krajcevski | 6c35488 | 2014-07-22 07:44:00 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2014 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "SkTextureCompressor_LATC.h" |
| 9 | |
| 10 | #include "SkEndian.h" |
| 11 | |
| 12 | //////////////////////////////////////////////////////////////////////////////// |
| 13 | // |
| 14 | // Utility Functions |
| 15 | // |
| 16 | //////////////////////////////////////////////////////////////////////////////// |
| 17 | |
| 18 | // Absolute difference between two values. More correct than SkTAbs(a - b) |
| 19 | // because it works on unsigned values. |
| 20 | template <typename T> inline T abs_diff(const T &a, const T &b) { |
| 21 | return (a > b) ? (a - b) : (b - a); |
| 22 | } |
| 23 | |
| 24 | static bool is_extremal(uint8_t pixel) { |
| 25 | return 0 == pixel || 255 == pixel; |
| 26 | } |
| 27 | |
| 28 | typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]); |
| 29 | |
| 30 | // This function is used by both R11 EAC and LATC to compress 4x4 blocks |
| 31 | // of 8-bit alpha into 64-bit values that comprise the compressed data. |
| 32 | // For both formats, we need to make sure that the dimensions of the |
| 33 | // src pixels are divisible by 4, and copy 4x4 blocks one at a time |
| 34 | // for compression. |
| 35 | static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src, |
| 36 | int width, int height, int rowBytes, |
| 37 | A84x4To64BitProc proc) { |
| 38 | // Make sure that our data is well-formed enough to be considered for compression |
| 39 | if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { |
| 40 | return false; |
| 41 | } |
| 42 | |
| 43 | int blocksX = width >> 2; |
| 44 | int blocksY = height >> 2; |
| 45 | |
| 46 | uint8_t block[16]; |
| 47 | uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
| 48 | for (int y = 0; y < blocksY; ++y) { |
| 49 | for (int x = 0; x < blocksX; ++x) { |
| 50 | // Load block |
| 51 | for (int k = 0; k < 4; ++k) { |
| 52 | memcpy(block + k*4, src + k*rowBytes + 4*x, 4); |
| 53 | } |
| 54 | |
| 55 | // Compress it |
| 56 | *encPtr = proc(block); |
| 57 | ++encPtr; |
| 58 | } |
| 59 | src += 4 * rowBytes; |
| 60 | } |
| 61 | |
| 62 | return true; |
| 63 | } |
| 64 | |
| 65 | //////////////////////////////////////////////////////////////////////////////// |
| 66 | // |
| 67 | // LATC compressor |
| 68 | // |
| 69 | //////////////////////////////////////////////////////////////////////////////// |
| 70 | |
| 71 | // LATC compressed texels down into square 4x4 blocks |
| 72 | static const int kLATCPaletteSize = 8; |
| 73 | static const int kLATCBlockSize = 4; |
| 74 | static const int kLATCPixelsPerBlock = kLATCBlockSize * kLATCBlockSize; |
| 75 | |
| 76 | // Generates an LATC palette. LATC constructs |
| 77 | // a palette of eight colors from LUM0 and LUM1 using the algorithm: |
| 78 | // |
| 79 | // LUM0, if lum0 > lum1 and code(x,y) == 0 |
| 80 | // LUM1, if lum0 > lum1 and code(x,y) == 1 |
| 81 | // (6*LUM0+ LUM1)/7, if lum0 > lum1 and code(x,y) == 2 |
| 82 | // (5*LUM0+2*LUM1)/7, if lum0 > lum1 and code(x,y) == 3 |
| 83 | // (4*LUM0+3*LUM1)/7, if lum0 > lum1 and code(x,y) == 4 |
| 84 | // (3*LUM0+4*LUM1)/7, if lum0 > lum1 and code(x,y) == 5 |
| 85 | // (2*LUM0+5*LUM1)/7, if lum0 > lum1 and code(x,y) == 6 |
| 86 | // ( LUM0+6*LUM1)/7, if lum0 > lum1 and code(x,y) == 7 |
| 87 | // |
| 88 | // LUM0, if lum0 <= lum1 and code(x,y) == 0 |
| 89 | // LUM1, if lum0 <= lum1 and code(x,y) == 1 |
| 90 | // (4*LUM0+ LUM1)/5, if lum0 <= lum1 and code(x,y) == 2 |
| 91 | // (3*LUM0+2*LUM1)/5, if lum0 <= lum1 and code(x,y) == 3 |
| 92 | // (2*LUM0+3*LUM1)/5, if lum0 <= lum1 and code(x,y) == 4 |
| 93 | // ( LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5 |
| 94 | // 0, if lum0 <= lum1 and code(x,y) == 6 |
| 95 | // 255, if lum0 <= lum1 and code(x,y) == 7 |
| 96 | |
| 97 | static void generate_latc_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) { |
| 98 | palette[0] = lum0; |
| 99 | palette[1] = lum1; |
| 100 | if (lum0 > lum1) { |
| 101 | for (int i = 1; i < 7; i++) { |
| 102 | palette[i+1] = ((7-i)*lum0 + i*lum1) / 7; |
| 103 | } |
| 104 | } else { |
| 105 | for (int i = 1; i < 5; i++) { |
| 106 | palette[i+1] = ((5-i)*lum0 + i*lum1) / 5; |
| 107 | } |
| 108 | palette[6] = 0; |
| 109 | palette[7] = 255; |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | // Compress a block by using the bounding box of the pixels. It is assumed that |
| 114 | // there are no extremal pixels in this block otherwise we would have used |
| 115 | // compressBlockBBIgnoreExtremal. |
| 116 | static uint64_t compress_latc_block_bb(const uint8_t pixels[]) { |
| 117 | uint8_t minVal = 255; |
| 118 | uint8_t maxVal = 0; |
| 119 | for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
| 120 | minVal = SkTMin(pixels[i], minVal); |
| 121 | maxVal = SkTMax(pixels[i], maxVal); |
| 122 | } |
| 123 | |
| 124 | SkASSERT(!is_extremal(minVal)); |
| 125 | SkASSERT(!is_extremal(maxVal)); |
| 126 | |
| 127 | uint8_t palette[kLATCPaletteSize]; |
| 128 | generate_latc_palette(palette, maxVal, minVal); |
| 129 | |
| 130 | uint64_t indices = 0; |
| 131 | for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
| 132 | |
| 133 | // Find the best palette index |
| 134 | uint8_t bestError = abs_diff(pixels[i], palette[0]); |
| 135 | uint8_t idx = 0; |
| 136 | for (int j = 1; j < kLATCPaletteSize; ++j) { |
| 137 | uint8_t error = abs_diff(pixels[i], palette[j]); |
| 138 | if (error < bestError) { |
| 139 | bestError = error; |
| 140 | idx = j; |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | indices <<= 3; |
| 145 | indices |= idx; |
| 146 | } |
| 147 | |
| 148 | return |
| 149 | SkEndian_SwapLE64( |
| 150 | static_cast<uint64_t>(maxVal) | |
| 151 | (static_cast<uint64_t>(minVal) << 8) | |
| 152 | (indices << 16)); |
| 153 | } |
| 154 | |
| 155 | // Compress a block by using the bounding box of the pixels without taking into |
| 156 | // account the extremal values. The generated palette will contain extremal values |
| 157 | // and fewer points along the line segment to interpolate. |
| 158 | static uint64_t compress_latc_block_bb_ignore_extremal(const uint8_t pixels[]) { |
| 159 | uint8_t minVal = 255; |
| 160 | uint8_t maxVal = 0; |
| 161 | for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
| 162 | if (is_extremal(pixels[i])) { |
| 163 | continue; |
| 164 | } |
| 165 | |
| 166 | minVal = SkTMin(pixels[i], minVal); |
| 167 | maxVal = SkTMax(pixels[i], maxVal); |
| 168 | } |
| 169 | |
| 170 | SkASSERT(!is_extremal(minVal)); |
| 171 | SkASSERT(!is_extremal(maxVal)); |
| 172 | |
| 173 | uint8_t palette[kLATCPaletteSize]; |
| 174 | generate_latc_palette(palette, minVal, maxVal); |
| 175 | |
| 176 | uint64_t indices = 0; |
| 177 | for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
| 178 | |
| 179 | // Find the best palette index |
| 180 | uint8_t idx = 0; |
| 181 | if (is_extremal(pixels[i])) { |
| 182 | if (0xFF == pixels[i]) { |
| 183 | idx = 7; |
| 184 | } else if (0 == pixels[i]) { |
| 185 | idx = 6; |
| 186 | } else { |
| 187 | SkFAIL("Pixel is extremal but not really?!"); |
| 188 | } |
| 189 | } else { |
| 190 | uint8_t bestError = abs_diff(pixels[i], palette[0]); |
| 191 | for (int j = 1; j < kLATCPaletteSize - 2; ++j) { |
| 192 | uint8_t error = abs_diff(pixels[i], palette[j]); |
| 193 | if (error < bestError) { |
| 194 | bestError = error; |
| 195 | idx = j; |
| 196 | } |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | indices <<= 3; |
| 201 | indices |= idx; |
| 202 | } |
| 203 | |
| 204 | return |
| 205 | SkEndian_SwapLE64( |
| 206 | static_cast<uint64_t>(minVal) | |
| 207 | (static_cast<uint64_t>(maxVal) << 8) | |
| 208 | (indices << 16)); |
| 209 | } |
| 210 | |
| 211 | |
| 212 | // Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from two |
| 213 | // values LUM0 and LUM1, and an index into the generated palette. Details of how |
| 214 | // the palette is generated can be found in the comments of generatePalette above. |
| 215 | // |
| 216 | // We choose which palette type to use based on whether or not 'pixels' contains |
| 217 | // any extremal values (0 or 255). If there are extremal values, then we use the |
| 218 | // palette that has the extremal values built in. Otherwise, we use the full bounding |
| 219 | // box. |
| 220 | |
| 221 | static uint64_t compress_latc_block(const uint8_t pixels[]) { |
| 222 | // Collect unique pixels |
| 223 | int nUniquePixels = 0; |
| 224 | uint8_t uniquePixels[kLATCPixelsPerBlock]; |
| 225 | for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
| 226 | bool foundPixel = false; |
| 227 | for (int j = 0; j < nUniquePixels; ++j) { |
| 228 | foundPixel = foundPixel || uniquePixels[j] == pixels[i]; |
| 229 | } |
| 230 | |
| 231 | if (!foundPixel) { |
| 232 | uniquePixels[nUniquePixels] = pixels[i]; |
| 233 | ++nUniquePixels; |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | // If there's only one unique pixel, then our compression is easy. |
| 238 | if (1 == nUniquePixels) { |
| 239 | return SkEndian_SwapLE64(pixels[0] | (pixels[0] << 8)); |
| 240 | |
| 241 | // Similarly, if there are only two unique pixels, then our compression is |
| 242 | // easy again: place the pixels in the block header, and assign the indices |
| 243 | // with one or zero depending on which pixel they belong to. |
| 244 | } else if (2 == nUniquePixels) { |
| 245 | uint64_t outBlock = 0; |
| 246 | for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
| 247 | int idx = 0; |
| 248 | if (pixels[i] == uniquePixels[1]) { |
| 249 | idx = 1; |
| 250 | } |
| 251 | |
| 252 | outBlock <<= 3; |
| 253 | outBlock |= idx; |
| 254 | } |
| 255 | outBlock <<= 16; |
| 256 | outBlock |= (uniquePixels[0] | (uniquePixels[1] << 8)); |
| 257 | return SkEndian_SwapLE64(outBlock); |
| 258 | } |
| 259 | |
| 260 | // Count non-maximal pixel values |
| 261 | int nonExtremalPixels = 0; |
| 262 | for (int i = 0; i < nUniquePixels; ++i) { |
| 263 | if (!is_extremal(uniquePixels[i])) { |
| 264 | ++nonExtremalPixels; |
| 265 | } |
| 266 | } |
| 267 | |
| 268 | // If all the pixels are nonmaximal then compute the palette using |
| 269 | // the bounding box of all the pixels. |
| 270 | if (nonExtremalPixels == nUniquePixels) { |
| 271 | // This is really just for correctness, in all of my tests we |
| 272 | // never take this step. We don't lose too much perf here because |
| 273 | // most of the processing in this function is worth it for the |
| 274 | // 1 == nUniquePixels optimization. |
| 275 | return compress_latc_block_bb(pixels); |
| 276 | } else { |
| 277 | return compress_latc_block_bb_ignore_extremal(pixels); |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | //////////////////////////////////////////////////////////////////////////////// |
| 282 | |
| 283 | namespace SkTextureCompressor { |
| 284 | |
| 285 | bool CompressA8ToLATC(uint8_t* dst, const uint8_t* src, int width, int height, int rowBytes) { |
| 286 | return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_latc_block); |
| 287 | } |
| 288 | |
| 289 | SkBlitter* CreateLATCBlitter(int width, int height, void* outputBuffer) { |
| 290 | // TODO (krajcevski) |
| 291 | return NULL; |
| 292 | } |
| 293 | |
| 294 | } // SkTextureCompressor |