Michael Ludwig | 0f80902 | 2019-06-04 09:14:37 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2019 Google LLC |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/gpu/geometry/GrQuadUtils.h" |
| 9 | |
Michael Ludwig | 6132820 | 2019-06-19 14:48:58 +0000 | [diff] [blame] | 10 | #include "include/core/SkRect.h" |
Michael Ludwig | 0f80902 | 2019-06-04 09:14:37 -0400 | [diff] [blame] | 11 | #include "include/private/GrTypesPriv.h" |
Michael Ludwig | 6132820 | 2019-06-19 14:48:58 +0000 | [diff] [blame] | 12 | #include "include/private/SkVx.h" |
Michael Ludwig | 0f80902 | 2019-06-04 09:14:37 -0400 | [diff] [blame] | 13 | #include "src/gpu/geometry/GrQuad.h" |
| 14 | |
Michael Ludwig | 6132820 | 2019-06-19 14:48:58 +0000 | [diff] [blame] | 15 | using V4f = skvx::Vec<4, float>; |
| 16 | using M4f = skvx::Vec<4, int32_t>; |
| 17 | |
Michael Ludwig | fb7ba52 | 2019-10-29 15:33:34 -0400 | [diff] [blame] | 18 | #define AI SK_ALWAYS_INLINE |
| 19 | |
| 20 | static constexpr float kTolerance = 1e-2f; |
| 21 | // True/false bit masks for initializing an M4f |
| 22 | static constexpr int32_t kTrue = ~0; |
| 23 | static constexpr int32_t kFalse = 0; |
| 24 | |
| 25 | // These rotate the points/edge values either clockwise or counterclockwise assuming tri strip |
| 26 | // order. |
| 27 | static AI V4f next_cw(const V4f& v) { |
| 28 | return skvx::shuffle<2, 0, 3, 1>(v); |
| 29 | } |
| 30 | |
| 31 | static AI V4f next_ccw(const V4f& v) { |
| 32 | return skvx::shuffle<1, 3, 0, 2>(v); |
| 33 | } |
| 34 | |
| 35 | // Replaces zero-length 'bad' edge vectors with the reversed opposite edge vector. |
| 36 | // e3 may be null if only 2D edges need to be corrected for. |
| 37 | static AI void correct_bad_edges(const M4f& bad, V4f* e1, V4f* e2, V4f* e3) { |
| 38 | if (any(bad)) { |
| 39 | // Want opposite edges, L B T R -> R T B L but with flipped sign to preserve winding |
| 40 | *e1 = if_then_else(bad, -skvx::shuffle<3, 2, 1, 0>(*e1), *e1); |
| 41 | *e2 = if_then_else(bad, -skvx::shuffle<3, 2, 1, 0>(*e2), *e2); |
| 42 | if (e3) { |
| 43 | *e3 = if_then_else(bad, -skvx::shuffle<3, 2, 1, 0>(*e3), *e3); |
| 44 | } |
| 45 | } |
| 46 | } |
| 47 | |
| 48 | // Replace 'bad' coordinates by rotating CCW to get the next point. c3 may be null for 2D points. |
| 49 | static AI void correct_bad_coords(const M4f& bad, V4f* c1, V4f* c2, V4f* c3) { |
| 50 | if (any(bad)) { |
| 51 | *c1 = if_then_else(bad, next_ccw(*c1), *c1); |
| 52 | *c2 = if_then_else(bad, next_ccw(*c2), *c2); |
| 53 | if (c3) { |
| 54 | *c3 = if_then_else(bad, next_ccw(*c3), *c3); |
| 55 | } |
| 56 | } |
| 57 | } |
| 58 | |
Michael Ludwig | 6132820 | 2019-06-19 14:48:58 +0000 | [diff] [blame] | 59 | // Since the local quad may not be type kRect, this uses the opposites for each vertex when |
| 60 | // interpolating, and calculates new ws in addition to new xs, ys. |
| 61 | static void interpolate_local(float alpha, int v0, int v1, int v2, int v3, |
| 62 | float lx[4], float ly[4], float lw[4]) { |
| 63 | SkASSERT(v0 >= 0 && v0 < 4); |
| 64 | SkASSERT(v1 >= 0 && v1 < 4); |
| 65 | SkASSERT(v2 >= 0 && v2 < 4); |
| 66 | SkASSERT(v3 >= 0 && v3 < 4); |
| 67 | |
| 68 | float beta = 1.f - alpha; |
| 69 | lx[v0] = alpha * lx[v0] + beta * lx[v2]; |
| 70 | ly[v0] = alpha * ly[v0] + beta * ly[v2]; |
| 71 | lw[v0] = alpha * lw[v0] + beta * lw[v2]; |
| 72 | |
| 73 | lx[v1] = alpha * lx[v1] + beta * lx[v3]; |
| 74 | ly[v1] = alpha * ly[v1] + beta * ly[v3]; |
| 75 | lw[v1] = alpha * lw[v1] + beta * lw[v3]; |
| 76 | } |
| 77 | |
| 78 | // Crops v0 to v1 based on the clipDevRect. v2 is opposite of v0, v3 is opposite of v1. |
| 79 | // It is written to not modify coordinates if there's no intersection along the edge. |
| 80 | // Ideally this would have been detected earlier and the entire draw is skipped. |
| 81 | static bool crop_rect_edge(const SkRect& clipDevRect, int v0, int v1, int v2, int v3, |
| 82 | float x[4], float y[4], float lx[4], float ly[4], float lw[4]) { |
| 83 | SkASSERT(v0 >= 0 && v0 < 4); |
| 84 | SkASSERT(v1 >= 0 && v1 < 4); |
| 85 | SkASSERT(v2 >= 0 && v2 < 4); |
| 86 | SkASSERT(v3 >= 0 && v3 < 4); |
| 87 | |
| 88 | if (SkScalarNearlyEqual(x[v0], x[v1])) { |
| 89 | // A vertical edge |
| 90 | if (x[v0] < clipDevRect.fLeft && x[v2] >= clipDevRect.fLeft) { |
| 91 | // Overlapping with left edge of clipDevRect |
| 92 | if (lx) { |
| 93 | float alpha = (x[v2] - clipDevRect.fLeft) / (x[v2] - x[v0]); |
| 94 | interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw); |
| 95 | } |
| 96 | x[v0] = clipDevRect.fLeft; |
| 97 | x[v1] = clipDevRect.fLeft; |
| 98 | return true; |
| 99 | } else if (x[v0] > clipDevRect.fRight && x[v2] <= clipDevRect.fRight) { |
| 100 | // Overlapping with right edge of clipDevRect |
| 101 | if (lx) { |
| 102 | float alpha = (clipDevRect.fRight - x[v2]) / (x[v0] - x[v2]); |
| 103 | interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw); |
| 104 | } |
| 105 | x[v0] = clipDevRect.fRight; |
| 106 | x[v1] = clipDevRect.fRight; |
| 107 | return true; |
| 108 | } |
| 109 | } else { |
| 110 | // A horizontal edge |
| 111 | SkASSERT(SkScalarNearlyEqual(y[v0], y[v1])); |
| 112 | if (y[v0] < clipDevRect.fTop && y[v2] >= clipDevRect.fTop) { |
| 113 | // Overlapping with top edge of clipDevRect |
| 114 | if (lx) { |
| 115 | float alpha = (y[v2] - clipDevRect.fTop) / (y[v2] - y[v0]); |
| 116 | interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw); |
| 117 | } |
| 118 | y[v0] = clipDevRect.fTop; |
| 119 | y[v1] = clipDevRect.fTop; |
| 120 | return true; |
| 121 | } else if (y[v0] > clipDevRect.fBottom && y[v2] <= clipDevRect.fBottom) { |
| 122 | // Overlapping with bottom edge of clipDevRect |
| 123 | if (lx) { |
| 124 | float alpha = (clipDevRect.fBottom - y[v2]) / (y[v0] - y[v2]); |
| 125 | interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw); |
| 126 | } |
| 127 | y[v0] = clipDevRect.fBottom; |
| 128 | y[v1] = clipDevRect.fBottom; |
| 129 | return true; |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | // No overlap so don't crop it |
| 134 | return false; |
| 135 | } |
| 136 | |
Michael Ludwig | 0a7cab0 | 2019-07-09 17:20:08 +0000 | [diff] [blame] | 137 | // Updates x and y to intersect with clipDevRect. lx, ly, and lw are updated appropriately and may |
| 138 | // be null to skip calculations. Returns bit mask of edges that were clipped. |
| 139 | static GrQuadAAFlags crop_rect(const SkRect& clipDevRect, float x[4], float y[4], |
| 140 | float lx[4], float ly[4], float lw[4]) { |
Michael Ludwig | 6132820 | 2019-06-19 14:48:58 +0000 | [diff] [blame] | 141 | GrQuadAAFlags clipEdgeFlags = GrQuadAAFlags::kNone; |
| 142 | |
Michael Ludwig | 0a7cab0 | 2019-07-09 17:20:08 +0000 | [diff] [blame] | 143 | // The quad's left edge may not align with the SkRect notion of left due to 90 degree rotations |
| 144 | // or mirrors. So, this processes the logical edges of the quad and clamps it to the 4 sides of |
| 145 | // clipDevRect. |
Michael Ludwig | 6132820 | 2019-06-19 14:48:58 +0000 | [diff] [blame] | 146 | |
| 147 | // Quad's left is v0 to v1 (op. v2 and v3) |
| 148 | if (crop_rect_edge(clipDevRect, 0, 1, 2, 3, x, y, lx, ly, lw)) { |
| 149 | clipEdgeFlags |= GrQuadAAFlags::kLeft; |
| 150 | } |
| 151 | // Quad's top edge is v0 to v2 (op. v1 and v3) |
| 152 | if (crop_rect_edge(clipDevRect, 0, 2, 1, 3, x, y, lx, ly, lw)) { |
| 153 | clipEdgeFlags |= GrQuadAAFlags::kTop; |
| 154 | } |
| 155 | // Quad's right edge is v2 to v3 (op. v0 and v1) |
| 156 | if (crop_rect_edge(clipDevRect, 2, 3, 0, 1, x, y, lx, ly, lw)) { |
| 157 | clipEdgeFlags |= GrQuadAAFlags::kRight; |
| 158 | } |
| 159 | // Quad's bottom edge is v1 to v3 (op. v0 and v2) |
| 160 | if (crop_rect_edge(clipDevRect, 1, 3, 0, 2, x, y, lx, ly, lw)) { |
| 161 | clipEdgeFlags |= GrQuadAAFlags::kBottom; |
| 162 | } |
| 163 | |
Michael Ludwig | 0a7cab0 | 2019-07-09 17:20:08 +0000 | [diff] [blame] | 164 | return clipEdgeFlags; |
| 165 | } |
| 166 | |
| 167 | // Similar to crop_rect, but assumes that both the device coordinates and optional local coordinates |
| 168 | // geometrically match the TL, BL, TR, BR vertex ordering, i.e. axis-aligned but not flipped, etc. |
| 169 | static GrQuadAAFlags crop_simple_rect(const SkRect& clipDevRect, float x[4], float y[4], |
| 170 | float lx[4], float ly[4]) { |
| 171 | GrQuadAAFlags clipEdgeFlags = GrQuadAAFlags::kNone; |
| 172 | |
| 173 | // Update local coordinates proportionately to how much the device rect edge was clipped |
| 174 | const SkScalar dx = lx ? (lx[2] - lx[0]) / (x[2] - x[0]) : 0.f; |
| 175 | const SkScalar dy = ly ? (ly[1] - ly[0]) / (y[1] - y[0]) : 0.f; |
| 176 | if (clipDevRect.fLeft > x[0]) { |
| 177 | if (lx) { |
| 178 | lx[0] += (clipDevRect.fLeft - x[0]) * dx; |
| 179 | lx[1] = lx[0]; |
| 180 | } |
| 181 | x[0] = clipDevRect.fLeft; |
| 182 | x[1] = clipDevRect.fLeft; |
| 183 | clipEdgeFlags |= GrQuadAAFlags::kLeft; |
Michael Ludwig | 6132820 | 2019-06-19 14:48:58 +0000 | [diff] [blame] | 184 | } |
Michael Ludwig | 0a7cab0 | 2019-07-09 17:20:08 +0000 | [diff] [blame] | 185 | if (clipDevRect.fTop > y[0]) { |
| 186 | if (ly) { |
| 187 | ly[0] += (clipDevRect.fTop - y[0]) * dy; |
| 188 | ly[2] = ly[0]; |
| 189 | } |
| 190 | y[0] = clipDevRect.fTop; |
| 191 | y[2] = clipDevRect.fTop; |
| 192 | clipEdgeFlags |= GrQuadAAFlags::kTop; |
| 193 | } |
| 194 | if (clipDevRect.fRight < x[2]) { |
| 195 | if (lx) { |
| 196 | lx[2] -= (x[2] - clipDevRect.fRight) * dx; |
| 197 | lx[3] = lx[2]; |
| 198 | } |
| 199 | x[2] = clipDevRect.fRight; |
| 200 | x[3] = clipDevRect.fRight; |
| 201 | clipEdgeFlags |= GrQuadAAFlags::kRight; |
| 202 | } |
| 203 | if (clipDevRect.fBottom < y[1]) { |
| 204 | if (ly) { |
| 205 | ly[1] -= (y[1] - clipDevRect.fBottom) * dy; |
| 206 | ly[3] = ly[1]; |
| 207 | } |
| 208 | y[1] = clipDevRect.fBottom; |
| 209 | y[3] = clipDevRect.fBottom; |
| 210 | clipEdgeFlags |= GrQuadAAFlags::kBottom; |
| 211 | } |
| 212 | |
| 213 | return clipEdgeFlags; |
| 214 | } |
| 215 | // Consistent with GrQuad::asRect()'s return value but requires fewer operations since we don't need |
| 216 | // to calculate the bounds of the quad. |
| 217 | static bool is_simple_rect(const GrQuad& quad) { |
| 218 | if (quad.quadType() != GrQuad::Type::kAxisAligned) { |
| 219 | return false; |
| 220 | } |
| 221 | // v0 at the geometric top-left is unique, so we only need to compare x[0] < x[2] for left |
| 222 | // and y[0] < y[1] for top, but add a little padding to protect against numerical precision |
| 223 | // on R90 and R270 transforms tricking this check. |
| 224 | return ((quad.x(0) + SK_ScalarNearlyZero) < quad.x(2)) && |
| 225 | ((quad.y(0) + SK_ScalarNearlyZero) < quad.y(1)); |
Michael Ludwig | 6132820 | 2019-06-19 14:48:58 +0000 | [diff] [blame] | 226 | } |
| 227 | |
| 228 | // Calculates barycentric coordinates for each point in (testX, testY) in the triangle formed by |
| 229 | // (x0,y0) - (x1,y1) - (x2, y2) and stores them in u, v, w. |
| 230 | static void barycentric_coords(float x0, float y0, float x1, float y1, float x2, float y2, |
| 231 | const V4f& testX, const V4f& testY, |
| 232 | V4f* u, V4f* v, V4f* w) { |
| 233 | // Modeled after SkPathOpsQuad::pointInTriangle() but uses float instead of double, is |
| 234 | // vectorized and outputs normalized barycentric coordinates instead of inside/outside test |
| 235 | float v0x = x2 - x0; |
| 236 | float v0y = y2 - y0; |
| 237 | float v1x = x1 - x0; |
| 238 | float v1y = y1 - y0; |
| 239 | V4f v2x = testX - x0; |
| 240 | V4f v2y = testY - y0; |
| 241 | |
| 242 | float dot00 = v0x * v0x + v0y * v0y; |
| 243 | float dot01 = v0x * v1x + v0y * v1y; |
| 244 | V4f dot02 = v0x * v2x + v0y * v2y; |
| 245 | float dot11 = v1x * v1x + v1y * v1y; |
| 246 | V4f dot12 = v1x * v2x + v1y * v2y; |
| 247 | float invDenom = sk_ieee_float_divide(1.f, dot00 * dot11 - dot01 * dot01); |
| 248 | *u = (dot11 * dot02 - dot01 * dot12) * invDenom; |
| 249 | *v = (dot00 * dot12 - dot01 * dot02) * invDenom; |
| 250 | *w = 1.f - *u - *v; |
| 251 | } |
| 252 | |
| 253 | static M4f inside_triangle(const V4f& u, const V4f& v, const V4f& w) { |
| 254 | return ((u >= 0.f) & (u <= 1.f)) & ((v >= 0.f) & (v <= 1.f)) & ((w >= 0.f) & (w <= 1.f)); |
| 255 | } |
| 256 | |
Michael Ludwig | 0f80902 | 2019-06-04 09:14:37 -0400 | [diff] [blame] | 257 | namespace GrQuadUtils { |
| 258 | |
| 259 | void ResolveAAType(GrAAType requestedAAType, GrQuadAAFlags requestedEdgeFlags, const GrQuad& quad, |
| 260 | GrAAType* outAAType, GrQuadAAFlags* outEdgeFlags) { |
| 261 | // Most cases will keep the requested types unchanged |
| 262 | *outAAType = requestedAAType; |
| 263 | *outEdgeFlags = requestedEdgeFlags; |
| 264 | |
| 265 | switch (requestedAAType) { |
| 266 | // When aa type is coverage, disable AA if the edge configuration doesn't actually need it |
| 267 | case GrAAType::kCoverage: |
| 268 | if (requestedEdgeFlags == GrQuadAAFlags::kNone) { |
| 269 | // Turn off anti-aliasing |
| 270 | *outAAType = GrAAType::kNone; |
| 271 | } else { |
| 272 | // For coverage AA, if the quad is a rect and it lines up with pixel boundaries |
| 273 | // then overall aa and per-edge aa can be completely disabled |
| 274 | if (quad.quadType() == GrQuad::Type::kAxisAligned && !quad.aaHasEffectOnRect()) { |
| 275 | *outAAType = GrAAType::kNone; |
| 276 | *outEdgeFlags = GrQuadAAFlags::kNone; |
| 277 | } |
| 278 | } |
| 279 | break; |
| 280 | // For no or msaa anti aliasing, override the edge flags since edge flags only make sense |
| 281 | // when coverage aa is being used. |
| 282 | case GrAAType::kNone: |
| 283 | *outEdgeFlags = GrQuadAAFlags::kNone; |
| 284 | break; |
| 285 | case GrAAType::kMSAA: |
| 286 | *outEdgeFlags = GrQuadAAFlags::kAll; |
| 287 | break; |
Michael Ludwig | 0f80902 | 2019-06-04 09:14:37 -0400 | [diff] [blame] | 288 | } |
Michael Ludwig | 6132820 | 2019-06-19 14:48:58 +0000 | [diff] [blame] | 289 | } |
| 290 | |
| 291 | bool CropToRect(const SkRect& cropRect, GrAA cropAA, GrQuadAAFlags* edgeFlags, GrQuad* quad, |
| 292 | GrQuad* local) { |
Michael Ludwig | ed71b7e | 2019-06-21 13:47:02 -0400 | [diff] [blame] | 293 | SkASSERT(quad->isFinite()); |
| 294 | |
Michael Ludwig | 6132820 | 2019-06-19 14:48:58 +0000 | [diff] [blame] | 295 | if (quad->quadType() == GrQuad::Type::kAxisAligned) { |
Michael Ludwig | 0a7cab0 | 2019-07-09 17:20:08 +0000 | [diff] [blame] | 296 | // crop_rect and crop_rect_simple keep the rectangles as rectangles, so the intersection |
| 297 | // of the crop and quad can be calculated exactly. Some care must be taken if the quad |
| 298 | // is axis-aligned but does not satisfy asRect() due to flips, etc. |
| 299 | GrQuadAAFlags clippedEdges; |
Michael Ludwig | 6132820 | 2019-06-19 14:48:58 +0000 | [diff] [blame] | 300 | if (local) { |
Michael Ludwig | 0a7cab0 | 2019-07-09 17:20:08 +0000 | [diff] [blame] | 301 | if (is_simple_rect(*quad) && is_simple_rect(*local)) { |
| 302 | clippedEdges = crop_simple_rect(cropRect, quad->xs(), quad->ys(), |
| 303 | local->xs(), local->ys()); |
| 304 | } else { |
| 305 | clippedEdges = crop_rect(cropRect, quad->xs(), quad->ys(), |
| 306 | local->xs(), local->ys(), local->ws()); |
| 307 | } |
Michael Ludwig | 6132820 | 2019-06-19 14:48:58 +0000 | [diff] [blame] | 308 | } else { |
Michael Ludwig | 0a7cab0 | 2019-07-09 17:20:08 +0000 | [diff] [blame] | 309 | if (is_simple_rect(*quad)) { |
| 310 | clippedEdges = crop_simple_rect(cropRect, quad->xs(), quad->ys(), nullptr, nullptr); |
| 311 | } else { |
| 312 | clippedEdges = crop_rect(cropRect, quad->xs(), quad->ys(), |
| 313 | nullptr, nullptr, nullptr); |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | // Apply the clipped edge updates to the original edge flags |
| 318 | if (cropAA == GrAA::kYes) { |
| 319 | // Turn on all edges that were clipped |
| 320 | *edgeFlags |= clippedEdges; |
| 321 | } else { |
| 322 | // Turn off all edges that were clipped |
| 323 | *edgeFlags &= ~clippedEdges; |
Michael Ludwig | 6132820 | 2019-06-19 14:48:58 +0000 | [diff] [blame] | 324 | } |
| 325 | return true; |
| 326 | } |
| 327 | |
| 328 | if (local) { |
| 329 | // FIXME (michaelludwig) Calculate cropped local coordinates when not kAxisAligned |
| 330 | return false; |
| 331 | } |
| 332 | |
| 333 | V4f devX = quad->x4f(); |
| 334 | V4f devY = quad->y4f(); |
| 335 | V4f devIW = quad->iw4f(); |
| 336 | // Project the 3D coordinates to 2D |
| 337 | if (quad->quadType() == GrQuad::Type::kPerspective) { |
| 338 | devX *= devIW; |
| 339 | devY *= devIW; |
| 340 | } |
| 341 | |
| 342 | V4f clipX = {cropRect.fLeft, cropRect.fLeft, cropRect.fRight, cropRect.fRight}; |
| 343 | V4f clipY = {cropRect.fTop, cropRect.fBottom, cropRect.fTop, cropRect.fBottom}; |
| 344 | |
| 345 | // Calculate barycentric coordinates for the 4 rect corners in the 2 triangles that the quad |
| 346 | // is tessellated into when drawn. |
| 347 | V4f u1, v1, w1; |
| 348 | barycentric_coords(devX[0], devY[0], devX[1], devY[1], devX[2], devY[2], clipX, clipY, |
| 349 | &u1, &v1, &w1); |
| 350 | V4f u2, v2, w2; |
| 351 | barycentric_coords(devX[1], devY[1], devX[3], devY[3], devX[2], devY[2], clipX, clipY, |
| 352 | &u2, &v2, &w2); |
| 353 | |
| 354 | // clipDevRect is completely inside this quad if each corner is in at least one of two triangles |
| 355 | M4f inTri1 = inside_triangle(u1, v1, w1); |
| 356 | M4f inTri2 = inside_triangle(u2, v2, w2); |
| 357 | if (all(inTri1 | inTri2)) { |
| 358 | // We can crop to exactly the clipDevRect. |
| 359 | // FIXME (michaelludwig) - there are other ways to have determined quad covering the clip |
| 360 | // rect, but the barycentric coords will be useful to derive local coordinates in the future |
| 361 | |
| 362 | // Since we are cropped to exactly clipDevRect, we have discarded any perspective and the |
| 363 | // type becomes kRect. If updated locals were requested, they will incorporate perspective. |
| 364 | // FIXME (michaelludwig) - once we have local coordinates handled, it may be desirable to |
| 365 | // keep the draw as perspective so that the hardware does perspective interpolation instead |
| 366 | // of pushing it into a local coord w and having the shader do an extra divide. |
| 367 | clipX.store(quad->xs()); |
| 368 | clipY.store(quad->ys()); |
| 369 | quad->ws()[0] = 1.f; |
| 370 | quad->ws()[1] = 1.f; |
| 371 | quad->ws()[2] = 1.f; |
| 372 | quad->ws()[3] = 1.f; |
| 373 | quad->setQuadType(GrQuad::Type::kAxisAligned); |
| 374 | |
| 375 | // Update the edge flags to match the clip setting since all 4 edges have been clipped |
| 376 | *edgeFlags = cropAA == GrAA::kYes ? GrQuadAAFlags::kAll : GrQuadAAFlags::kNone; |
| 377 | |
| 378 | return true; |
| 379 | } |
| 380 | |
| 381 | // FIXME (michaelludwig) - use the GrQuadPerEdgeAA tessellation inset/outset math to move |
| 382 | // edges to the closest clip corner they are outside of |
| 383 | |
| 384 | return false; |
| 385 | } |
Michael Ludwig | 0f80902 | 2019-06-04 09:14:37 -0400 | [diff] [blame] | 386 | |
Michael Ludwig | fb7ba52 | 2019-10-29 15:33:34 -0400 | [diff] [blame] | 387 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 388 | // TessellationHelper implementation |
| 389 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 390 | |
| 391 | TessellationHelper::QuadMetadata TessellationHelper::getMetadata(const Vertices& vertices, |
| 392 | GrQuadAAFlags aaFlags) { |
| 393 | V4f dx = next_ccw(vertices.fX) - vertices.fX; |
| 394 | V4f dy = next_ccw(vertices.fY) - vertices.fY; |
| 395 | V4f invLengths = rsqrt(mad(dx, dx, dy * dy)); |
| 396 | |
| 397 | V4f mask = aaFlags == GrQuadAAFlags::kAll ? V4f(1.f) : |
| 398 | V4f{(GrQuadAAFlags::kLeft & aaFlags) ? 1.f : 0.f, |
| 399 | (GrQuadAAFlags::kBottom & aaFlags) ? 1.f : 0.f, |
| 400 | (GrQuadAAFlags::kTop & aaFlags) ? 1.f : 0.f, |
| 401 | (GrQuadAAFlags::kRight & aaFlags) ? 1.f : 0.f}; |
| 402 | return { dx * invLengths, dy * invLengths, invLengths, mask }; |
| 403 | } |
| 404 | |
| 405 | TessellationHelper::Edges TessellationHelper::getEdgeEquations(const QuadMetadata& metadata, |
| 406 | const Vertices& vertices) { |
| 407 | V4f dx = metadata.fDX; |
| 408 | V4f dy = metadata.fDY; |
| 409 | // Correct for bad edges by copying adjacent edge information into the bad component |
| 410 | correct_bad_edges(metadata.fInvLengths >= 1.f / kTolerance, &dx, &dy, nullptr); |
| 411 | |
| 412 | V4f c = mad(dx, vertices.fY, -dy * vertices.fX); |
| 413 | // Make sure normals point into the shape |
| 414 | V4f test = mad(dy, next_cw(vertices.fX), mad(-dx, next_cw(vertices.fY), c)); |
| 415 | if (any(test < -kTolerance)) { |
| 416 | return {-dy, dx, -c, true}; |
| 417 | } else { |
| 418 | return {dy, -dx, c, false}; |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | bool TessellationHelper::getOptimizedOutset(const QuadMetadata& metadata, |
| 423 | bool rectilinear, |
| 424 | V4f* outset) { |
| 425 | if (rectilinear) { |
| 426 | *outset = 0.5f; |
| 427 | // Stay in the fast path as long as all edges are at least a pixel long (so 1/len <= 1) |
| 428 | return all(metadata.fInvLengths <= 1.f); |
| 429 | } |
| 430 | |
| 431 | if (any(metadata.fInvLengths >= 1.f / kTolerance)) { |
| 432 | // Have an empty edge from a degenerate quad, so there's no hope |
| 433 | return false; |
| 434 | } |
| 435 | |
| 436 | // The distance the point needs to move is 1/2sin(theta), where theta is the angle between the |
| 437 | // two edges at that point. cos(theta) is equal to dot(dxy, next_cw(dxy)) |
| 438 | V4f cosTheta = mad(metadata.fDX, next_cw(metadata.fDX), metadata.fDY * next_cw(metadata.fDY)); |
| 439 | // If the angle is too shallow between edges, go through the degenerate path, otherwise adding |
| 440 | // and subtracting very large vectors in almost opposite directions leads to float errors |
| 441 | if (any(abs(cosTheta) >= 0.9f)) { |
| 442 | return false; |
| 443 | } |
| 444 | *outset = 0.5f * rsqrt(1.f - cosTheta * cosTheta); // 1/2sin(theta) |
| 445 | |
| 446 | // When outsetting or insetting, the current edge's AA adds to the length: |
| 447 | // cos(pi - theta)/2sin(theta) + cos(pi-ccw(theta))/2sin(ccw(theta)) |
| 448 | // Moving an adjacent edge updates the length by 1/2sin(theta|ccw(theta)) |
| 449 | V4f halfTanTheta = -cosTheta * (*outset); // cos(pi - theta) = -cos(theta) |
| 450 | V4f edgeAdjust = metadata.fMask * (halfTanTheta + next_ccw(halfTanTheta)) + |
| 451 | next_ccw(metadata.fMask) * next_ccw(*outset) + |
| 452 | next_cw(metadata.fMask) * (*outset); |
| 453 | // If either outsetting (plus edgeAdjust) or insetting (minus edgeAdjust) make edgeLen negative |
| 454 | // then use the slow path |
| 455 | V4f threshold = 0.1f - (1.f / metadata.fInvLengths); |
| 456 | return all(edgeAdjust > threshold) && all(edgeAdjust < -threshold); |
| 457 | } |
| 458 | |
| 459 | void TessellationHelper::outsetVertices(const V4f& outset, |
| 460 | const QuadMetadata& metadata, |
| 461 | Vertices* quad) { |
| 462 | // The mask is rotated compared to the outsets and edge vectors, since if the edge is "on" |
| 463 | // both its points need to be moved along their other edge vectors. |
| 464 | auto maskedOutset = -outset * next_cw(metadata.fMask); |
| 465 | auto maskedOutsetCW = outset * metadata.fMask; |
| 466 | // x = x + outset * mask * next_cw(xdiff) - outset * next_cw(mask) * xdiff |
| 467 | quad->fX += mad(maskedOutsetCW, next_cw(metadata.fDX), maskedOutset * metadata.fDX); |
| 468 | quad->fY += mad(maskedOutsetCW, next_cw(metadata.fDY), maskedOutset * metadata.fDY); |
| 469 | if (quad->fUVRCount > 0) { |
| 470 | // We want to extend the texture coords by the same proportion as the positions. |
| 471 | maskedOutset *= metadata.fInvLengths; |
| 472 | maskedOutsetCW *= next_cw(metadata.fInvLengths); |
| 473 | V4f du = next_ccw(quad->fU) - quad->fU; |
| 474 | V4f dv = next_ccw(quad->fV) - quad->fV; |
| 475 | quad->fU += mad(maskedOutsetCW, next_cw(du), maskedOutset * du); |
| 476 | quad->fV += mad(maskedOutsetCW, next_cw(dv), maskedOutset * dv); |
| 477 | if (quad->fUVRCount == 3) { |
| 478 | V4f dr = next_ccw(quad->fR) - quad->fR; |
| 479 | quad->fR += mad(maskedOutsetCW, next_cw(dr), maskedOutset * dr); |
| 480 | } |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | void TessellationHelper::outsetProjectedVertices(const V4f& x2d, const V4f& y2d, |
| 485 | GrQuadAAFlags aaFlags, Vertices* quad) { |
| 486 | // Left to right, in device space, for each point |
| 487 | V4f e1x = skvx::shuffle<2, 3, 2, 3>(quad->fX) - skvx::shuffle<0, 1, 0, 1>(quad->fX); |
| 488 | V4f e1y = skvx::shuffle<2, 3, 2, 3>(quad->fY) - skvx::shuffle<0, 1, 0, 1>(quad->fY); |
| 489 | V4f e1w = skvx::shuffle<2, 3, 2, 3>(quad->fW) - skvx::shuffle<0, 1, 0, 1>(quad->fW); |
| 490 | correct_bad_edges(mad(e1x, e1x, e1y * e1y) < kTolerance * kTolerance, &e1x, &e1y, &e1w); |
| 491 | |
| 492 | // // Top to bottom, in device space, for each point |
| 493 | V4f e2x = skvx::shuffle<1, 1, 3, 3>(quad->fX) - skvx::shuffle<0, 0, 2, 2>(quad->fX); |
| 494 | V4f e2y = skvx::shuffle<1, 1, 3, 3>(quad->fY) - skvx::shuffle<0, 0, 2, 2>(quad->fY); |
| 495 | V4f e2w = skvx::shuffle<1, 1, 3, 3>(quad->fW) - skvx::shuffle<0, 0, 2, 2>(quad->fW); |
| 496 | correct_bad_edges(mad(e2x, e2x, e2y * e2y) < kTolerance * kTolerance, &e2x, &e2y, &e2w); |
| 497 | |
| 498 | // Can only move along e1 and e2 to reach the new 2D point, so we have |
| 499 | // x2d = (x + a*e1x + b*e2x) / (w + a*e1w + b*e2w) and |
| 500 | // y2d = (y + a*e1y + b*e2y) / (w + a*e1w + b*e2w) for some a, b |
| 501 | // This can be rewritten to a*c1x + b*c2x + c3x = 0; a * c1y + b*c2y + c3y = 0, where |
| 502 | // the cNx and cNy coefficients are: |
| 503 | V4f c1x = e1w * x2d - e1x; |
| 504 | V4f c1y = e1w * y2d - e1y; |
| 505 | V4f c2x = e2w * x2d - e2x; |
| 506 | V4f c2y = e2w * y2d - e2y; |
| 507 | V4f c3x = quad->fW * x2d - quad->fX; |
| 508 | V4f c3y = quad->fW * y2d - quad->fY; |
| 509 | |
| 510 | // Solve for a and b |
| 511 | V4f a, b, denom; |
| 512 | if (aaFlags == GrQuadAAFlags::kAll) { |
| 513 | // When every edge is outset/inset, each corner can use both edge vectors |
| 514 | denom = c1x * c2y - c2x * c1y; |
| 515 | a = (c2x * c3y - c3x * c2y) / denom; |
| 516 | b = (c3x * c1y - c1x * c3y) / denom; |
| 517 | } else { |
| 518 | // Force a or b to be 0 if that edge cannot be used due to non-AA |
| 519 | M4f aMask = M4f{(aaFlags & GrQuadAAFlags::kLeft) ? kTrue : kFalse, |
| 520 | (aaFlags & GrQuadAAFlags::kLeft) ? kTrue : kFalse, |
| 521 | (aaFlags & GrQuadAAFlags::kRight) ? kTrue : kFalse, |
| 522 | (aaFlags & GrQuadAAFlags::kRight) ? kTrue : kFalse}; |
| 523 | M4f bMask = M4f{(aaFlags & GrQuadAAFlags::kTop) ? kTrue : kFalse, |
| 524 | (aaFlags & GrQuadAAFlags::kBottom) ? kTrue : kFalse, |
| 525 | (aaFlags & GrQuadAAFlags::kTop) ? kTrue : kFalse, |
| 526 | (aaFlags & GrQuadAAFlags::kBottom) ? kTrue : kFalse}; |
| 527 | |
| 528 | // When aMask[i]&bMask[i], then a[i], b[i], denom[i] match the kAll case. |
| 529 | // When aMask[i]&!bMask[i], then b[i] = 0, a[i] = -c3x/c1x or -c3y/c1y, using better denom |
| 530 | // When !aMask[i]&bMask[i], then a[i] = 0, b[i] = -c3x/c2x or -c3y/c2y, "" |
| 531 | // When !aMask[i]&!bMask[i], then both a[i] = 0 and b[i] = 0 |
| 532 | M4f useC1x = abs(c1x) > abs(c1y); |
| 533 | M4f useC2x = abs(c2x) > abs(c2y); |
| 534 | |
| 535 | denom = if_then_else(aMask, |
| 536 | if_then_else(bMask, |
| 537 | c1x * c2y - c2x * c1y, /* A & B */ |
| 538 | if_then_else(useC1x, c1x, c1y)), /* A & !B */ |
| 539 | if_then_else(bMask, |
| 540 | if_then_else(useC2x, c2x, c2y), /* !A & B */ |
| 541 | V4f(1.f))); /* !A & !B */ |
| 542 | |
| 543 | a = if_then_else(aMask, |
| 544 | if_then_else(bMask, |
| 545 | c2x * c3y - c3x * c2y, /* A & B */ |
| 546 | if_then_else(useC1x, -c3x, -c3y)), /* A & !B */ |
| 547 | V4f(0.f)) / denom; /* !A */ |
| 548 | b = if_then_else(bMask, |
| 549 | if_then_else(aMask, |
| 550 | c3x * c1y - c1x * c3y, /* A & B */ |
| 551 | if_then_else(useC2x, -c3x, -c3y)), /* !A & B */ |
| 552 | V4f(0.f)) / denom; /* !B */ |
| 553 | } |
| 554 | |
| 555 | V4f newW = quad->fW + a * e1w + b * e2w; |
| 556 | // If newW < 0, scale a and b such that the point reaches the infinity plane instead of crossing |
| 557 | // This breaks orthogonality of inset/outsets, but GPUs don't handle negative Ws well so this |
| 558 | // is far less visually disturbing (likely not noticeable since it's at extreme perspective). |
| 559 | // The alternative correction (multiply xyw by -1) has the disadvantage of changing how local |
| 560 | // coordinates would be interpolated. |
| 561 | static const float kMinW = 1e-6f; |
| 562 | if (any(newW < 0.f)) { |
| 563 | V4f scale = if_then_else(newW < kMinW, (kMinW - quad->fW) / (newW - quad->fW), V4f(1.f)); |
| 564 | a *= scale; |
| 565 | b *= scale; |
| 566 | } |
| 567 | |
| 568 | quad->fX += a * e1x + b * e2x; |
| 569 | quad->fY += a * e1y + b * e2y; |
| 570 | quad->fW += a * e1w + b * e2w; |
| 571 | correct_bad_coords(abs(denom) < kTolerance, &quad->fX, &quad->fY, &quad->fW); |
| 572 | |
| 573 | if (quad->fUVRCount > 0) { |
| 574 | // Calculate R here so it can be corrected with U and V in case it's needed later |
| 575 | V4f e1u = skvx::shuffle<2, 3, 2, 3>(quad->fU) - skvx::shuffle<0, 1, 0, 1>(quad->fU); |
| 576 | V4f e1v = skvx::shuffle<2, 3, 2, 3>(quad->fV) - skvx::shuffle<0, 1, 0, 1>(quad->fV); |
| 577 | V4f e1r = skvx::shuffle<2, 3, 2, 3>(quad->fR) - skvx::shuffle<0, 1, 0, 1>(quad->fR); |
| 578 | correct_bad_edges(mad(e1u, e1u, e1v * e1v) < kTolerance * kTolerance, &e1u, &e1v, &e1r); |
| 579 | |
| 580 | V4f e2u = skvx::shuffle<1, 1, 3, 3>(quad->fU) - skvx::shuffle<0, 0, 2, 2>(quad->fU); |
| 581 | V4f e2v = skvx::shuffle<1, 1, 3, 3>(quad->fV) - skvx::shuffle<0, 0, 2, 2>(quad->fV); |
| 582 | V4f e2r = skvx::shuffle<1, 1, 3, 3>(quad->fR) - skvx::shuffle<0, 0, 2, 2>(quad->fR); |
| 583 | correct_bad_edges(mad(e2u, e2u, e2v * e2v) < kTolerance * kTolerance, &e2u, &e2v, &e2r); |
| 584 | |
| 585 | quad->fU += a * e1u + b * e2u; |
| 586 | quad->fV += a * e1v + b * e2v; |
| 587 | if (quad->fUVRCount == 3) { |
| 588 | quad->fR += a * e1r + b * e2r; |
| 589 | correct_bad_coords(abs(denom) < kTolerance, &quad->fU, &quad->fV, &quad->fR); |
| 590 | } else { |
| 591 | correct_bad_coords(abs(denom) < kTolerance, &quad->fU, &quad->fV, nullptr); |
| 592 | } |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | V4f TessellationHelper::getDegenerateCoverage(const V4f& px, const V4f& py, const Edges& edges) { |
| 597 | // Calculate distance of the 4 inset points (px, py) to the 4 edges |
| 598 | V4f d0 = mad(edges.fA[0], px, mad(edges.fB[0], py, edges.fC[0])); |
| 599 | V4f d1 = mad(edges.fA[1], px, mad(edges.fB[1], py, edges.fC[1])); |
| 600 | V4f d2 = mad(edges.fA[2], px, mad(edges.fB[2], py, edges.fC[2])); |
| 601 | V4f d3 = mad(edges.fA[3], px, mad(edges.fB[3], py, edges.fC[3])); |
| 602 | |
| 603 | // For each point, pretend that there's a rectangle that touches e0 and e3 on the horizontal |
| 604 | // axis, so its width is "approximately" d0 + d3, and it touches e1 and e2 on the vertical axis |
| 605 | // so its height is d1 + d2. Pin each of these dimensions to [0, 1] and approximate the coverage |
| 606 | // at each point as clamp(d0+d3, 0, 1) x clamp(d1+d2, 0, 1). For rectilinear quads this is an |
| 607 | // accurate calculation of its area clipped to an aligned pixel. For arbitrary quads it is not |
| 608 | // mathematically accurate but qualitatively provides a stable value proportional to the size of |
| 609 | // the shape. |
| 610 | V4f w = max(0.f, min(1.f, d0 + d3)); |
| 611 | V4f h = max(0.f, min(1.f, d1 + d2)); |
| 612 | return w * h; |
| 613 | } |
| 614 | |
| 615 | V4f TessellationHelper::computeDegenerateQuad(GrQuadAAFlags aaFlags, const V4f& mask, |
| 616 | const Edges& edges, bool outset, Vertices* quad) { |
| 617 | // Move the edge 1/2 pixel in or out depending on 'outset'. |
| 618 | V4f oc = edges.fC + mask * (outset ? 0.5f : -0.5f); |
| 619 | |
| 620 | // There are 6 points that we care about to determine the final shape of the polygon, which |
| 621 | // are the intersections between (e0,e2), (e1,e0), (e2,e3), (e3,e1) (corresponding to the |
| 622 | // 4 corners), and (e1, e2), (e0, e3) (representing the intersections of opposite edges). |
| 623 | V4f denom = edges.fA * next_cw(edges.fB) - edges.fB * next_cw(edges.fA); |
| 624 | V4f px = (edges.fB * next_cw(oc) - oc * next_cw(edges.fB)) / denom; |
| 625 | V4f py = (oc * next_cw(edges.fA) - edges.fA * next_cw(oc)) / denom; |
| 626 | correct_bad_coords(abs(denom) < kTolerance, &px, &py, nullptr); |
| 627 | |
| 628 | // Calculate the signed distances from these 4 corners to the other two edges that did not |
| 629 | // define the intersection. So p(0) is compared to e3,e1, p(1) to e3,e2 , p(2) to e0,e1, and |
| 630 | // p(3) to e0,e2 |
| 631 | V4f dists1 = px * skvx::shuffle<3, 3, 0, 0>(edges.fA) + |
| 632 | py * skvx::shuffle<3, 3, 0, 0>(edges.fB) + |
| 633 | skvx::shuffle<3, 3, 0, 0>(oc); |
| 634 | V4f dists2 = px * skvx::shuffle<1, 2, 1, 2>(edges.fA) + |
| 635 | py * skvx::shuffle<1, 2, 1, 2>(edges.fB) + |
| 636 | skvx::shuffle<1, 2, 1, 2>(oc); |
| 637 | |
| 638 | // If all the distances are >= 0, the 4 corners form a valid quadrilateral, so use them as |
| 639 | // the 4 points. If any point is on the wrong side of both edges, the interior has collapsed |
| 640 | // and we need to use a central point to represent it. If all four points are only on the |
| 641 | // wrong side of 1 edge, one edge has crossed over another and we use a line to represent it. |
| 642 | // Otherwise, use a triangle that replaces the bad points with the intersections of |
| 643 | // (e1, e2) or (e0, e3) as needed. |
| 644 | M4f d1v0 = dists1 < kTolerance; |
| 645 | M4f d2v0 = dists2 < kTolerance; |
| 646 | M4f d1And2 = d1v0 & d2v0; |
| 647 | M4f d1Or2 = d1v0 | d2v0; |
| 648 | |
| 649 | V4f coverage; |
| 650 | if (!any(d1Or2)) { |
| 651 | // Every dists1 and dists2 >= kTolerance so it's not degenerate, use all 4 corners as-is |
| 652 | // and use full coverage |
| 653 | coverage = 1.f; |
| 654 | } else if (any(d1And2)) { |
| 655 | // A point failed against two edges, so reduce the shape to a single point, which we take as |
| 656 | // the center of the original quad to ensure it is contained in the intended geometry. Since |
| 657 | // it has collapsed, we know the shape cannot cover a pixel so update the coverage. |
| 658 | SkPoint center = {0.25f * (quad->fX[0] + quad->fX[1] + quad->fX[2] + quad->fX[3]), |
| 659 | 0.25f * (quad->fY[0] + quad->fY[1] + quad->fY[2] + quad->fY[3])}; |
| 660 | px = center.fX; |
| 661 | py = center.fY; |
| 662 | coverage = getDegenerateCoverage(px, py, edges); |
| 663 | } else if (all(d1Or2)) { |
| 664 | // Degenerates to a line. Compare p[2] and p[3] to edge 0. If they are on the wrong side, |
| 665 | // that means edge 0 and 3 crossed, and otherwise edge 1 and 2 crossed. |
| 666 | if (dists1[2] < kTolerance && dists1[3] < kTolerance) { |
| 667 | // Edges 0 and 3 have crossed over, so make the line from average of (p0,p2) and (p1,p3) |
| 668 | px = 0.5f * (skvx::shuffle<0, 1, 0, 1>(px) + skvx::shuffle<2, 3, 2, 3>(px)); |
| 669 | py = 0.5f * (skvx::shuffle<0, 1, 0, 1>(py) + skvx::shuffle<2, 3, 2, 3>(py)); |
| 670 | } else { |
| 671 | // Edges 1 and 2 have crossed over, so make the line from average of (p0,p1) and (p2,p3) |
| 672 | px = 0.5f * (skvx::shuffle<0, 0, 2, 2>(px) + skvx::shuffle<1, 1, 3, 3>(px)); |
| 673 | py = 0.5f * (skvx::shuffle<0, 0, 2, 2>(py) + skvx::shuffle<1, 1, 3, 3>(py)); |
| 674 | } |
| 675 | coverage = getDegenerateCoverage(px, py, edges); |
| 676 | } else { |
| 677 | // This turns into a triangle. Replace corners as needed with the intersections between |
| 678 | // (e0,e3) and (e1,e2), which must now be calculated |
| 679 | using V2f = skvx::Vec<2, float>; |
| 680 | V2f eDenom = skvx::shuffle<0, 1>(edges.fA) * skvx::shuffle<3, 2>(edges.fB) - |
| 681 | skvx::shuffle<0, 1>(edges.fB) * skvx::shuffle<3, 2>(edges.fA); |
| 682 | V2f ex = (skvx::shuffle<0, 1>(edges.fB) * skvx::shuffle<3, 2>(oc) - |
| 683 | skvx::shuffle<0, 1>(oc) * skvx::shuffle<3, 2>(edges.fB)) / eDenom; |
| 684 | V2f ey = (skvx::shuffle<0, 1>(oc) * skvx::shuffle<3, 2>(edges.fA) - |
| 685 | skvx::shuffle<0, 1>(edges.fA) * skvx::shuffle<3, 2>(oc)) / eDenom; |
| 686 | |
| 687 | if (SkScalarAbs(eDenom[0]) > kTolerance) { |
| 688 | px = if_then_else(d1v0, V4f(ex[0]), px); |
| 689 | py = if_then_else(d1v0, V4f(ey[0]), py); |
| 690 | } |
| 691 | if (SkScalarAbs(eDenom[1]) > kTolerance) { |
| 692 | px = if_then_else(d2v0, V4f(ex[1]), px); |
| 693 | py = if_then_else(d2v0, V4f(ey[1]), py); |
| 694 | } |
| 695 | |
| 696 | coverage = 1.f; |
| 697 | } |
| 698 | |
| 699 | outsetProjectedVertices(px, py, aaFlags, quad); |
| 700 | return coverage; |
| 701 | } |
| 702 | |
| 703 | V4f TessellationHelper::computeNestedQuadVertices(GrQuadAAFlags aaFlags, bool rectilinear, |
| 704 | Vertices* inner, Vertices* outer) { |
| 705 | SkASSERT(inner->fUVRCount == 0 || inner->fUVRCount == 2 || inner->fUVRCount == 3); |
| 706 | SkASSERT(outer->fUVRCount == inner->fUVRCount); |
| 707 | |
| 708 | QuadMetadata metadata = getMetadata(*inner, aaFlags); |
| 709 | |
| 710 | // When outsetting, we want the new edge to be .5px away from the old line, which means the |
| 711 | // corners may need to be adjusted by more than .5px if the matrix had sheer. This adjustment |
| 712 | // is only computed if there are no empty edges, and it may signal going through the slow path. |
| 713 | V4f outset = 0.5f; |
| 714 | if (getOptimizedOutset(metadata, rectilinear, &outset)) { |
| 715 | // Since it's not subpixel, outsetting and insetting are trivial vector additions. |
| 716 | outsetVertices(outset, metadata, outer); |
| 717 | outsetVertices(-outset, metadata, inner); |
| 718 | return 1.f; |
| 719 | } |
| 720 | |
| 721 | // Only compute edge equations once since they are the same for inner and outer quads |
| 722 | Edges edges = getEdgeEquations(metadata, *inner); |
| 723 | |
| 724 | // Calculate both outset and inset, returning the coverage reported for the inset, since the |
| 725 | // outset will always have 0.0f. |
| 726 | computeDegenerateQuad(aaFlags, metadata.fMask, edges, true, outer); |
| 727 | return computeDegenerateQuad(aaFlags, metadata.fMask, edges, false, inner); |
| 728 | } |
| 729 | |
| 730 | V4f TessellationHelper::computeNestedPerspQuadVertices(const GrQuadAAFlags aaFlags, |
| 731 | Vertices* inner, |
| 732 | Vertices* outer) { |
| 733 | SkASSERT(inner->fUVRCount == 0 || inner->fUVRCount == 2 || inner->fUVRCount == 3); |
| 734 | SkASSERT(outer->fUVRCount == inner->fUVRCount); |
| 735 | |
| 736 | // Calculate the projected 2D quad and use it to form projeccted inner/outer quads |
| 737 | V4f iw = 1.0f / inner->fW; |
| 738 | V4f x2d = inner->fX * iw; |
| 739 | V4f y2d = inner->fY * iw; |
| 740 | |
| 741 | Vertices inner2D = { x2d, y2d, /*w*/ 1.f, 0.f, 0.f, 0.f, 0 }; // No uvr outsetting in 2D |
| 742 | Vertices outer2D = inner2D; |
| 743 | |
| 744 | V4f coverage = computeNestedQuadVertices(aaFlags, /* rect */ false, &inner2D, &outer2D); |
| 745 | |
| 746 | // Now map from the 2D inset/outset back to 3D and update the local coordinates as well |
| 747 | outsetProjectedVertices(inner2D.fX, inner2D.fY, aaFlags, inner); |
| 748 | outsetProjectedVertices(outer2D.fX, outer2D.fY, aaFlags, outer); |
| 749 | |
| 750 | return coverage; |
| 751 | } |
| 752 | |
| 753 | TessellationHelper::TessellationHelper(const GrQuad& deviceQuad, const GrQuad* localQuad) |
| 754 | : fAAFlags(GrQuadAAFlags::kNone) |
| 755 | , fCoverage(1.f) |
| 756 | , fDeviceType(deviceQuad.quadType()) |
| 757 | , fLocalType(localQuad ? localQuad->quadType() : GrQuad::Type::kAxisAligned) { |
| 758 | fOriginal.fX = deviceQuad.x4f(); |
| 759 | fOriginal.fY = deviceQuad.y4f(); |
| 760 | fOriginal.fW = deviceQuad.w4f(); |
| 761 | |
| 762 | if (localQuad) { |
| 763 | fOriginal.fU = localQuad->x4f(); |
| 764 | fOriginal.fV = localQuad->y4f(); |
| 765 | fOriginal.fR = localQuad->w4f(); |
| 766 | fOriginal.fUVRCount = fLocalType == GrQuad::Type::kPerspective ? 3 : 2; |
| 767 | } else { |
| 768 | fOriginal.fUVRCount = 0; |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | V4f TessellationHelper::pixelCoverage() { |
| 773 | // When there are no AA edges, insetting and outsetting is skipped since the original geometry |
| 774 | // can just be reported directly (in which case fCoverage may be stale). |
| 775 | return fAAFlags == GrQuadAAFlags::kNone ? 1.f : fCoverage; |
| 776 | } |
| 777 | |
| 778 | void TessellationHelper::inset(GrQuadAAFlags aaFlags, GrQuad* deviceInset, GrQuad* localInset) { |
| 779 | if (aaFlags != fAAFlags) { |
| 780 | fAAFlags = aaFlags; |
| 781 | if (aaFlags != GrQuadAAFlags::kNone) { |
| 782 | this->recomputeInsetAndOutset(); |
| 783 | } |
| 784 | } |
| 785 | if (fAAFlags == GrQuadAAFlags::kNone) { |
| 786 | this->setQuads(fOriginal, deviceInset, localInset); |
| 787 | } else { |
| 788 | this->setQuads(fInset, deviceInset, localInset); |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | void TessellationHelper::outset(GrQuadAAFlags aaFlags, GrQuad* deviceOutset, GrQuad* localOutset) { |
| 793 | if (aaFlags != fAAFlags) { |
| 794 | fAAFlags = aaFlags; |
| 795 | if (aaFlags != GrQuadAAFlags::kNone) { |
| 796 | this->recomputeInsetAndOutset(); |
| 797 | } |
| 798 | } |
| 799 | if (fAAFlags == GrQuadAAFlags::kNone) { |
| 800 | this->setQuads(fOriginal, deviceOutset, localOutset); |
| 801 | } else { |
| 802 | this->setQuads(fOutset, deviceOutset, localOutset); |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | void TessellationHelper::recomputeInsetAndOutset() { |
| 807 | // Start from the original geometry |
| 808 | fInset = fOriginal; |
| 809 | fOutset = fOriginal; |
| 810 | |
| 811 | if (fDeviceType == GrQuad::Type::kPerspective) { |
| 812 | fCoverage = computeNestedPerspQuadVertices(fAAFlags, &fInset, &fOutset); |
| 813 | } else { |
| 814 | fCoverage = computeNestedQuadVertices(fAAFlags, fDeviceType <= GrQuad::Type::kRectilinear, |
| 815 | &fInset, &fOutset); |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | void TessellationHelper::setQuads(const Vertices& vertices, |
| 820 | GrQuad* deviceOut, GrQuad* localOut) const { |
| 821 | SkASSERT(deviceOut); |
| 822 | SkASSERT(vertices.fUVRCount == 0 || localOut); |
| 823 | |
| 824 | vertices.fX.store(deviceOut->xs()); |
| 825 | vertices.fY.store(deviceOut->ys()); |
| 826 | if (fDeviceType == GrQuad::Type::kPerspective) { |
| 827 | vertices.fW.store(deviceOut->ws()); |
| 828 | } |
| 829 | deviceOut->setQuadType(fDeviceType); // This sets ws == 1 when device type != perspective |
| 830 | |
| 831 | if (vertices.fUVRCount > 0) { |
| 832 | vertices.fU.store(localOut->xs()); |
| 833 | vertices.fV.store(localOut->ys()); |
| 834 | if (vertices.fUVRCount == 3) { |
| 835 | vertices.fR.store(localOut->ws()); |
| 836 | } |
| 837 | localOut->setQuadType(fLocalType); |
| 838 | } |
| 839 | } |
| 840 | |
Michael Ludwig | 0f80902 | 2019-06-04 09:14:37 -0400 | [diff] [blame] | 841 | }; // namespace GrQuadUtils |