(gp.fColor, args.fOutputColor, |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 888 | gp.fCoverageMode == CoverageMode::kWithColor ? |
| 889 | Interpolation::kInterpolated : Interpolation::kCanBeFlat); |
| 890 | } else { |
| 891 | // Output color must be initialized to something |
| 892 | args.fFragBuilder->codeAppendf("%s = half4(1);", args.fOutputColor); |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 893 | } |
| 894 | |
| 895 | // If there is a texture, must also handle texture coordinates and reading from |
| 896 | // the texture in the fragment shader before continuing to fragment processors. |
| 897 | if (gp.fSampler.isInitialized()) { |
| 898 | // Texture coordinates clamped by the domain on the fragment shader; if the GP |
| 899 | // has a texture, it's guaranteed to have local coordinates |
| 900 | args.fFragBuilder->codeAppend("float2 texCoord;"); |
| 901 | if (gp.fLocalCoord.cpuType() == kFloat3_GrVertexAttribType) { |
| 902 | // Can't do a pass through since we need to perform perspective division |
| 903 | GrGLSLVarying v(gp.fLocalCoord.gpuType()); |
| 904 | args.fVaryingHandler->addVarying(gp.fLocalCoord.name(), &v); |
| 905 | args.fVertBuilder->codeAppendf("%s = %s;", |
| 906 | v.vsOut(), gp.fLocalCoord.name()); |
| 907 | args.fFragBuilder->codeAppendf("texCoord = %s.xy / %s.z;", |
| 908 | v.fsIn(), v.fsIn()); |
| 909 | } else { |
| 910 | args.fVaryingHandler->addPassThroughAttribute(gp.fLocalCoord, "texCoord"); |
| 911 | } |
| 912 | |
| 913 | // Clamp the now 2D localCoordName variable by the domain if it is provided |
| 914 | if (gp.fDomain.isInitialized()) { |
| 915 | args.fFragBuilder->codeAppend("float4 domain;"); |
| 916 | args.fVaryingHandler->addPassThroughAttribute(gp.fDomain, "domain", |
| 917 | Interpolation::kCanBeFlat); |
| 918 | args.fFragBuilder->codeAppend( |
| 919 | "texCoord = clamp(texCoord, domain.xy, domain.zw);"); |
| 920 | } |
| 921 | |
| 922 | // Now modulate the starting output color by the texture lookup |
| 923 | args.fFragBuilder->codeAppendf("%s = ", args.fOutputColor); |
| 924 | args.fFragBuilder->appendTextureLookupAndModulate( |
| 925 | args.fOutputColor, args.fTexSamplers[0], "texCoord", kFloat2_GrSLType, |
| 926 | &fTextureColorSpaceXformHelper); |
| 927 | args.fFragBuilder->codeAppend(";"); |
| 928 | } |
| 929 | |
| 930 | // And lastly, output the coverage calculation code |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 931 | if (gp.fCoverageMode == CoverageMode::kWithPosition) { |
| 932 | GrGLSLVarying coverage(kFloat_GrSLType); |
| 933 | args.fVaryingHandler->addVarying("coverage", &coverage); |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 934 | if (gp.fNeedsPerspective) { |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 935 | args.fVertBuilder->codeAppendf("%s = %s.w;", |
| 936 | coverage.vsOut(), gp.fPosition.name()); |
| 937 | } else { |
| 938 | args.fVertBuilder->codeAppendf("%s = %s.z;", |
| 939 | coverage.vsOut(), gp.fPosition.name()); |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 940 | } |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 941 | |
Ethan Nicholas | e1f5502 | 2019-02-05 17:17:40 -0500 | [diff] [blame] | 942 | args.fFragBuilder->codeAppendf("%s = half4(half(%s));", |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 943 | args.fOutputCoverage, coverage.fsIn()); |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 944 | } else { |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 945 | // Set coverage to 1, since it's either non-AA or the coverage was already |
| 946 | // folded into the output color |
Ethan Nicholas | e1f5502 | 2019-02-05 17:17:40 -0500 | [diff] [blame] | 947 | args.fFragBuilder->codeAppendf("%s = half4(1);", args.fOutputCoverage); |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 948 | } |
| 949 | } |
| 950 | GrGLSLColorSpaceXformHelper fTextureColorSpaceXformHelper; |
| 951 | }; |
| 952 | return new GLSLProcessor; |
| 953 | } |
| 954 | |
| 955 | private: |
| 956 | QuadPerEdgeAAGeometryProcessor(const VertexSpec& spec) |
| 957 | : INHERITED(kQuadPerEdgeAAGeometryProcessor_ClassID) |
| 958 | , fTextureColorSpaceXform(nullptr) { |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 959 | SkASSERT(!spec.hasDomain()); |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 960 | this->initializeAttrs(spec); |
| 961 | this->setTextureSamplerCnt(0); |
| 962 | } |
| 963 | |
| 964 | QuadPerEdgeAAGeometryProcessor(const VertexSpec& spec, const GrShaderCaps& caps, |
| 965 | GrTextureType textureType, GrPixelConfig textureConfig, |
Greg Daniel | 7a82edf | 2018-12-04 10:54:34 -0500 | [diff] [blame] | 966 | const GrSamplerState& samplerState, |
| 967 | uint32_t extraSamplerKey, |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 968 | sk_sp<GrColorSpaceXform> textureColorSpaceXform) |
| 969 | : INHERITED(kQuadPerEdgeAAGeometryProcessor_ClassID) |
| 970 | , fTextureColorSpaceXform(std::move(textureColorSpaceXform)) |
Greg Daniel | 7a82edf | 2018-12-04 10:54:34 -0500 | [diff] [blame] | 971 | , fSampler(textureType, textureConfig, samplerState, extraSamplerKey) { |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 972 | SkASSERT(spec.hasLocalCoords()); |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 973 | this->initializeAttrs(spec); |
| 974 | this->setTextureSamplerCnt(1); |
| 975 | } |
| 976 | |
| 977 | void initializeAttrs(const VertexSpec& spec) { |
| 978 | fNeedsPerspective = spec.deviceDimensionality() == 3; |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 979 | fCoverageMode = get_mode_for_spec(spec); |
| 980 | |
| 981 | if (fCoverageMode == CoverageMode::kWithPosition) { |
| 982 | if (fNeedsPerspective) { |
| 983 | fPosition = {"positionWithCoverage", kFloat4_GrVertexAttribType, kFloat4_GrSLType}; |
| 984 | } else { |
| 985 | fPosition = {"positionWithCoverage", kFloat3_GrVertexAttribType, kFloat3_GrSLType}; |
| 986 | } |
| 987 | } else { |
| 988 | if (fNeedsPerspective) { |
| 989 | fPosition = {"position", kFloat3_GrVertexAttribType, kFloat3_GrSLType}; |
| 990 | } else { |
| 991 | fPosition = {"position", kFloat2_GrVertexAttribType, kFloat2_GrSLType}; |
| 992 | } |
| 993 | } |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 994 | |
| 995 | int localDim = spec.localDimensionality(); |
| 996 | if (localDim == 3) { |
| 997 | fLocalCoord = {"localCoord", kFloat3_GrVertexAttribType, kFloat3_GrSLType}; |
| 998 | } else if (localDim == 2) { |
| 999 | fLocalCoord = {"localCoord", kFloat2_GrVertexAttribType, kFloat2_GrSLType}; |
| 1000 | } // else localDim == 0 and attribute remains uninitialized |
| 1001 | |
| 1002 | if (ColorType::kByte == spec.colorType()) { |
| 1003 | fColor = {"color", kUByte4_norm_GrVertexAttribType, kHalf4_GrSLType}; |
| 1004 | } else if (ColorType::kHalf == spec.colorType()) { |
| 1005 | fColor = {"color", kHalf4_GrVertexAttribType, kHalf4_GrSLType}; |
| 1006 | } |
| 1007 | |
| 1008 | if (spec.hasDomain()) { |
| 1009 | fDomain = {"domain", kFloat4_GrVertexAttribType, kFloat4_GrSLType}; |
| 1010 | } |
| 1011 | |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 1012 | this->setVertexAttributes(&fPosition, 4); |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 1013 | } |
| 1014 | |
| 1015 | const TextureSampler& onTextureSampler(int) const override { return fSampler; } |
| 1016 | |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 1017 | Attribute fPosition; // May contain coverage as last channel |
| 1018 | Attribute fColor; // May have coverage modulated in if the FPs support it |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 1019 | Attribute fLocalCoord; |
| 1020 | Attribute fDomain; |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 1021 | |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 1022 | // The positions attribute may have coverage built into it, so float3 is an ambiguous type |
| 1023 | // and may mean 2d with coverage, or 3d with no coverage |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 1024 | bool fNeedsPerspective; |
Michael Ludwig | 93aeba0 | 2018-12-21 09:50:31 -0500 | [diff] [blame] | 1025 | CoverageMode fCoverageMode; |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 1026 | |
| 1027 | // Color space will be null and fSampler.isInitialized() returns false when the GP is configured |
| 1028 | // to skip texturing. |
| 1029 | sk_sp<GrColorSpaceXform> fTextureColorSpaceXform; |
| 1030 | TextureSampler fSampler; |
| 1031 | |
| 1032 | typedef GrGeometryProcessor INHERITED; |
| 1033 | }; |
| 1034 | |
| 1035 | sk_sp<GrGeometryProcessor> MakeProcessor(const VertexSpec& spec) { |
| 1036 | return QuadPerEdgeAAGeometryProcessor::Make(spec); |
| 1037 | } |
| 1038 | |
| 1039 | sk_sp<GrGeometryProcessor> MakeTexturedProcessor(const VertexSpec& spec, const GrShaderCaps& caps, |
| 1040 | GrTextureType textureType, GrPixelConfig textureConfig, |
Greg Daniel | 7a82edf | 2018-12-04 10:54:34 -0500 | [diff] [blame] | 1041 | const GrSamplerState& samplerState, uint32_t extraSamplerKey, |
| 1042 | sk_sp<GrColorSpaceXform> textureColorSpaceXform) { |
| 1043 | return QuadPerEdgeAAGeometryProcessor::Make(spec, caps, textureType, textureConfig, |
| 1044 | samplerState, extraSamplerKey, |
Michael Ludwig | 467994d | 2018-12-03 14:58:31 +0000 | [diff] [blame] | 1045 | std::move(textureColorSpaceXform)); |
Michael Ludwig | 20e909e | 2018-10-30 10:43:57 -0400 | [diff] [blame] | 1046 | } |
Michael Ludwig | c182b94 | 2018-11-16 10:27:51 -0500 | [diff] [blame] | 1047 | |
| 1048 | } // namespace GrQuadPerEdgeAA |