caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | #include "CurveIntersection.h" |
| 8 | #include "Intersections.h" |
| 9 | #include "LineIntersection.h" |
| 10 | #include "SkPath.h" |
| 11 | #include "SkRect.h" |
| 12 | #include "SkTArray.h" |
| 13 | #include "SkTDArray.h" |
| 14 | #include "ShapeOps.h" |
| 15 | #include "TSearch.h" |
| 16 | |
| 17 | #undef SkASSERT |
| 18 | #define SkASSERT(cond) while (!(cond)) { sk_throw(); } |
| 19 | |
| 20 | // FIXME: remove once debugging is complete |
| 21 | #if 0 // set to 1 for no debugging whatsoever |
| 22 | |
| 23 | //const bool gxRunTestsInOneThread = false; |
| 24 | |
| 25 | #define DEBUG_ADD_INTERSECTING_TS 0 |
| 26 | #define DEBUG_BRIDGE 0 |
| 27 | #define DEBUG_DUMP 0 |
| 28 | |
| 29 | #else |
| 30 | |
| 31 | //const bool gRunTestsInOneThread = true; |
| 32 | |
| 33 | #define DEBUG_ADD_INTERSECTING_TS 1 |
| 34 | #define DEBUG_BRIDGE 1 |
| 35 | #define DEBUG_DUMP 1 |
| 36 | |
| 37 | #endif |
| 38 | |
| 39 | #if DEBUG_DUMP |
| 40 | static const char* kLVerbStr[] = {"", "line", "quad", "cubic"}; |
| 41 | static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"}; |
| 42 | static int gContourID; |
| 43 | static int gSegmentID; |
| 44 | #endif |
| 45 | |
| 46 | static int LineIntersect(const SkPoint a[2], const SkPoint b[2], |
| 47 | Intersections& intersections) { |
| 48 | const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 49 | const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}}; |
| 50 | return intersect(aLine, bLine, intersections.fT[0], intersections.fT[1]); |
| 51 | } |
| 52 | |
| 53 | static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2], |
| 54 | Intersections& intersections) { |
| 55 | const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| 56 | const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}}; |
| 57 | intersect(aQuad, bLine, intersections); |
| 58 | return intersections.fUsed; |
| 59 | } |
| 60 | |
| 61 | static int CubicLineIntersect(const SkPoint a[2], const SkPoint b[3], |
| 62 | Intersections& intersections) { |
| 63 | const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| 64 | {a[3].fX, a[3].fY}}; |
| 65 | const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}}; |
| 66 | return intersect(aCubic, bLine, intersections.fT[0], intersections.fT[1]); |
| 67 | } |
| 68 | |
| 69 | static int QuadIntersect(const SkPoint a[3], const SkPoint b[3], |
| 70 | Intersections& intersections) { |
| 71 | const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| 72 | const Quadratic bQuad = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}}; |
| 73 | intersect(aQuad, bQuad, intersections); |
| 74 | return intersections.fUsed; |
| 75 | } |
| 76 | |
| 77 | static int CubicIntersect(const SkPoint a[4], const SkPoint b[4], |
| 78 | Intersections& intersections) { |
| 79 | const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| 80 | {a[3].fX, a[3].fY}}; |
| 81 | const Cubic bCubic = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}, |
| 82 | {b[3].fX, b[3].fY}}; |
| 83 | intersect(aCubic, bCubic, intersections); |
| 84 | return intersections.fUsed; |
| 85 | } |
| 86 | |
| 87 | static int HLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right, |
| 88 | SkScalar y, bool flipped, Intersections& intersections) { |
| 89 | const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 90 | return horizontalIntersect(aLine, left, right, y, flipped, intersections); |
| 91 | } |
| 92 | |
| 93 | static int VLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right, |
| 94 | SkScalar y, bool flipped, Intersections& intersections) { |
| 95 | const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 96 | return verticalIntersect(aLine, left, right, y, flipped, intersections); |
| 97 | } |
| 98 | |
| 99 | static int HQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right, |
| 100 | SkScalar y, bool flipped, Intersections& intersections) { |
| 101 | const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| 102 | return horizontalIntersect(aQuad, left, right, y, flipped, intersections); |
| 103 | } |
| 104 | |
| 105 | static int VQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right, |
| 106 | SkScalar y, bool flipped, Intersections& intersections) { |
| 107 | const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| 108 | return verticalIntersect(aQuad, left, right, y, flipped, intersections); |
| 109 | } |
| 110 | |
| 111 | static int HCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right, |
| 112 | SkScalar y, bool flipped, Intersections& intersections) { |
| 113 | const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| 114 | {a[3].fX, a[3].fY}}; |
| 115 | return horizontalIntersect(aCubic, left, right, y, flipped, intersections); |
| 116 | } |
| 117 | |
| 118 | static int VCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right, |
| 119 | SkScalar y, bool flipped, Intersections& intersections) { |
| 120 | const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| 121 | {a[3].fX, a[3].fY}}; |
| 122 | return verticalIntersect(aCubic, left, right, y, flipped, intersections); |
| 123 | } |
| 124 | |
| 125 | static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) { |
| 126 | const _Line line = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 127 | double x, y; |
| 128 | xy_at_t(line, t, x, y); |
| 129 | out->fX = SkDoubleToScalar(x); |
| 130 | out->fY = SkDoubleToScalar(y); |
| 131 | } |
| 132 | |
| 133 | static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) { |
| 134 | const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| 135 | double x, y; |
| 136 | xy_at_t(quad, t, x, y); |
| 137 | out->fX = SkDoubleToScalar(x); |
| 138 | out->fY = SkDoubleToScalar(y); |
| 139 | } |
| 140 | |
| 141 | static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) { |
| 142 | const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| 143 | {a[3].fX, a[3].fY}}; |
| 144 | double x, y; |
| 145 | xy_at_t(cubic, t, x, y); |
| 146 | out->fX = SkDoubleToScalar(x); |
| 147 | out->fY = SkDoubleToScalar(y); |
| 148 | } |
| 149 | |
| 150 | static void (* const SegmentXYAtT[])(const SkPoint [], double , SkPoint* ) = { |
| 151 | NULL, |
| 152 | LineXYAtT, |
| 153 | QuadXYAtT, |
| 154 | CubicXYAtT |
| 155 | }; |
| 156 | |
| 157 | static SkScalar LineXAtT(const SkPoint a[2], double t) { |
| 158 | const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 159 | double x; |
| 160 | xy_at_t(aLine, t, x, *(double*) 0); |
| 161 | return SkDoubleToScalar(x); |
| 162 | } |
| 163 | |
| 164 | static SkScalar QuadXAtT(const SkPoint a[3], double t) { |
| 165 | const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| 166 | double x; |
| 167 | xy_at_t(quad, t, x, *(double*) 0); |
| 168 | return SkDoubleToScalar(x); |
| 169 | } |
| 170 | |
| 171 | static SkScalar CubicXAtT(const SkPoint a[4], double t) { |
| 172 | const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| 173 | {a[3].fX, a[3].fY}}; |
| 174 | double x; |
| 175 | xy_at_t(cubic, t, x, *(double*) 0); |
| 176 | return SkDoubleToScalar(x); |
| 177 | } |
| 178 | |
| 179 | static SkScalar (* const SegmentXAtT[])(const SkPoint [], double ) = { |
| 180 | NULL, |
| 181 | LineXAtT, |
| 182 | QuadXAtT, |
| 183 | CubicXAtT |
| 184 | }; |
| 185 | |
| 186 | static SkScalar LineYAtT(const SkPoint a[2], double t) { |
| 187 | const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 188 | double y; |
| 189 | xy_at_t(aLine, t, *(double*) 0, y); |
| 190 | return SkDoubleToScalar(y); |
| 191 | } |
| 192 | |
| 193 | static SkScalar QuadYAtT(const SkPoint a[3], double t) { |
| 194 | const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| 195 | double y; |
| 196 | xy_at_t(quad, t, *(double*) 0, y); |
| 197 | return SkDoubleToScalar(y); |
| 198 | } |
| 199 | |
| 200 | static SkScalar CubicYAtT(const SkPoint a[4], double t) { |
| 201 | const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| 202 | {a[3].fX, a[3].fY}}; |
| 203 | double y; |
| 204 | xy_at_t(cubic, t, *(double*) 0, y); |
| 205 | return SkDoubleToScalar(y); |
| 206 | } |
| 207 | |
| 208 | static SkScalar (* const SegmentYAtT[])(const SkPoint [], double ) = { |
| 209 | NULL, |
| 210 | LineYAtT, |
| 211 | QuadYAtT, |
| 212 | CubicYAtT |
| 213 | }; |
| 214 | |
| 215 | static void LineSubDivide(const SkPoint a[2], double startT, double endT, |
| 216 | SkPoint sub[2]) { |
| 217 | const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 218 | _Line dst; |
| 219 | sub_divide(aLine, startT, endT, dst); |
| 220 | sub[0].fX = SkDoubleToScalar(dst[0].x); |
| 221 | sub[0].fY = SkDoubleToScalar(dst[0].y); |
| 222 | sub[1].fX = SkDoubleToScalar(dst[1].x); |
| 223 | sub[1].fY = SkDoubleToScalar(dst[1].y); |
| 224 | } |
| 225 | |
| 226 | static void QuadSubDivide(const SkPoint a[3], double startT, double endT, |
| 227 | SkPoint sub[3]) { |
| 228 | const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 229 | {a[2].fX, a[2].fY}}; |
| 230 | Quadratic dst; |
| 231 | sub_divide(aQuad, startT, endT, dst); |
| 232 | sub[0].fX = SkDoubleToScalar(dst[0].x); |
| 233 | sub[0].fY = SkDoubleToScalar(dst[0].y); |
| 234 | sub[1].fX = SkDoubleToScalar(dst[1].x); |
| 235 | sub[1].fY = SkDoubleToScalar(dst[1].y); |
| 236 | sub[2].fX = SkDoubleToScalar(dst[2].x); |
| 237 | sub[2].fY = SkDoubleToScalar(dst[2].y); |
| 238 | } |
| 239 | |
| 240 | static void CubicSubDivide(const SkPoint a[4], double startT, double endT, |
| 241 | SkPoint sub[4]) { |
| 242 | const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 243 | {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; |
| 244 | Cubic dst; |
| 245 | sub_divide(aCubic, startT, endT, dst); |
| 246 | sub[0].fX = SkDoubleToScalar(dst[0].x); |
| 247 | sub[0].fY = SkDoubleToScalar(dst[0].y); |
| 248 | sub[1].fX = SkDoubleToScalar(dst[1].x); |
| 249 | sub[1].fY = SkDoubleToScalar(dst[1].y); |
| 250 | sub[2].fX = SkDoubleToScalar(dst[2].x); |
| 251 | sub[2].fY = SkDoubleToScalar(dst[2].y); |
| 252 | sub[3].fX = SkDoubleToScalar(dst[3].x); |
| 253 | sub[3].fY = SkDoubleToScalar(dst[3].y); |
| 254 | } |
| 255 | |
| 256 | static void QuadSubBounds(const SkPoint a[3], double startT, double endT, |
| 257 | SkRect& bounds) { |
| 258 | SkPoint dst[3]; |
| 259 | QuadSubDivide(a, startT, endT, dst); |
| 260 | bounds.fLeft = bounds.fRight = dst[0].fX; |
| 261 | bounds.fTop = bounds.fBottom = dst[0].fY; |
| 262 | for (int index = 1; index < 3; ++index) { |
| 263 | bounds.growToInclude(dst[index].fX, dst[index].fY); |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | static void CubicSubBounds(const SkPoint a[4], double startT, double endT, |
| 268 | SkRect& bounds) { |
| 269 | SkPoint dst[4]; |
| 270 | CubicSubDivide(a, startT, endT, dst); |
| 271 | bounds.fLeft = bounds.fRight = dst[0].fX; |
| 272 | bounds.fTop = bounds.fBottom = dst[0].fY; |
| 273 | for (int index = 1; index < 4; ++index) { |
| 274 | bounds.growToInclude(dst[index].fX, dst[index].fY); |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | static SkPath::Verb QuadReduceOrder(const SkPoint a[4], |
| 279 | SkTDArray<SkPoint>& reducePts) { |
| 280 | const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 281 | {a[2].fX, a[2].fY}}; |
| 282 | Quadratic dst; |
| 283 | int order = reduceOrder(aQuad, dst); |
| 284 | for (int index = 0; index < order; ++index) { |
| 285 | SkPoint* pt = reducePts.append(); |
| 286 | pt->fX = SkDoubleToScalar(dst[index].x); |
| 287 | pt->fY = SkDoubleToScalar(dst[index].y); |
| 288 | } |
| 289 | return (SkPath::Verb) (order - 1); |
| 290 | } |
| 291 | |
| 292 | static SkPath::Verb CubicReduceOrder(const SkPoint a[4], |
| 293 | SkTDArray<SkPoint>& reducePts) { |
| 294 | const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 295 | {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; |
| 296 | Cubic dst; |
| 297 | int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed); |
| 298 | for (int index = 0; index < order; ++index) { |
| 299 | SkPoint* pt = reducePts.append(); |
| 300 | pt->fX = SkDoubleToScalar(dst[index].x); |
| 301 | pt->fY = SkDoubleToScalar(dst[index].y); |
| 302 | } |
| 303 | return (SkPath::Verb) (order - 1); |
| 304 | } |
| 305 | |
| 306 | static SkScalar LineLeftMost(const SkPoint a[2], double startT, double endT) { |
| 307 | const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 308 | double x[2]; |
| 309 | xy_at_t(aLine, startT, x[0], *(double*) 0); |
| 310 | xy_at_t(aLine, endT, x[0], *(double*) 0); |
| 311 | return startT < endT ? startT : endT; |
| 312 | } |
| 313 | |
| 314 | static SkScalar QuadLeftMost(const SkPoint a[3], double startT, double endT) { |
| 315 | const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 316 | {a[2].fX, a[2].fY}}; |
| 317 | return leftMostT(aQuad, startT, endT); |
| 318 | } |
| 319 | |
| 320 | static SkScalar CubicLeftMost(const SkPoint a[4], double startT, double endT) { |
| 321 | const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 322 | {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; |
| 323 | return leftMostT(aCubic, startT, endT); |
| 324 | } |
| 325 | |
| 326 | static SkScalar (* const SegmentLeftMost[])(const SkPoint [], double , double) = { |
| 327 | NULL, |
| 328 | LineLeftMost, |
| 329 | QuadLeftMost, |
| 330 | CubicLeftMost |
| 331 | }; |
| 332 | |
| 333 | static bool IsCoincident(const SkPoint a[2], const SkPoint& above, |
| 334 | const SkPoint& below) { |
| 335 | const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 336 | const _Line bLine = {{above.fX, above.fY}, {below.fX, below.fY}}; |
| 337 | return implicit_matches_ulps(aLine, bLine, 32); |
| 338 | } |
| 339 | |
| 340 | // Bounds, unlike Rect, does not consider a vertical line to be empty. |
| 341 | struct Bounds : public SkRect { |
| 342 | static bool Intersects(const Bounds& a, const Bounds& b) { |
| 343 | return a.fLeft <= b.fRight && b.fLeft <= a.fRight && |
| 344 | a.fTop <= b.fBottom && b.fTop <= a.fBottom; |
| 345 | } |
| 346 | |
| 347 | bool isEmpty() { |
| 348 | return fLeft > fRight || fTop > fBottom |
| 349 | || fLeft == fRight && fTop == fBottom |
| 350 | || isnan(fLeft) || isnan(fRight) |
| 351 | || isnan(fTop) || isnan(fBottom); |
| 352 | } |
| 353 | |
| 354 | void setCubicBounds(const SkPoint a[4]) { |
| 355 | _Rect dRect; |
| 356 | Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 357 | {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; |
| 358 | dRect.setBounds(cubic); |
| 359 | set(dRect.left, dRect.top, dRect.right, dRect.bottom); |
| 360 | } |
| 361 | |
| 362 | void setQuadBounds(const SkPoint a[3]) { |
| 363 | const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 364 | {a[2].fX, a[2].fY}}; |
| 365 | _Rect dRect; |
| 366 | dRect.setBounds(quad); |
| 367 | set(dRect.left, dRect.top, dRect.right, dRect.bottom); |
| 368 | } |
| 369 | }; |
| 370 | |
| 371 | class Segment; |
| 372 | |
| 373 | struct TEntry { |
| 374 | double fT; |
| 375 | const Segment* fOther; |
| 376 | double fOtherT; |
| 377 | bool fCoincident; |
| 378 | }; |
| 379 | |
| 380 | class Segment { |
| 381 | public: |
| 382 | Segment() { |
| 383 | #if DEBUG_DUMP |
| 384 | fID = ++gSegmentID; |
| 385 | #endif |
| 386 | } |
| 387 | |
| 388 | int addT(double newT, const Segment& other) { |
| 389 | // FIXME: in the pathological case where there is a ton of intercepts, |
| 390 | // binary search? |
| 391 | int insertedAt = -1; |
| 392 | TEntry* entry; |
| 393 | size_t tCount = fTs.count(); |
| 394 | double delta; |
| 395 | for (size_t idx2 = 0; idx2 < tCount; ++idx2) { |
| 396 | if (newT <= fTs[idx2].fT) { |
| 397 | insertedAt = idx2; |
| 398 | entry = fTs.insert(idx2); |
| 399 | goto finish; |
| 400 | } |
| 401 | } |
| 402 | insertedAt = tCount; |
| 403 | entry = fTs.append(); |
| 404 | finish: |
| 405 | entry->fT = newT; |
| 406 | entry->fOther = &other; |
| 407 | return insertedAt; |
| 408 | } |
| 409 | |
| 410 | bool addCubic(const SkPoint pts[4]) { |
| 411 | fPts = pts; |
| 412 | fVerb = SkPath::kCubic_Verb; |
| 413 | fBounds.setCubicBounds(pts); |
| 414 | } |
| 415 | |
| 416 | bool addLine(const SkPoint pts[2]) { |
| 417 | fPts = pts; |
| 418 | fVerb = SkPath::kLine_Verb; |
| 419 | fBounds.set(pts, 2); |
| 420 | } |
| 421 | |
| 422 | // add 2 to edge or out of range values to get T extremes |
| 423 | void addOtherT(int index, double other, bool coincident) { |
| 424 | fTs[index].fOtherT = other; |
| 425 | fTs[index].fCoincident = coincident; |
| 426 | } |
| 427 | |
| 428 | bool addQuad(const SkPoint pts[3]) { |
| 429 | fPts = pts; |
| 430 | fVerb = SkPath::kQuad_Verb; |
| 431 | fBounds.setQuadBounds(pts); |
| 432 | } |
| 433 | |
| 434 | const Bounds& bounds() const { |
| 435 | return fBounds; |
| 436 | } |
| 437 | |
| 438 | int findByT(double t, const Segment* match) const { |
| 439 | // OPTIMIZATION: bsearch if count is honkin huge |
| 440 | int count = fTs.count(); |
| 441 | for (int index = 0; index < count; ++index) { |
| 442 | const TEntry& entry = fTs[index]; |
| 443 | if (t == entry.fT && match == entry.fOther) { |
| 444 | return index; |
| 445 | } |
| 446 | } |
| 447 | SkASSERT(0); // should never get here |
| 448 | return -1; |
| 449 | } |
| 450 | |
| 451 | int findLefty(int tIndex, const SkPoint& base) const { |
| 452 | int bestTIndex; |
| 453 | SkPoint test; |
| 454 | SkScalar bestX = DBL_MAX; |
| 455 | int testTIndex = tIndex; |
| 456 | while (--testTIndex >= 0) { |
| 457 | xyAtT(testTIndex, &test); |
| 458 | if (test != base) { |
| 459 | continue; |
| 460 | } |
| 461 | bestX = test.fX; |
| 462 | bestTIndex = testTIndex; |
| 463 | break; |
| 464 | } |
| 465 | int count = fTs.count(); |
| 466 | testTIndex = tIndex; |
| 467 | while (++testTIndex < count) { |
| 468 | xyAtT(testTIndex, &test); |
| 469 | if (test == base) { |
| 470 | continue; |
| 471 | } |
| 472 | return bestX > test.fX ? testTIndex : bestTIndex; |
| 473 | } |
| 474 | return -1; |
| 475 | } |
| 476 | |
| 477 | const Segment* findTop(int& tIndex) const { |
| 478 | // iterate through T intersections and return topmost |
| 479 | // topmost tangent from y-min to first pt is closer to horizontal |
| 480 | int firstT = 0; |
| 481 | int lastT = 0; |
| 482 | SkScalar topY = fPts[0].fY; |
| 483 | int count = fTs.count(); |
| 484 | int index; |
| 485 | for (index = 1; index < count; ++index) { |
| 486 | const TEntry& entry = fTs[index]; |
| 487 | double t = entry.fT; |
| 488 | SkScalar yIntercept = (*SegmentYAtT[fVerb])(fPts, t); |
| 489 | if (topY > yIntercept) { |
| 490 | topY = yIntercept; |
| 491 | firstT = lastT = index; |
| 492 | } else if (topY == yIntercept) { |
| 493 | lastT = index; |
| 494 | } |
| 495 | } |
| 496 | // if a pair of segments go down, choose the higher endpoint |
| 497 | if (firstT == lastT && (firstT == 0 || firstT == count - 1)) { |
| 498 | tIndex = firstT; |
| 499 | return this; |
| 500 | } |
| 501 | // if the topmost T is not on end, or is three-way or more, find left |
| 502 | SkPoint leftBase; |
| 503 | xyAtT(firstT, &leftBase); |
| 504 | int tLeft = findLefty(firstT, leftBase); |
| 505 | SkASSERT(tLeft > 0); |
| 506 | const Segment* leftSegment = this; |
| 507 | SkScalar left = leftMost(firstT, tLeft); |
| 508 | for (index = firstT; index <= lastT; ++index) { |
| 509 | const Segment* other = fTs[index].fOther; |
| 510 | double otherT = fTs[index].fOtherT; |
| 511 | int otherTIndex = other->findByT(otherT, this); |
| 512 | // pick companionT closest (but not too close) on either side |
| 513 | int otherTLeft = other->findLefty(otherTIndex, leftBase); |
| 514 | if (otherTLeft < 0) { |
| 515 | continue; |
| 516 | } |
| 517 | SkScalar otherMost = other->leftMost(otherTIndex, otherTLeft); |
| 518 | if (otherMost < left) { |
| 519 | leftSegment = other; |
| 520 | } |
| 521 | } |
| 522 | return leftSegment; |
| 523 | } |
| 524 | |
| 525 | bool intersected() const { |
| 526 | return fTs.count() > 0; |
| 527 | } |
| 528 | |
| 529 | bool isHorizontal() const { |
| 530 | return fBounds.fTop == fBounds.fBottom; |
| 531 | } |
| 532 | |
| 533 | bool isVertical() const { |
| 534 | return fBounds.fLeft == fBounds.fRight; |
| 535 | } |
| 536 | |
| 537 | SkScalar leftMost(int start, int end) const { |
| 538 | return (*SegmentLeftMost[fVerb])(fPts, fTs[start].fT, fTs[end].fT); |
| 539 | } |
| 540 | |
| 541 | const SkPoint* pts() const { |
| 542 | return fPts; |
| 543 | } |
| 544 | |
| 545 | void reset() { |
| 546 | fPts = NULL; |
| 547 | fVerb = (SkPath::Verb) -1; |
| 548 | fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax); |
| 549 | fTs.reset(); |
| 550 | } |
| 551 | |
| 552 | // OPTIMIZATION: remove this function if it's never called |
| 553 | double t(int tIndex) const { |
| 554 | return fTs[tIndex].fT; |
| 555 | } |
| 556 | |
| 557 | SkPath::Verb verb() const { |
| 558 | return fVerb; |
| 559 | } |
| 560 | |
| 561 | SkScalar xAtT(double t) const { |
| 562 | return (*SegmentXAtT[fVerb])(fPts, t); |
| 563 | } |
| 564 | |
| 565 | void xyAtT(double t, SkPoint* pt) const { |
| 566 | (*SegmentXYAtT[fVerb])(fPts, t, pt); |
| 567 | } |
| 568 | |
| 569 | #if DEBUG_DUMP |
| 570 | void dump() const { |
| 571 | const char className[] = "Segment"; |
| 572 | const int tab = 4; |
| 573 | for (int i = 0; i < fTs.count(); ++i) { |
| 574 | SkPoint out; |
| 575 | (*SegmentXYAtT[fVerb])(fPts, t(i), &out); |
| 576 | SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d" |
| 577 | " otherT=%1.9g coincident=%d\n", |
| 578 | tab + sizeof(className), className, fID, |
| 579 | kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY, |
| 580 | fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fCoincident); |
| 581 | } |
| 582 | SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)\n", |
| 583 | tab + sizeof(className), className, fID, |
| 584 | fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); |
| 585 | } |
| 586 | #endif |
| 587 | |
| 588 | private: |
| 589 | const SkPoint* fPts; |
| 590 | SkPath::Verb fVerb; |
| 591 | Bounds fBounds; |
| 592 | SkTDArray<TEntry> fTs; |
| 593 | #if DEBUG_DUMP |
| 594 | int fID; |
| 595 | #endif |
| 596 | }; |
| 597 | |
| 598 | class Contour { |
| 599 | public: |
| 600 | Contour() { |
| 601 | reset(); |
| 602 | #if DEBUG_DUMP |
| 603 | fID = ++gContourID; |
| 604 | #endif |
| 605 | } |
| 606 | |
| 607 | bool operator<(const Contour& rh) const { |
| 608 | return fBounds.fTop == rh.fBounds.fTop |
| 609 | ? fBounds.fLeft < rh.fBounds.fLeft |
| 610 | : fBounds.fTop < rh.fBounds.fTop; |
| 611 | } |
| 612 | |
| 613 | void addCubic(const SkPoint pts[4]) { |
| 614 | fSegments.push_back().addCubic(pts); |
| 615 | fContainsCurves = true; |
| 616 | } |
| 617 | void addLine(const SkPoint pts[2]) { |
| 618 | fSegments.push_back().addLine(pts); |
| 619 | } |
| 620 | |
| 621 | void addQuad(const SkPoint pts[3]) { |
| 622 | fSegments.push_back().addQuad(pts); |
| 623 | fContainsCurves = true; |
| 624 | } |
| 625 | |
| 626 | const Bounds& bounds() const { |
| 627 | return fBounds; |
| 628 | } |
| 629 | |
| 630 | void complete() { |
| 631 | setBounds(); |
| 632 | fContainsIntercepts = false; |
| 633 | } |
| 634 | |
| 635 | void containsIntercepts() { |
| 636 | fContainsIntercepts = true; |
| 637 | } |
| 638 | |
| 639 | void reset() { |
| 640 | fSegments.reset(); |
| 641 | fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax); |
| 642 | fContainsCurves = fContainsIntercepts = false; |
| 643 | } |
| 644 | |
| 645 | Segment& topSegment() { |
| 646 | return fSegments[fTopSegment]; |
| 647 | } |
| 648 | |
| 649 | #if DEBUG_DUMP |
| 650 | void dump() { |
| 651 | int i; |
| 652 | const char className[] = "Contour"; |
| 653 | const int tab = 4; |
| 654 | SkDebugf("%s %p (contour=%d)\n", className, this, fID); |
| 655 | for (i = 0; i < fSegments.count(); ++i) { |
| 656 | SkDebugf("%*s.fSegments[%d]:\n", tab + sizeof(className), |
| 657 | className, i); |
| 658 | fSegments[i].dump(); |
| 659 | } |
| 660 | SkDebugf("%*s.fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)\n", |
| 661 | tab + sizeof(className), className, |
| 662 | fBounds.fLeft, fBounds.fTop, |
| 663 | fBounds.fRight, fBounds.fBottom); |
| 664 | SkDebugf("%*s.fTopSegment=%d\n", tab + sizeof(className), className, |
| 665 | fTopSegment); |
| 666 | SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className), |
| 667 | className, fContainsIntercepts); |
| 668 | SkDebugf("%*s.fContainsCurves=%d\n", tab + sizeof(className), |
| 669 | className, fContainsCurves); |
| 670 | } |
| 671 | #endif |
| 672 | |
| 673 | protected: |
| 674 | void setBounds() { |
| 675 | int count = fSegments.count(); |
| 676 | if (count == 0) { |
| 677 | SkDebugf("%s empty contour\n", __FUNCTION__); |
| 678 | SkASSERT(0); |
| 679 | // FIXME: delete empty contour? |
| 680 | return; |
| 681 | } |
| 682 | fTopSegment = 0; |
| 683 | fBounds = fSegments.front().bounds(); |
| 684 | SkScalar top = fBounds.fTop; |
| 685 | for (int index = 1; index < count; ++index) { |
| 686 | fBounds.growToInclude(fSegments[index].bounds()); |
| 687 | if (top > fBounds.fTop) { |
| 688 | fTopSegment = index; |
| 689 | top = fBounds.fTop; |
| 690 | } |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | public: |
| 695 | SkTArray<Segment> fSegments; // not worth accessor functions? |
| 696 | |
| 697 | private: |
| 698 | Bounds fBounds; |
| 699 | int fTopSegment; |
| 700 | bool fContainsIntercepts; |
| 701 | bool fContainsCurves; |
| 702 | #if DEBUG_DUMP |
| 703 | int fID; |
| 704 | #endif |
| 705 | }; |
| 706 | |
| 707 | class EdgeBuilder { |
| 708 | public: |
| 709 | |
| 710 | EdgeBuilder(const SkPath& path, SkTArray<Contour>& contours) |
| 711 | : fPath(path) |
| 712 | , fCurrentContour(NULL) |
| 713 | , fContours(contours) |
| 714 | { |
| 715 | #if DEBUG_DUMP |
| 716 | gContourID = 0; |
| 717 | gSegmentID = 0; |
| 718 | #endif |
| 719 | walk(); |
| 720 | } |
| 721 | |
| 722 | protected: |
| 723 | |
| 724 | void complete() { |
| 725 | if (fCurrentContour && fCurrentContour->fSegments.count()) { |
| 726 | fCurrentContour->complete(); |
| 727 | fCurrentContour = NULL; |
| 728 | } |
| 729 | } |
| 730 | |
| 731 | void startContour() { |
| 732 | if (!fCurrentContour) { |
| 733 | fCurrentContour = fContours.push_back_n(1); |
| 734 | } |
| 735 | } |
| 736 | |
| 737 | void walk() { |
| 738 | // FIXME:remove once we can access path pts directly |
| 739 | SkPath::RawIter iter(fPath); // FIXME: access path directly when allowed |
| 740 | SkPoint pts[4]; |
| 741 | SkPath::Verb verb; |
| 742 | do { |
| 743 | verb = iter.next(pts); |
| 744 | *fPathVerbs.append() = verb; |
| 745 | if (verb == SkPath::kMove_Verb) { |
| 746 | *fPathPts.append() = pts[0]; |
| 747 | } else if (verb >= SkPath::kLine_Verb && verb <= SkPath::kCubic_Verb) { |
| 748 | fPathPts.append(verb, &pts[1]); |
| 749 | } |
| 750 | } while (verb != SkPath::kDone_Verb); |
| 751 | // FIXME: end of section to remove once path pts are accessed directly |
| 752 | |
| 753 | SkPath::Verb reducedVerb; |
| 754 | uint8_t* verbPtr = fPathVerbs.begin(); |
| 755 | const SkPoint* pointsPtr = fPathPts.begin(); |
| 756 | while ((verb = (SkPath::Verb) *verbPtr++) != SkPath::kDone_Verb) { |
| 757 | switch (verb) { |
| 758 | case SkPath::kMove_Verb: |
| 759 | complete(); |
| 760 | startContour(); |
| 761 | pointsPtr += 1; |
| 762 | continue; |
| 763 | case SkPath::kLine_Verb: |
| 764 | // skip degenerate points |
| 765 | if (pointsPtr[-1].fX != pointsPtr[0].fX |
| 766 | || pointsPtr[-1].fY != pointsPtr[0].fY) { |
| 767 | fCurrentContour->addLine(&pointsPtr[-1]); |
| 768 | } |
| 769 | break; |
| 770 | case SkPath::kQuad_Verb: |
| 771 | reducedVerb = QuadReduceOrder(&pointsPtr[-1], fReducePts); |
| 772 | if (reducedVerb == 0) { |
| 773 | break; // skip degenerate points |
| 774 | } |
| 775 | if (reducedVerb == 1) { |
| 776 | fCurrentContour->addLine(fReducePts.end() - 2); |
| 777 | break; |
| 778 | } |
| 779 | fCurrentContour->addQuad(&pointsPtr[-1]); |
| 780 | break; |
| 781 | case SkPath::kCubic_Verb: |
| 782 | reducedVerb = CubicReduceOrder(&pointsPtr[-1], fReducePts); |
| 783 | if (reducedVerb == 0) { |
| 784 | break; // skip degenerate points |
| 785 | } |
| 786 | if (reducedVerb == 1) { |
| 787 | fCurrentContour->addLine(fReducePts.end() - 2); |
| 788 | break; |
| 789 | } |
| 790 | if (reducedVerb == 2) { |
| 791 | fCurrentContour->addQuad(fReducePts.end() - 3); |
| 792 | break; |
| 793 | } |
| 794 | fCurrentContour->addCubic(&pointsPtr[-1]); |
| 795 | break; |
| 796 | case SkPath::kClose_Verb: |
| 797 | SkASSERT(fCurrentContour); |
| 798 | complete(); |
| 799 | continue; |
| 800 | default: |
| 801 | SkDEBUGFAIL("bad verb"); |
| 802 | return; |
| 803 | } |
| 804 | pointsPtr += verb; |
| 805 | SkASSERT(fCurrentContour); |
| 806 | } |
| 807 | complete(); |
| 808 | if (fCurrentContour && !fCurrentContour->fSegments.count()) { |
| 809 | fContours.pop_back(); |
| 810 | } |
| 811 | } |
| 812 | |
| 813 | private: |
| 814 | const SkPath& fPath; |
| 815 | SkTDArray<SkPoint> fPathPts; // FIXME: point directly to path pts instead |
| 816 | SkTDArray<uint8_t> fPathVerbs; // FIXME: remove |
| 817 | Contour* fCurrentContour; |
| 818 | SkTArray<Contour>& fContours; |
| 819 | SkTDArray<SkPoint> fReducePts; // segments created on the fly |
| 820 | }; |
| 821 | |
| 822 | class Work { |
| 823 | public: |
| 824 | enum SegmentType { |
| 825 | kHorizontalLine_Segment = -1, |
| 826 | kVerticalLine_Segment = 0, |
| 827 | kLine_Segment = SkPath::kLine_Verb, |
| 828 | kQuad_Segment = SkPath::kQuad_Verb, |
| 829 | kCubic_Segment = SkPath::kCubic_Verb, |
| 830 | }; |
| 831 | |
| 832 | void addOtherT(int index, double other, bool coincident) { |
| 833 | fContour->fSegments[fIndex].addOtherT(index, other, coincident); |
| 834 | } |
| 835 | |
| 836 | // Avoid collapsing t values that are close to the same since |
| 837 | // we walk ts to describe consecutive intersections. Since a pair of ts can |
| 838 | // be nearly equal, any problems caused by this should be taken care |
| 839 | // of later. |
| 840 | // On the edge or out of range values are negative; add 2 to get end |
| 841 | int addT(double newT, const Work& other) { |
| 842 | fContour->containsIntercepts(); |
| 843 | return fContour->fSegments[fIndex].addT(newT, |
| 844 | other.fContour->fSegments[other.fIndex]); |
| 845 | } |
| 846 | |
| 847 | bool advance() { |
| 848 | return ++fIndex < fLast; |
| 849 | } |
| 850 | |
| 851 | SkScalar bottom() const { |
| 852 | return bounds().fBottom; |
| 853 | } |
| 854 | |
| 855 | const Bounds& bounds() const { |
| 856 | return fContour->fSegments[fIndex].bounds(); |
| 857 | } |
| 858 | |
| 859 | const SkPoint* cubic() const { |
| 860 | return fCubic; |
| 861 | } |
| 862 | |
| 863 | void init(Contour* contour) { |
| 864 | fContour = contour; |
| 865 | fIndex = 0; |
| 866 | fLast = contour->fSegments.count(); |
| 867 | } |
| 868 | |
| 869 | SkScalar left() const { |
| 870 | return bounds().fLeft; |
| 871 | } |
| 872 | |
| 873 | void promoteToCubic() { |
| 874 | fCubic[0] = pts()[0]; |
| 875 | fCubic[2] = pts()[1]; |
| 876 | fCubic[3] = pts()[2]; |
| 877 | fCubic[1].fX = (fCubic[0].fX + fCubic[2].fX * 2) / 3; |
| 878 | fCubic[1].fY = (fCubic[0].fY + fCubic[2].fY * 2) / 3; |
| 879 | fCubic[2].fX = (fCubic[3].fX + fCubic[2].fX * 2) / 3; |
| 880 | fCubic[2].fY = (fCubic[3].fY + fCubic[2].fY * 2) / 3; |
| 881 | } |
| 882 | |
| 883 | const SkPoint* pts() const { |
| 884 | return fContour->fSegments[fIndex].pts(); |
| 885 | } |
| 886 | |
| 887 | SkScalar right() const { |
| 888 | return bounds().fRight; |
| 889 | } |
| 890 | |
| 891 | ptrdiff_t segmentIndex() const { |
| 892 | return fIndex; |
| 893 | } |
| 894 | |
| 895 | SegmentType segmentType() const { |
| 896 | const Segment& segment = fContour->fSegments[fIndex]; |
| 897 | SegmentType type = (SegmentType) segment.verb(); |
| 898 | if (type != kLine_Segment) { |
| 899 | return type; |
| 900 | } |
| 901 | if (segment.isHorizontal()) { |
| 902 | return kHorizontalLine_Segment; |
| 903 | } |
| 904 | if (segment.isVertical()) { |
| 905 | return kVerticalLine_Segment; |
| 906 | } |
| 907 | return kLine_Segment; |
| 908 | } |
| 909 | |
| 910 | bool startAfter(const Work& after) { |
| 911 | fIndex = after.fIndex; |
| 912 | return advance(); |
| 913 | } |
| 914 | |
| 915 | SkScalar top() const { |
| 916 | return bounds().fTop; |
| 917 | } |
| 918 | |
| 919 | SkPath::Verb verb() const { |
| 920 | return fContour->fSegments[fIndex].verb(); |
| 921 | } |
| 922 | |
| 923 | SkScalar x() const { |
| 924 | return bounds().fLeft; |
| 925 | } |
| 926 | |
| 927 | bool xFlipped() const { |
| 928 | return x() != pts()[0].fX; |
| 929 | } |
| 930 | |
| 931 | SkScalar y() const { |
| 932 | return bounds().fTop; |
| 933 | } |
| 934 | |
| 935 | bool yFlipped() const { |
| 936 | return y() != pts()[0].fX; |
| 937 | } |
| 938 | |
| 939 | protected: |
| 940 | Contour* fContour; |
| 941 | SkPoint fCubic[4]; |
| 942 | int fIndex; |
| 943 | int fLast; |
| 944 | }; |
| 945 | |
| 946 | static void debugShowLineIntersection(int pts, const Work& wt, |
| 947 | const Work& wn, const double wtTs[2], const double wnTs[2]) { |
| 948 | #if DEBUG_ADD_INTERSECTING_TS |
| 949 | if (!pts) { |
| 950 | return; |
| 951 | } |
| 952 | SkPoint wtOutPt, wnOutPt; |
| 953 | LineXYAtT(wt.pts(), wtTs[0], &wtOutPt); |
| 954 | LineXYAtT(wn.pts(), wnTs[0], &wnOutPt); |
| 955 | SkDebugf("%s wtTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n", |
| 956 | __FUNCTION__, |
| 957 | wtTs[0], wt.pts()[0].fX, wt.pts()[0].fY, |
| 958 | wt.pts()[1].fX, wt.pts()[1].fY, wtOutPt.fX, wtOutPt.fY); |
| 959 | if (pts == 2) { |
| 960 | SkDebugf("%s wtTs[1]=%g\n", __FUNCTION__, wtTs[1]); |
| 961 | } |
| 962 | SkDebugf("%s wnTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n", |
| 963 | __FUNCTION__, |
| 964 | wnTs[0], wn.pts()[0].fX, wn.pts()[0].fY, |
| 965 | wn.pts()[1].fX, wn.pts()[1].fY, wnOutPt.fX, wnOutPt.fY); |
| 966 | if (pts == 2) { |
| 967 | SkDebugf("%s wnTs[1]=%g\n", __FUNCTION__, wnTs[1]); |
| 968 | } |
| 969 | #endif |
| 970 | } |
| 971 | |
| 972 | static bool addIntersectingTs(Contour* test, Contour* next) { |
| 973 | if (test != next) { |
| 974 | if (test->bounds().fBottom < next->bounds().fTop) { |
| 975 | return false; |
| 976 | } |
| 977 | if (!Bounds::Intersects(test->bounds(), next->bounds())) { |
| 978 | return true; |
| 979 | } |
| 980 | } |
| 981 | Work wt, wn; |
| 982 | wt.init(test); |
| 983 | wn.init(next); |
| 984 | do { |
| 985 | if (test == next && !wn.startAfter(wt)) { |
| 986 | continue; |
| 987 | } |
| 988 | do { |
| 989 | if (!Bounds::Intersects(wt.bounds(), wn.bounds())) { |
| 990 | continue; |
| 991 | } |
| 992 | int pts; |
| 993 | Intersections ts; |
| 994 | bool swap = false; |
| 995 | switch (wt.segmentType()) { |
| 996 | case Work::kHorizontalLine_Segment: |
| 997 | swap = true; |
| 998 | switch (wn.segmentType()) { |
| 999 | case Work::kHorizontalLine_Segment: |
| 1000 | case Work::kVerticalLine_Segment: |
| 1001 | case Work::kLine_Segment: { |
| 1002 | pts = HLineIntersect(wn.pts(), wt.left(), |
| 1003 | wt.right(), wt.y(), wt.xFlipped(), ts); |
| 1004 | break; |
| 1005 | } |
| 1006 | case Work::kQuad_Segment: { |
| 1007 | pts = HQuadIntersect(wn.pts(), wt.left(), |
| 1008 | wt.right(), wt.y(), wt.xFlipped(), ts); |
| 1009 | break; |
| 1010 | } |
| 1011 | case Work::kCubic_Segment: { |
| 1012 | pts = HCubicIntersect(wn.pts(), wt.left(), |
| 1013 | wt.right(), wt.y(), wt.xFlipped(), ts); |
| 1014 | break; |
| 1015 | } |
| 1016 | default: |
| 1017 | SkASSERT(0); |
| 1018 | } |
| 1019 | break; |
| 1020 | case Work::kVerticalLine_Segment: |
| 1021 | swap = true; |
| 1022 | switch (wn.segmentType()) { |
| 1023 | case Work::kHorizontalLine_Segment: |
| 1024 | case Work::kVerticalLine_Segment: |
| 1025 | case Work::kLine_Segment: { |
| 1026 | pts = VLineIntersect(wn.pts(), wt.top(), |
| 1027 | wt.bottom(), wt.x(), wt.yFlipped(), ts); |
| 1028 | break; |
| 1029 | } |
| 1030 | case Work::kQuad_Segment: { |
| 1031 | pts = VQuadIntersect(wn.pts(), wt.top(), |
| 1032 | wt.bottom(), wt.x(), wt.yFlipped(), ts); |
| 1033 | break; |
| 1034 | } |
| 1035 | case Work::kCubic_Segment: { |
| 1036 | pts = VCubicIntersect(wn.pts(), wt.top(), |
| 1037 | wt.bottom(), wt.x(), wt.yFlipped(), ts); |
| 1038 | break; |
| 1039 | } |
| 1040 | default: |
| 1041 | SkASSERT(0); |
| 1042 | } |
| 1043 | break; |
| 1044 | case Work::kLine_Segment: |
| 1045 | switch (wn.segmentType()) { |
| 1046 | case Work::kHorizontalLine_Segment: |
| 1047 | pts = HLineIntersect(wt.pts(), wn.left(), |
| 1048 | wn.right(), wn.y(), wn.xFlipped(), ts); |
| 1049 | break; |
| 1050 | case Work::kVerticalLine_Segment: |
| 1051 | pts = VLineIntersect(wt.pts(), wn.top(), |
| 1052 | wn.bottom(), wn.x(), wn.yFlipped(), ts); |
| 1053 | break; |
| 1054 | case Work::kLine_Segment: { |
| 1055 | pts = LineIntersect(wt.pts(), wn.pts(), ts); |
| 1056 | debugShowLineIntersection(pts, wt, wn, |
| 1057 | ts.fT[1], ts.fT[0]); |
| 1058 | break; |
| 1059 | } |
| 1060 | case Work::kQuad_Segment: { |
| 1061 | swap = true; |
| 1062 | pts = QuadLineIntersect(wn.pts(), wt.pts(), ts); |
| 1063 | break; |
| 1064 | } |
| 1065 | case Work::kCubic_Segment: { |
| 1066 | swap = true; |
| 1067 | pts = CubicLineIntersect(wn.pts(), wt.pts(), ts); |
| 1068 | break; |
| 1069 | } |
| 1070 | default: |
| 1071 | SkASSERT(0); |
| 1072 | } |
| 1073 | break; |
| 1074 | case Work::kQuad_Segment: |
| 1075 | switch (wn.segmentType()) { |
| 1076 | case Work::kHorizontalLine_Segment: |
| 1077 | pts = HQuadIntersect(wt.pts(), wn.left(), |
| 1078 | wn.right(), wn.y(), wn.xFlipped(), ts); |
| 1079 | break; |
| 1080 | case Work::kVerticalLine_Segment: |
| 1081 | pts = VQuadIntersect(wt.pts(), wn.top(), |
| 1082 | wn.bottom(), wn.x(), wn.yFlipped(), ts); |
| 1083 | break; |
| 1084 | case Work::kLine_Segment: { |
| 1085 | pts = QuadLineIntersect(wt.pts(), wn.pts(), ts); |
| 1086 | break; |
| 1087 | } |
| 1088 | case Work::kQuad_Segment: { |
| 1089 | pts = QuadIntersect(wt.pts(), wn.pts(), ts); |
| 1090 | break; |
| 1091 | } |
| 1092 | case Work::kCubic_Segment: { |
| 1093 | wt.promoteToCubic(); |
| 1094 | pts = CubicIntersect(wt.cubic(), wn.pts(), ts); |
| 1095 | break; |
| 1096 | } |
| 1097 | default: |
| 1098 | SkASSERT(0); |
| 1099 | } |
| 1100 | break; |
| 1101 | case Work::kCubic_Segment: |
| 1102 | switch (wn.segmentType()) { |
| 1103 | case Work::kHorizontalLine_Segment: |
| 1104 | pts = HCubicIntersect(wt.pts(), wn.left(), |
| 1105 | wn.right(), wn.y(), wn.xFlipped(), ts); |
| 1106 | break; |
| 1107 | case Work::kVerticalLine_Segment: |
| 1108 | pts = VCubicIntersect(wt.pts(), wn.top(), |
| 1109 | wn.bottom(), wn.x(), wn.yFlipped(), ts); |
| 1110 | break; |
| 1111 | case Work::kLine_Segment: { |
| 1112 | pts = CubicLineIntersect(wt.pts(), wn.pts(), ts); |
| 1113 | break; |
| 1114 | } |
| 1115 | case Work::kQuad_Segment: { |
| 1116 | wn.promoteToCubic(); |
| 1117 | pts = CubicIntersect(wt.pts(), wn.cubic(), ts); |
| 1118 | break; |
| 1119 | } |
| 1120 | case Work::kCubic_Segment: { |
| 1121 | pts = CubicIntersect(wt.pts(), wn.pts(), ts); |
| 1122 | break; |
| 1123 | } |
| 1124 | default: |
| 1125 | SkASSERT(0); |
| 1126 | } |
| 1127 | break; |
| 1128 | default: |
| 1129 | SkASSERT(0); |
| 1130 | } |
| 1131 | // in addition to recording T values, record matching segment |
| 1132 | bool coincident = pts == 2 && wn.segmentType() <= Work::kLine_Segment |
| 1133 | && wt.segmentType() <= Work::kLine_Segment; |
| 1134 | for (int pt = 0; pt < pts; ++pt) { |
| 1135 | SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1); |
| 1136 | SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1); |
| 1137 | int testTAt = wt.addT(ts.fT[swap][pt], wn); |
| 1138 | int nextTAt = wn.addT(ts.fT[!swap][pt], wt); |
| 1139 | wt.addOtherT(testTAt, ts.fT[!swap][pt], coincident); |
| 1140 | wn.addOtherT(nextTAt, ts.fT[swap][pt], coincident); |
| 1141 | } |
| 1142 | } while (wn.advance()); |
| 1143 | } while (wt.advance()); |
| 1144 | return true; |
| 1145 | } |
| 1146 | |
| 1147 | // Each segment may have an inside or an outside. Segments contained within |
| 1148 | // winding may have insides on either side, and form a contour that should be |
| 1149 | // ignored. Segments that are coincident with opposing direction segments may |
| 1150 | // have outsides on either side, and should also disappear. |
| 1151 | // 'Normal' segments will have one inside and one outside. Subsequent connections |
| 1152 | // when winding should follow the intersection direction. If more than one edge |
| 1153 | // is an option, choose first edge that continues the inside. |
| 1154 | |
| 1155 | static void bridge(SkTDArray<Contour*>& contourList) { |
| 1156 | // Start at the top. Above the top is outside, below is inside. |
| 1157 | Contour* topContour = contourList[0]; |
| 1158 | Segment& topStart = topContour->topSegment(); |
| 1159 | int index; |
| 1160 | const Segment* topSegment = topStart.findTop(index); |
| 1161 | start here ; |
| 1162 | // find span |
| 1163 | // handle coincident |
| 1164 | // mark neighbors winding coverage |
| 1165 | // output span |
| 1166 | // mark span as processed |
| 1167 | |
| 1168 | } |
| 1169 | |
| 1170 | static void makeContourList(SkTArray<Contour>& contours, Contour& sentinel, |
| 1171 | SkTDArray<Contour*>& list) { |
| 1172 | size_t count = contours.count(); |
| 1173 | if (count == 0) { |
| 1174 | return; |
| 1175 | } |
| 1176 | for (size_t index = 0; index < count; ++index) { |
| 1177 | *list.append() = &contours[index]; |
| 1178 | } |
| 1179 | *list.append() = &sentinel; |
| 1180 | QSort<Contour>(list.begin(), list.end() - 1); |
| 1181 | } |
| 1182 | |
| 1183 | void simplifyx(const SkPath& path, bool asFill, SkPath& simple) { |
| 1184 | // returns 1 for evenodd, -1 for winding, regardless of inverse-ness |
| 1185 | int windingMask = (path.getFillType() & 1) ? 1 : -1; |
| 1186 | simple.reset(); |
| 1187 | simple.setFillType(SkPath::kEvenOdd_FillType); |
| 1188 | |
| 1189 | // turn path into list of segments |
| 1190 | SkTArray<Contour> contours; |
| 1191 | // FIXME: add self-intersecting cubics' T values to segment |
| 1192 | EdgeBuilder builder(path, contours); |
| 1193 | SkTDArray<Contour*> contourList; |
| 1194 | Contour sentinel; |
| 1195 | sentinel.reset(); |
| 1196 | makeContourList(contours, sentinel, contourList); |
| 1197 | Contour** currentPtr = contourList.begin(); |
| 1198 | if (!currentPtr) { |
| 1199 | return; |
| 1200 | } |
| 1201 | // find all intersections between segments |
| 1202 | do { |
| 1203 | Contour** nextPtr = currentPtr; |
| 1204 | Contour* current = *currentPtr++; |
| 1205 | Contour* next; |
| 1206 | do { |
| 1207 | next = *nextPtr++; |
| 1208 | } while (next != &sentinel && addIntersectingTs(current, next)); |
| 1209 | } while (*currentPtr != &sentinel); |
| 1210 | // construct closed contours |
| 1211 | bridge(contourList); |
| 1212 | } |
| 1213 | |