caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | #include "CurveIntersection.h" |
| 8 | #include "Intersections.h" |
| 9 | #include "LineIntersection.h" |
| 10 | #include "SkPath.h" |
| 11 | #include "SkRect.h" |
| 12 | #include "SkTArray.h" |
| 13 | #include "SkTDArray.h" |
| 14 | #include "ShapeOps.h" |
| 15 | #include "TSearch.h" |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 16 | #include <algorithm> // used for std::min |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 17 | |
| 18 | #undef SkASSERT |
| 19 | #define SkASSERT(cond) while (!(cond)) { sk_throw(); } |
| 20 | |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 21 | // Terminology: |
| 22 | // A Path contains one of more Contours |
| 23 | // A Contour is made up of Segment array |
| 24 | // A Segment is described by a Verb and a Point array |
| 25 | // A Verb is one of Line, Quad(ratic), and Cubic |
| 26 | // A Segment contains a Span array |
| 27 | // A Span is describes a portion of a Segment using starting and ending T |
| 28 | // T values range from 0 to 1, where 0 is the first Point in the Segment |
| 29 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 30 | // FIXME: remove once debugging is complete |
| 31 | #if 0 // set to 1 for no debugging whatsoever |
| 32 | |
| 33 | //const bool gxRunTestsInOneThread = false; |
| 34 | |
| 35 | #define DEBUG_ADD_INTERSECTING_TS 0 |
| 36 | #define DEBUG_BRIDGE 0 |
| 37 | #define DEBUG_DUMP 0 |
| 38 | |
| 39 | #else |
| 40 | |
| 41 | //const bool gRunTestsInOneThread = true; |
| 42 | |
| 43 | #define DEBUG_ADD_INTERSECTING_TS 1 |
| 44 | #define DEBUG_BRIDGE 1 |
| 45 | #define DEBUG_DUMP 1 |
| 46 | |
| 47 | #endif |
| 48 | |
| 49 | #if DEBUG_DUMP |
| 50 | static const char* kLVerbStr[] = {"", "line", "quad", "cubic"}; |
| 51 | static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"}; |
| 52 | static int gContourID; |
| 53 | static int gSegmentID; |
| 54 | #endif |
| 55 | |
| 56 | static int LineIntersect(const SkPoint a[2], const SkPoint b[2], |
| 57 | Intersections& intersections) { |
| 58 | const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 59 | const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}}; |
| 60 | return intersect(aLine, bLine, intersections.fT[0], intersections.fT[1]); |
| 61 | } |
| 62 | |
| 63 | static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2], |
| 64 | Intersections& intersections) { |
| 65 | const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| 66 | const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}}; |
| 67 | intersect(aQuad, bLine, intersections); |
| 68 | return intersections.fUsed; |
| 69 | } |
| 70 | |
| 71 | static int CubicLineIntersect(const SkPoint a[2], const SkPoint b[3], |
| 72 | Intersections& intersections) { |
| 73 | const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| 74 | {a[3].fX, a[3].fY}}; |
| 75 | const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}}; |
| 76 | return intersect(aCubic, bLine, intersections.fT[0], intersections.fT[1]); |
| 77 | } |
| 78 | |
| 79 | static int QuadIntersect(const SkPoint a[3], const SkPoint b[3], |
| 80 | Intersections& intersections) { |
| 81 | const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| 82 | const Quadratic bQuad = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}}; |
| 83 | intersect(aQuad, bQuad, intersections); |
| 84 | return intersections.fUsed; |
| 85 | } |
| 86 | |
| 87 | static int CubicIntersect(const SkPoint a[4], const SkPoint b[4], |
| 88 | Intersections& intersections) { |
| 89 | const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| 90 | {a[3].fX, a[3].fY}}; |
| 91 | const Cubic bCubic = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}, |
| 92 | {b[3].fX, b[3].fY}}; |
| 93 | intersect(aCubic, bCubic, intersections); |
| 94 | return intersections.fUsed; |
| 95 | } |
| 96 | |
| 97 | static int HLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right, |
| 98 | SkScalar y, bool flipped, Intersections& intersections) { |
| 99 | const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 100 | return horizontalIntersect(aLine, left, right, y, flipped, intersections); |
| 101 | } |
| 102 | |
| 103 | static int VLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right, |
| 104 | SkScalar y, bool flipped, Intersections& intersections) { |
| 105 | const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 106 | return verticalIntersect(aLine, left, right, y, flipped, intersections); |
| 107 | } |
| 108 | |
| 109 | static int HQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right, |
| 110 | SkScalar y, bool flipped, Intersections& intersections) { |
| 111 | const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| 112 | return horizontalIntersect(aQuad, left, right, y, flipped, intersections); |
| 113 | } |
| 114 | |
| 115 | static int VQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right, |
| 116 | SkScalar y, bool flipped, Intersections& intersections) { |
| 117 | const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| 118 | return verticalIntersect(aQuad, left, right, y, flipped, intersections); |
| 119 | } |
| 120 | |
| 121 | static int HCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right, |
| 122 | SkScalar y, bool flipped, Intersections& intersections) { |
| 123 | const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| 124 | {a[3].fX, a[3].fY}}; |
| 125 | return horizontalIntersect(aCubic, left, right, y, flipped, intersections); |
| 126 | } |
| 127 | |
| 128 | static int VCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right, |
| 129 | SkScalar y, bool flipped, Intersections& intersections) { |
| 130 | const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| 131 | {a[3].fX, a[3].fY}}; |
| 132 | return verticalIntersect(aCubic, left, right, y, flipped, intersections); |
| 133 | } |
| 134 | |
| 135 | static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) { |
| 136 | const _Line line = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 137 | double x, y; |
| 138 | xy_at_t(line, t, x, y); |
| 139 | out->fX = SkDoubleToScalar(x); |
| 140 | out->fY = SkDoubleToScalar(y); |
| 141 | } |
| 142 | |
| 143 | static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) { |
| 144 | const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| 145 | double x, y; |
| 146 | xy_at_t(quad, t, x, y); |
| 147 | out->fX = SkDoubleToScalar(x); |
| 148 | out->fY = SkDoubleToScalar(y); |
| 149 | } |
| 150 | |
| 151 | static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) { |
| 152 | const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| 153 | {a[3].fX, a[3].fY}}; |
| 154 | double x, y; |
| 155 | xy_at_t(cubic, t, x, y); |
| 156 | out->fX = SkDoubleToScalar(x); |
| 157 | out->fY = SkDoubleToScalar(y); |
| 158 | } |
| 159 | |
| 160 | static void (* const SegmentXYAtT[])(const SkPoint [], double , SkPoint* ) = { |
| 161 | NULL, |
| 162 | LineXYAtT, |
| 163 | QuadXYAtT, |
| 164 | CubicXYAtT |
| 165 | }; |
| 166 | |
| 167 | static SkScalar LineXAtT(const SkPoint a[2], double t) { |
| 168 | const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 169 | double x; |
| 170 | xy_at_t(aLine, t, x, *(double*) 0); |
| 171 | return SkDoubleToScalar(x); |
| 172 | } |
| 173 | |
| 174 | static SkScalar QuadXAtT(const SkPoint a[3], double t) { |
| 175 | const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| 176 | double x; |
| 177 | xy_at_t(quad, t, x, *(double*) 0); |
| 178 | return SkDoubleToScalar(x); |
| 179 | } |
| 180 | |
| 181 | static SkScalar CubicXAtT(const SkPoint a[4], double t) { |
| 182 | const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| 183 | {a[3].fX, a[3].fY}}; |
| 184 | double x; |
| 185 | xy_at_t(cubic, t, x, *(double*) 0); |
| 186 | return SkDoubleToScalar(x); |
| 187 | } |
| 188 | |
| 189 | static SkScalar (* const SegmentXAtT[])(const SkPoint [], double ) = { |
| 190 | NULL, |
| 191 | LineXAtT, |
| 192 | QuadXAtT, |
| 193 | CubicXAtT |
| 194 | }; |
| 195 | |
| 196 | static SkScalar LineYAtT(const SkPoint a[2], double t) { |
| 197 | const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 198 | double y; |
| 199 | xy_at_t(aLine, t, *(double*) 0, y); |
| 200 | return SkDoubleToScalar(y); |
| 201 | } |
| 202 | |
| 203 | static SkScalar QuadYAtT(const SkPoint a[3], double t) { |
| 204 | const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| 205 | double y; |
| 206 | xy_at_t(quad, t, *(double*) 0, y); |
| 207 | return SkDoubleToScalar(y); |
| 208 | } |
| 209 | |
| 210 | static SkScalar CubicYAtT(const SkPoint a[4], double t) { |
| 211 | const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| 212 | {a[3].fX, a[3].fY}}; |
| 213 | double y; |
| 214 | xy_at_t(cubic, t, *(double*) 0, y); |
| 215 | return SkDoubleToScalar(y); |
| 216 | } |
| 217 | |
| 218 | static SkScalar (* const SegmentYAtT[])(const SkPoint [], double ) = { |
| 219 | NULL, |
| 220 | LineYAtT, |
| 221 | QuadYAtT, |
| 222 | CubicYAtT |
| 223 | }; |
| 224 | |
| 225 | static void LineSubDivide(const SkPoint a[2], double startT, double endT, |
| 226 | SkPoint sub[2]) { |
| 227 | const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 228 | _Line dst; |
| 229 | sub_divide(aLine, startT, endT, dst); |
| 230 | sub[0].fX = SkDoubleToScalar(dst[0].x); |
| 231 | sub[0].fY = SkDoubleToScalar(dst[0].y); |
| 232 | sub[1].fX = SkDoubleToScalar(dst[1].x); |
| 233 | sub[1].fY = SkDoubleToScalar(dst[1].y); |
| 234 | } |
| 235 | |
| 236 | static void QuadSubDivide(const SkPoint a[3], double startT, double endT, |
| 237 | SkPoint sub[3]) { |
| 238 | const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 239 | {a[2].fX, a[2].fY}}; |
| 240 | Quadratic dst; |
| 241 | sub_divide(aQuad, startT, endT, dst); |
| 242 | sub[0].fX = SkDoubleToScalar(dst[0].x); |
| 243 | sub[0].fY = SkDoubleToScalar(dst[0].y); |
| 244 | sub[1].fX = SkDoubleToScalar(dst[1].x); |
| 245 | sub[1].fY = SkDoubleToScalar(dst[1].y); |
| 246 | sub[2].fX = SkDoubleToScalar(dst[2].x); |
| 247 | sub[2].fY = SkDoubleToScalar(dst[2].y); |
| 248 | } |
| 249 | |
| 250 | static void CubicSubDivide(const SkPoint a[4], double startT, double endT, |
| 251 | SkPoint sub[4]) { |
| 252 | const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 253 | {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; |
| 254 | Cubic dst; |
| 255 | sub_divide(aCubic, startT, endT, dst); |
| 256 | sub[0].fX = SkDoubleToScalar(dst[0].x); |
| 257 | sub[0].fY = SkDoubleToScalar(dst[0].y); |
| 258 | sub[1].fX = SkDoubleToScalar(dst[1].x); |
| 259 | sub[1].fY = SkDoubleToScalar(dst[1].y); |
| 260 | sub[2].fX = SkDoubleToScalar(dst[2].x); |
| 261 | sub[2].fY = SkDoubleToScalar(dst[2].y); |
| 262 | sub[3].fX = SkDoubleToScalar(dst[3].x); |
| 263 | sub[3].fY = SkDoubleToScalar(dst[3].y); |
| 264 | } |
| 265 | |
| 266 | static void QuadSubBounds(const SkPoint a[3], double startT, double endT, |
| 267 | SkRect& bounds) { |
| 268 | SkPoint dst[3]; |
| 269 | QuadSubDivide(a, startT, endT, dst); |
| 270 | bounds.fLeft = bounds.fRight = dst[0].fX; |
| 271 | bounds.fTop = bounds.fBottom = dst[0].fY; |
| 272 | for (int index = 1; index < 3; ++index) { |
| 273 | bounds.growToInclude(dst[index].fX, dst[index].fY); |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | static void CubicSubBounds(const SkPoint a[4], double startT, double endT, |
| 278 | SkRect& bounds) { |
| 279 | SkPoint dst[4]; |
| 280 | CubicSubDivide(a, startT, endT, dst); |
| 281 | bounds.fLeft = bounds.fRight = dst[0].fX; |
| 282 | bounds.fTop = bounds.fBottom = dst[0].fY; |
| 283 | for (int index = 1; index < 4; ++index) { |
| 284 | bounds.growToInclude(dst[index].fX, dst[index].fY); |
| 285 | } |
| 286 | } |
| 287 | |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 288 | static SkPath::Verb QuadReduceOrder(const SkPoint a[3], |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 289 | SkTDArray<SkPoint>& reducePts) { |
| 290 | const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 291 | {a[2].fX, a[2].fY}}; |
| 292 | Quadratic dst; |
| 293 | int order = reduceOrder(aQuad, dst); |
| 294 | for (int index = 0; index < order; ++index) { |
| 295 | SkPoint* pt = reducePts.append(); |
| 296 | pt->fX = SkDoubleToScalar(dst[index].x); |
| 297 | pt->fY = SkDoubleToScalar(dst[index].y); |
| 298 | } |
| 299 | return (SkPath::Verb) (order - 1); |
| 300 | } |
| 301 | |
| 302 | static SkPath::Verb CubicReduceOrder(const SkPoint a[4], |
| 303 | SkTDArray<SkPoint>& reducePts) { |
| 304 | const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 305 | {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; |
| 306 | Cubic dst; |
| 307 | int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed); |
| 308 | for (int index = 0; index < order; ++index) { |
| 309 | SkPoint* pt = reducePts.append(); |
| 310 | pt->fX = SkDoubleToScalar(dst[index].x); |
| 311 | pt->fY = SkDoubleToScalar(dst[index].y); |
| 312 | } |
| 313 | return (SkPath::Verb) (order - 1); |
| 314 | } |
| 315 | |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 316 | static bool QuadIsLinear(const SkPoint a[3]) { |
| 317 | const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 318 | {a[2].fX, a[2].fY}}; |
| 319 | return isLinear(aQuad, 0, 2); |
| 320 | } |
| 321 | |
| 322 | static bool CubicIsLinear(const SkPoint a[4]) { |
| 323 | const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 324 | {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; |
| 325 | return isLinear(aCubic, 0, 3); |
| 326 | } |
| 327 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 328 | static SkScalar LineLeftMost(const SkPoint a[2], double startT, double endT) { |
| 329 | const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 330 | double x[2]; |
| 331 | xy_at_t(aLine, startT, x[0], *(double*) 0); |
| 332 | xy_at_t(aLine, endT, x[0], *(double*) 0); |
| 333 | return startT < endT ? startT : endT; |
| 334 | } |
| 335 | |
| 336 | static SkScalar QuadLeftMost(const SkPoint a[3], double startT, double endT) { |
| 337 | const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 338 | {a[2].fX, a[2].fY}}; |
| 339 | return leftMostT(aQuad, startT, endT); |
| 340 | } |
| 341 | |
| 342 | static SkScalar CubicLeftMost(const SkPoint a[4], double startT, double endT) { |
| 343 | const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 344 | {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; |
| 345 | return leftMostT(aCubic, startT, endT); |
| 346 | } |
| 347 | |
| 348 | static SkScalar (* const SegmentLeftMost[])(const SkPoint [], double , double) = { |
| 349 | NULL, |
| 350 | LineLeftMost, |
| 351 | QuadLeftMost, |
| 352 | CubicLeftMost |
| 353 | }; |
| 354 | |
| 355 | static bool IsCoincident(const SkPoint a[2], const SkPoint& above, |
| 356 | const SkPoint& below) { |
| 357 | const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| 358 | const _Line bLine = {{above.fX, above.fY}, {below.fX, below.fY}}; |
| 359 | return implicit_matches_ulps(aLine, bLine, 32); |
| 360 | } |
| 361 | |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 362 | // sorting angles |
| 363 | // given angles of {dx dy ddx ddy dddx dddy} sort them |
| 364 | class Angle { |
| 365 | public: |
| 366 | bool operator<(const Angle& rh) const { |
| 367 | if ((dy < 0) ^ (rh.dy < 0)) { |
| 368 | return dy < 0; |
| 369 | } |
| 370 | SkScalar cmp = dx * rh.dy - rh.dx * dy; |
| 371 | if (cmp) { |
| 372 | return cmp < 0; |
| 373 | } |
| 374 | if ((ddy < 0) ^ (rh.ddy < 0)) { |
| 375 | return ddy < 0; |
| 376 | } |
| 377 | cmp = ddx * rh.ddy - rh.ddx * ddy; |
| 378 | if (cmp) { |
| 379 | return cmp < 0; |
| 380 | } |
| 381 | if ((dddy < 0) ^ (rh.dddy < 0)) { |
| 382 | return ddy < 0; |
| 383 | } |
| 384 | return dddx * rh.dddy < rh.dddx * dddy; |
| 385 | } |
| 386 | |
| 387 | void set(SkPoint* pts, SkPath::Verb verb) { |
| 388 | dx = pts[1].fX - pts[0].fX; // b - a |
| 389 | dy = pts[1].fY - pts[0].fY; |
| 390 | if (verb == SkPath::kLine_Verb) { |
| 391 | ddx = ddy = dddx = dddy = 0; |
| 392 | return; |
| 393 | } |
| 394 | ddx = pts[2].fX - pts[1].fX - dx; // a - 2b + c |
| 395 | ddy = pts[2].fY - pts[2].fY - dy; |
| 396 | if (verb == SkPath::kQuad_Verb) { |
| 397 | dddx = dddy = 0; |
| 398 | return; |
| 399 | } |
| 400 | dddx = pts[3].fX + 3 * (pts[1].fX - pts[2].fX) - pts[0].fX; |
| 401 | dddy = pts[3].fY + 3 * (pts[1].fY - pts[2].fY) - pts[0].fY; |
| 402 | } |
| 403 | |
| 404 | private: |
| 405 | SkScalar dx; |
| 406 | SkScalar dy; |
| 407 | SkScalar ddx; |
| 408 | SkScalar ddy; |
| 409 | SkScalar dddx; |
| 410 | SkScalar dddy; |
| 411 | }; |
| 412 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 413 | // Bounds, unlike Rect, does not consider a vertical line to be empty. |
| 414 | struct Bounds : public SkRect { |
| 415 | static bool Intersects(const Bounds& a, const Bounds& b) { |
| 416 | return a.fLeft <= b.fRight && b.fLeft <= a.fRight && |
| 417 | a.fTop <= b.fBottom && b.fTop <= a.fBottom; |
| 418 | } |
| 419 | |
| 420 | bool isEmpty() { |
| 421 | return fLeft > fRight || fTop > fBottom |
| 422 | || fLeft == fRight && fTop == fBottom |
| 423 | || isnan(fLeft) || isnan(fRight) |
| 424 | || isnan(fTop) || isnan(fBottom); |
| 425 | } |
| 426 | |
| 427 | void setCubicBounds(const SkPoint a[4]) { |
| 428 | _Rect dRect; |
| 429 | Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 430 | {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; |
| 431 | dRect.setBounds(cubic); |
| 432 | set(dRect.left, dRect.top, dRect.right, dRect.bottom); |
| 433 | } |
| 434 | |
| 435 | void setQuadBounds(const SkPoint a[3]) { |
| 436 | const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| 437 | {a[2].fX, a[2].fY}}; |
| 438 | _Rect dRect; |
| 439 | dRect.setBounds(quad); |
| 440 | set(dRect.left, dRect.top, dRect.right, dRect.bottom); |
| 441 | } |
| 442 | }; |
| 443 | |
| 444 | class Segment; |
| 445 | |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 446 | struct Span { |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 447 | double fT; |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 448 | Segment* fOther; |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 449 | double fOtherT; |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 450 | int fWinding; // accumulated from contours surrounding this one |
| 451 | // OPTIMIZATION: done needs only 2 bits (values are -1, 0, 1) |
| 452 | int fDone; // set when t to t+fDone is processed |
| 453 | // OPTIMIZATION: done needs only 2 bits (values are -1, 0, 1) |
| 454 | int fCoincident; // -1 start of coincidence, 0 no coincidence, 1 end |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 455 | }; |
| 456 | |
| 457 | class Segment { |
| 458 | public: |
| 459 | Segment() { |
| 460 | #if DEBUG_DUMP |
| 461 | fID = ++gSegmentID; |
| 462 | #endif |
| 463 | } |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 464 | |
| 465 | void addAngle(SkTDArray<Angle>& angles, double start, double end) { |
| 466 | // FIXME complete this |
| 467 | // start here; |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 468 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 469 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 470 | bool addCubic(const SkPoint pts[4]) { |
| 471 | fPts = pts; |
| 472 | fVerb = SkPath::kCubic_Verb; |
| 473 | fBounds.setCubicBounds(pts); |
| 474 | } |
| 475 | |
| 476 | bool addLine(const SkPoint pts[2]) { |
| 477 | fPts = pts; |
| 478 | fVerb = SkPath::kLine_Verb; |
| 479 | fBounds.set(pts, 2); |
| 480 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 481 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 482 | // add 2 to edge or out of range values to get T extremes |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 483 | void addOtherT(int index, double other) { |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 484 | fTs[index].fOtherT = other; |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 485 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 486 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 487 | bool addQuad(const SkPoint pts[3]) { |
| 488 | fPts = pts; |
| 489 | fVerb = SkPath::kQuad_Verb; |
| 490 | fBounds.setQuadBounds(pts); |
| 491 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 492 | |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 493 | int addT(double newT, Segment& other, int coincident) { |
| 494 | // FIXME: in the pathological case where there is a ton of intercepts, |
| 495 | // binary search? |
| 496 | int insertedAt = -1; |
| 497 | Span* span; |
| 498 | size_t tCount = fTs.count(); |
| 499 | double delta; |
| 500 | for (size_t idx2 = 0; idx2 < tCount; ++idx2) { |
| 501 | // OPTIMIZATION: if there are three or more identical Ts, then |
| 502 | // the fourth and following could be further insertion-sorted so |
| 503 | // that all the edges are clockwise or counterclockwise. |
| 504 | // This could later limit segment tests to the two adjacent |
| 505 | // neighbors, although it doesn't help with determining which |
| 506 | // circular direction to go in. |
| 507 | if (newT <= fTs[idx2].fT) { |
| 508 | insertedAt = idx2; |
| 509 | span = fTs.insert(idx2); |
| 510 | goto finish; |
| 511 | } |
| 512 | } |
| 513 | insertedAt = tCount; |
| 514 | span = fTs.append(); |
| 515 | finish: |
| 516 | span->fT = newT; |
| 517 | span->fOther = &other; |
| 518 | span->fWinding = 1; |
| 519 | span->fDone = 0; |
| 520 | span->fCoincident = coincident; |
| 521 | fCoincident |= coincident; |
| 522 | return insertedAt; |
| 523 | } |
| 524 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 525 | const Bounds& bounds() const { |
| 526 | return fBounds; |
| 527 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 528 | |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 529 | bool done() const { |
| 530 | return fDone; |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 531 | } |
| 532 | |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 533 | int findCoincidentEnd(int start) const { |
| 534 | int tCount = fTs.count(); |
| 535 | SkASSERT(start < tCount); |
| 536 | const Span& span = fTs[start]; |
| 537 | SkASSERT(span.fCoincident); |
| 538 | for (int index = start + 1; index < tCount; ++index) { |
| 539 | const Span& match = fTs[index]; |
| 540 | if (match.fOther == span.fOther) { |
| 541 | SkASSERT(match.fCoincident); |
| 542 | return index; |
| 543 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 544 | } |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 545 | SkASSERT(0); // should never get here |
| 546 | return -1; |
| 547 | } |
| 548 | |
| 549 | // start is the index of the beginning T of this edge |
| 550 | // it is guaranteed to have an end which describes a non-zero length (?) |
| 551 | // winding -1 means ccw, 1 means cw |
| 552 | // step is in/out -1 or 1 |
| 553 | // spanIndex is returned |
| 554 | Segment* findNext(int start, int winding, int& step, int& spanIndex) { |
| 555 | SkASSERT(step == 1 || step == -1); |
| 556 | int count = fTs.count(); |
| 557 | SkASSERT(step > 0 ? start < count - 1 : start > 0); |
| 558 | Span* startSpan = &fTs[start]; |
| 559 | // FIXME: |
| 560 | // since Ts can be stepped either way, done markers must be careful |
| 561 | // not to assume that segment was only ascending in T. This shouldn't |
| 562 | // be a problem unless pathologically a segment can be partially |
| 563 | // ascending and partially descending -- maybe quads/cubic can do this? |
| 564 | startSpan->fDone = step; |
| 565 | SkPoint startLoc; // OPTIMIZATION: store this in the t span? |
| 566 | xyAtT(startSpan->fT, &startLoc); |
| 567 | SkPoint endLoc; |
| 568 | Span* endSpan; |
| 569 | int end = nextSpan(start, step, startLoc, startSpan, &endLoc, &endSpan); |
| 570 | |
| 571 | // if we hit the end looking for span end, is that always an error? |
| 572 | SkASSERT(step > 0 ? end + 1 < count : end - 1 >= 0); |
| 573 | |
| 574 | // preflight for coincidence -- if present, it may change winding |
| 575 | // considerations and whether reversed edges can be followed |
| 576 | bool foundCoincident = false; |
| 577 | int last = lastSpan(end, step, &startLoc, startSpan, foundCoincident); |
| 578 | |
| 579 | // Discard opposing direction candidates if no coincidence was found. |
| 580 | int candidateCount = abs(last - end); |
| 581 | if (candidateCount == 1) { |
| 582 | SkASSERT(!foundCoincident); |
| 583 | // move in winding direction until edge in correct direction |
| 584 | // balance wrong direction edges before finding correct one |
| 585 | // this requres that the intersection is angularly sorted |
| 586 | // for a single intersection, special case -- choose the opposite |
| 587 | // edge that steps the same |
| 588 | Segment* other = endSpan->fOther; |
| 589 | SkASSERT(!other->fDone); |
| 590 | spanIndex = other->matchSpan(this, endSpan->fT); |
| 591 | SkASSERT(step < 0 ? spanIndex > 0 : spanIndex < other->fTs.count() - 1); |
| 592 | return other; |
| 593 | } |
| 594 | |
| 595 | // find the next T that describes a length |
| 596 | SkTDArray<Angle> angles; |
| 597 | Segment* segmentCandidate = NULL; |
| 598 | int spanCandidate = -1; |
| 599 | int directionCandidate; |
| 600 | do { |
| 601 | endSpan = &fTs[end]; |
| 602 | Segment* other = endSpan->fOther; |
| 603 | if (other->fDone) { |
| 604 | continue; |
| 605 | } |
| 606 | // if there is only one live crossing, and no coincidence, continue |
| 607 | // in the same direction |
| 608 | // if there is coincidence, the only choice may be to reverse direction |
| 609 | // find edge on either side of intersection |
| 610 | int oCount = other->fTs.count(); |
| 611 | for (int oIndex = 0; oIndex < oCount; ++oIndex) { |
| 612 | Span& otherSpan = other->fTs[oIndex]; |
| 613 | if (otherSpan.fOther != this) { |
| 614 | continue; |
| 615 | } |
| 616 | if (otherSpan.fOtherT != endSpan->fT) { |
| 617 | continue; |
| 618 | } |
| 619 | // if done == -1, prior span has already been processed |
| 620 | int next = other->nextSpan(oIndex, step, endLoc, &otherSpan, |
| 621 | NULL, NULL); |
| 622 | if (next < 0) { |
| 623 | continue; |
| 624 | } |
| 625 | bool otherIsCoincident; |
| 626 | last = other->lastSpan(next, step, &endLoc, &otherSpan, |
| 627 | otherIsCoincident); |
| 628 | if (step < 0) { |
| 629 | |
| 630 | if (otherSpan.fDone >= 0 && oIndex > 0) { |
| 631 | // FIXME: this needs to loop on -- until t && pt are different |
| 632 | Span& prior = other->fTs[oIndex - 1]; |
| 633 | if (prior.fDone > 0) { |
| 634 | continue; |
| 635 | } |
| 636 | |
| 637 | } |
| 638 | } else { // step == 1 |
| 639 | if (otherSpan.fDone <= 0 && oIndex < oCount - 1) { |
| 640 | // FIXME: this needs to loop on ++ until t && pt are different |
| 641 | Span& next = other->fTs[oIndex + 1]; |
| 642 | if (next.fDone < 0) { |
| 643 | continue; |
| 644 | } |
| 645 | } |
| 646 | } |
| 647 | if (!segmentCandidate) { |
| 648 | segmentCandidate = other; |
| 649 | spanCandidate = oIndex; |
| 650 | directionCandidate = step; |
| 651 | continue; |
| 652 | } |
| 653 | // there's two or more matches |
| 654 | if (spanCandidate >= 0) { // retrieve first stored candidate |
| 655 | // add edge leading into junction |
| 656 | addAngle(angles, endSpan->fT, startSpan->fT); |
| 657 | // add edge leading away from junction |
| 658 | double nextT = nextSpan(end, step, endLoc, endSpan, NULL, |
| 659 | NULL); |
| 660 | if (nextT >= 0) { |
| 661 | addAngle(angles, endSpan->fT, nextT); |
| 662 | } |
| 663 | // add first stored candidate into junction |
| 664 | segmentCandidate->addAngle(angles, |
| 665 | segmentCandidate->fTs[spanCandidate - 1].fT, |
| 666 | segmentCandidate->fTs[spanCandidate].fT); |
| 667 | // add first stored candidate away from junction |
| 668 | segmentCandidate->addAngle(angles, |
| 669 | segmentCandidate->fTs[spanCandidate].fT, |
| 670 | segmentCandidate->fTs[spanCandidate + 1].fT); |
| 671 | } |
| 672 | // add candidate into and away from junction |
| 673 | |
| 674 | |
| 675 | // start here; |
| 676 | // more than once viable candidate -- need to |
| 677 | // measure angles to find best |
| 678 | // noncoincident quads/cubics may have the same initial angle |
| 679 | // as lines, so must sort by derivatives as well |
| 680 | // while we're here, figure out all connections given the |
| 681 | // initial winding info |
| 682 | // so the span needs to contain the pairing info found here |
| 683 | // this should include the winding computed for the edge, and |
| 684 | // what edge it connects to, and whether it is discarded |
| 685 | // (maybe discarded == abs(winding) > 1) ? |
| 686 | // only need derivatives for duration of sorting, add a new struct |
| 687 | // for pairings, remove extra spans that have zero length and |
| 688 | // reference an unused other |
| 689 | // for coincident, the last span on the other may be marked done |
| 690 | // (always?) |
| 691 | } |
| 692 | } while ((end += step) != last); |
| 693 | // if loop is exhausted, contour may be closed. |
| 694 | // FIXME: pass in close point so we can check for closure |
| 695 | |
| 696 | // given a segment, and a sense of where 'inside' is, return the next |
| 697 | // segment. If this segment has an intersection, or ends in multiple |
| 698 | // segments, find the mate that continues the outside. |
| 699 | // note that if there are multiples, but no coincidence, we can limit |
| 700 | // choices to connections in the correct direction |
| 701 | |
| 702 | // mark found segments as done |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 703 | } |
| 704 | |
| 705 | void findTooCloseToCall(int winding) { |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 706 | int count = fTs.count(); |
| 707 | if (count < 3) { // require t=0, x, 1 at minimum |
| 708 | return; |
| 709 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 710 | int matchIndex = 0; |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 711 | int moCount; |
| 712 | Span* match; |
| 713 | Segment* mOther; |
| 714 | do { |
| 715 | match = &fTs[matchIndex]; |
| 716 | mOther = match->fOther; |
| 717 | moCount = mOther->fTs.count(); |
| 718 | } while (moCount >= 3 || ++matchIndex < count - 1); // require t=0, x, 1 at minimum |
| 719 | SkPoint matchPt; |
| 720 | // OPTIMIZATION: defer matchPt until qualifying toCount is found? |
| 721 | xyAtT(match->fT, &matchPt); |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 722 | // look for a pair of nearby T values that map to the same (x,y) value |
| 723 | // if found, see if the pair of other segments share a common point. If |
| 724 | // so, the span from here to there is coincident. |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 725 | for (int index = matchIndex + 1; index < count; ++index) { |
| 726 | Span* test = &fTs[index]; |
| 727 | Segment* tOther = test->fOther; |
| 728 | int toCount = tOther->fTs.count(); |
| 729 | if (toCount < 3) { // require t=0, x, 1 at minimum |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 730 | continue; |
| 731 | } |
| 732 | SkPoint testPt; |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 733 | xyAtT(test->fT, &testPt); |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 734 | if (matchPt != testPt) { |
| 735 | matchIndex = index; |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 736 | moCount = toCount; |
| 737 | match = test; |
| 738 | mOther = tOther; |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 739 | matchPt = testPt; |
| 740 | continue; |
| 741 | } |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 742 | int moStart = -1; // FIXME: initialization is debugging only |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 743 | for (int moIndex = 0; moIndex < moCount; ++moIndex) { |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 744 | Span& moSpan = mOther->fTs[moIndex]; |
| 745 | if (moSpan.fOther == this) { |
| 746 | if (moSpan.fOtherT == match->fT) { |
| 747 | moStart = moIndex; |
| 748 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 749 | continue; |
| 750 | } |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 751 | if (moSpan.fOther != tOther) { |
| 752 | continue; |
| 753 | } |
| 754 | int toStart = -1; |
| 755 | int toIndex; // FIXME: initialization is debugging only |
| 756 | bool found = false; |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 757 | for (toIndex = 0; toIndex < toCount; ++toIndex) { |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 758 | Span& toSpan = tOther->fTs[toIndex]; |
| 759 | if (toSpan.fOther == this) { |
| 760 | if (toSpan.fOtherT == test->fT) { |
| 761 | toStart = toIndex; |
| 762 | } |
| 763 | continue; |
| 764 | } |
| 765 | if (toSpan.fOther == mOther && toSpan.fOtherT |
| 766 | == moSpan.fT) { |
| 767 | found = true; |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 768 | break; |
| 769 | } |
| 770 | } |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 771 | if (!found) { |
| 772 | continue; |
| 773 | } |
| 774 | SkASSERT(moStart >= 0); |
| 775 | SkASSERT(toStart >= 0); |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 776 | // test to see if the segment between there and here is linear |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 777 | if (!mOther->isLinear(moStart, moIndex) |
| 778 | || !tOther->isLinear(toStart, toIndex)) { |
| 779 | continue; |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 780 | } |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 781 | mOther->fTs[moStart].fCoincident = -1; |
| 782 | tOther->fTs[toStart].fCoincident = -1; |
| 783 | mOther->fTs[moIndex].fCoincident = 1; |
| 784 | tOther->fTs[toIndex].fCoincident = 1; |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 785 | } |
| 786 | nextStart: |
| 787 | ; |
| 788 | } |
| 789 | } |
| 790 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 791 | int findByT(double t, const Segment* match) const { |
| 792 | // OPTIMIZATION: bsearch if count is honkin huge |
| 793 | int count = fTs.count(); |
| 794 | for (int index = 0; index < count; ++index) { |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 795 | const Span& span = fTs[index]; |
| 796 | if (t == span.fT && match == span.fOther) { |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 797 | return index; |
| 798 | } |
| 799 | } |
| 800 | SkASSERT(0); // should never get here |
| 801 | return -1; |
| 802 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 803 | |
| 804 | // find the adjacent T that is leftmost, with a point != base |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 805 | int findLefty(int tIndex, const SkPoint& base) const { |
| 806 | int bestTIndex; |
| 807 | SkPoint test; |
| 808 | SkScalar bestX = DBL_MAX; |
| 809 | int testTIndex = tIndex; |
| 810 | while (--testTIndex >= 0) { |
| 811 | xyAtT(testTIndex, &test); |
| 812 | if (test != base) { |
| 813 | continue; |
| 814 | } |
| 815 | bestX = test.fX; |
| 816 | bestTIndex = testTIndex; |
| 817 | break; |
| 818 | } |
| 819 | int count = fTs.count(); |
| 820 | testTIndex = tIndex; |
| 821 | while (++testTIndex < count) { |
| 822 | xyAtT(testTIndex, &test); |
| 823 | if (test == base) { |
| 824 | continue; |
| 825 | } |
| 826 | return bestX > test.fX ? testTIndex : bestTIndex; |
| 827 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 828 | SkASSERT(0); // can't get here (?) |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 829 | return -1; |
| 830 | } |
| 831 | |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 832 | // OPTIMIZATION : for a pair of lines, can we compute points at T (cached) |
| 833 | // and use more concise logic like the old edge walker code? |
| 834 | // FIXME: this needs to deal with coincident edges |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 835 | const Segment* findTop(int& tIndex) const { |
| 836 | // iterate through T intersections and return topmost |
| 837 | // topmost tangent from y-min to first pt is closer to horizontal |
| 838 | int firstT = 0; |
| 839 | int lastT = 0; |
| 840 | SkScalar topY = fPts[0].fY; |
| 841 | int count = fTs.count(); |
| 842 | int index; |
| 843 | for (index = 1; index < count; ++index) { |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 844 | const Span& span = fTs[index]; |
| 845 | double t = span.fT; |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 846 | SkScalar yIntercept = yAtT(t); |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 847 | if (topY > yIntercept) { |
| 848 | topY = yIntercept; |
| 849 | firstT = lastT = index; |
| 850 | } else if (topY == yIntercept) { |
| 851 | lastT = index; |
| 852 | } |
| 853 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 854 | // if there's only a pair of segments, go with the endpoint chosen above |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 855 | if (firstT == lastT && (firstT == 0 || firstT == count - 1)) { |
| 856 | tIndex = firstT; |
| 857 | return this; |
| 858 | } |
| 859 | // if the topmost T is not on end, or is three-way or more, find left |
| 860 | SkPoint leftBase; |
| 861 | xyAtT(firstT, &leftBase); |
| 862 | int tLeft = findLefty(firstT, leftBase); |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 863 | const Segment* leftSegment = this; |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 864 | // look for left-ness from tLeft to firstT (matching y of other) |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 865 | for (index = firstT; index <= lastT; ++index) { |
| 866 | const Segment* other = fTs[index].fOther; |
| 867 | double otherT = fTs[index].fOtherT; |
| 868 | int otherTIndex = other->findByT(otherT, this); |
| 869 | // pick companionT closest (but not too close) on either side |
| 870 | int otherTLeft = other->findLefty(otherTIndex, leftBase); |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 871 | // within this span, find highest y |
| 872 | SkPoint testPt, otherPt; |
| 873 | testPt.fY = yAtT(tLeft); |
| 874 | otherPt.fY = other->yAtT(otherTLeft); |
| 875 | // FIXME: incomplete |
| 876 | // find the y intercept with the opposite segment |
| 877 | if (testPt.fY < otherPt.fY) { |
| 878 | |
| 879 | } else if (testPt.fY > otherPt.fY) { |
| 880 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 881 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 882 | // FIXME: leftMost no good. Use y intercept instead |
| 883 | #if 0 |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 884 | SkScalar otherMost = other->leftMost(otherTIndex, otherTLeft); |
| 885 | if (otherMost < left) { |
| 886 | leftSegment = other; |
| 887 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 888 | #endif |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 889 | } |
| 890 | return leftSegment; |
| 891 | } |
| 892 | |
| 893 | bool intersected() const { |
| 894 | return fTs.count() > 0; |
| 895 | } |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 896 | |
| 897 | bool isLinear(int start, int end) const { |
| 898 | if (fVerb == SkPath::kLine_Verb) { |
| 899 | return true; |
| 900 | } |
| 901 | if (fVerb == SkPath::kQuad_Verb) { |
| 902 | SkPoint qPart[3]; |
| 903 | QuadSubDivide(fPts, fTs[start].fT, fTs[end].fT, qPart); |
| 904 | return QuadIsLinear(qPart); |
| 905 | } else { |
| 906 | SkASSERT(fVerb == SkPath::kCubic_Verb); |
| 907 | SkPoint cPart[4]; |
| 908 | CubicSubDivide(fPts, fTs[start].fT, fTs[end].fT, cPart); |
| 909 | return CubicIsLinear(cPart); |
| 910 | } |
| 911 | } |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 912 | |
| 913 | bool isHorizontal() const { |
| 914 | return fBounds.fTop == fBounds.fBottom; |
| 915 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 916 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 917 | bool isVertical() const { |
| 918 | return fBounds.fLeft == fBounds.fRight; |
| 919 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 920 | |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 921 | int lastSpan(int end, int step, const SkPoint* startLoc, |
| 922 | const Span* startSpan, bool& coincident) { |
| 923 | int last = end; |
| 924 | int count = fTs.count(); |
| 925 | coincident = false; |
| 926 | SkPoint lastLoc; |
| 927 | do { |
| 928 | if (fTs[last].fCoincident == -step) { |
| 929 | coincident = true; |
| 930 | } |
| 931 | if (step > 0 ? ++last < count : --last >= 0) { |
| 932 | break; |
| 933 | } |
| 934 | Span* lastSpan = &fTs[last]; |
| 935 | if (lastSpan->fT == startSpan->fT) { |
| 936 | continue; |
| 937 | } |
| 938 | xyAtT(lastSpan->fT, &lastLoc); |
| 939 | } while (*startLoc == lastLoc); |
| 940 | } |
| 941 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 942 | SkScalar leftMost(int start, int end) const { |
| 943 | return (*SegmentLeftMost[fVerb])(fPts, fTs[start].fT, fTs[end].fT); |
| 944 | } |
| 945 | |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 946 | int matchSpan(const Segment* match, double matchT) |
| 947 | { |
| 948 | int count = fTs.count(); |
| 949 | for (int index = 0; index < count; ++index) { |
| 950 | Span& span = fTs[index]; |
| 951 | if (span.fOther != match) { |
| 952 | continue; |
| 953 | } |
| 954 | if (span.fOtherT != matchT) { |
| 955 | continue; |
| 956 | } |
| 957 | return index; |
| 958 | } |
| 959 | SkASSERT(0); // should never get here |
| 960 | return -1; |
| 961 | } |
| 962 | |
| 963 | int nextSpan(int from, int step, const SkPoint& fromLoc, |
| 964 | const Span* fromSpan, SkPoint* toLoc, Span** toSpan) { |
| 965 | int count = fTs.count(); |
| 966 | int to = from; |
| 967 | while (step > 0 ? ++to < count : --to >= 0) { |
| 968 | Span* span = &fTs[to]; |
| 969 | if (span->fT == fromSpan->fT) { |
| 970 | continue; |
| 971 | } |
| 972 | SkPoint loc; |
| 973 | xyAtT(span->fT, &loc); |
| 974 | if (fromLoc == loc) { |
| 975 | continue; |
| 976 | } |
| 977 | if (toLoc) { |
| 978 | *toLoc = loc; |
| 979 | } |
| 980 | if (toSpan) { |
| 981 | *toSpan = span; |
| 982 | } |
| 983 | return to; |
| 984 | } |
| 985 | return -1; |
| 986 | } |
| 987 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 988 | const SkPoint* pts() const { |
| 989 | return fPts; |
| 990 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 991 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 992 | void reset() { |
| 993 | fPts = NULL; |
| 994 | fVerb = (SkPath::Verb) -1; |
| 995 | fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax); |
| 996 | fTs.reset(); |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 997 | fDone = false; |
| 998 | fCoincident = 0; |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 999 | } |
| 1000 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1001 | // OPTIMIZATION: remove this function if it's never called |
| 1002 | double t(int tIndex) const { |
| 1003 | return fTs[tIndex].fT; |
| 1004 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1005 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1006 | SkPath::Verb verb() const { |
| 1007 | return fVerb; |
| 1008 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1009 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1010 | SkScalar xAtT(double t) const { |
| 1011 | return (*SegmentXAtT[fVerb])(fPts, t); |
| 1012 | } |
| 1013 | |
| 1014 | void xyAtT(double t, SkPoint* pt) const { |
| 1015 | (*SegmentXYAtT[fVerb])(fPts, t, pt); |
| 1016 | } |
| 1017 | |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1018 | SkScalar yAtT(double t) const { |
| 1019 | return (*SegmentYAtT[fVerb])(fPts, t); |
| 1020 | } |
| 1021 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1022 | #if DEBUG_DUMP |
| 1023 | void dump() const { |
| 1024 | const char className[] = "Segment"; |
| 1025 | const int tab = 4; |
| 1026 | for (int i = 0; i < fTs.count(); ++i) { |
| 1027 | SkPoint out; |
| 1028 | (*SegmentXYAtT[fVerb])(fPts, t(i), &out); |
| 1029 | SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d" |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1030 | " otherT=%1.9g winding=%d\n", |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1031 | tab + sizeof(className), className, fID, |
| 1032 | kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY, |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1033 | fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fWinding); |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1034 | } |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 1035 | SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)", |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1036 | tab + sizeof(className), className, fID, |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 1037 | fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1038 | } |
| 1039 | #endif |
| 1040 | |
| 1041 | private: |
| 1042 | const SkPoint* fPts; |
| 1043 | SkPath::Verb fVerb; |
| 1044 | Bounds fBounds; |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 1045 | SkTDArray<Span> fTs; // two or more (always includes t=0 t=1) |
| 1046 | // FIXME: coincident only needs two bits (-1, 0, 1) |
| 1047 | int fCoincident; // non-zero if some coincident span inside |
| 1048 | bool fDone; |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1049 | #if DEBUG_DUMP |
| 1050 | int fID; |
| 1051 | #endif |
| 1052 | }; |
| 1053 | |
| 1054 | class Contour { |
| 1055 | public: |
| 1056 | Contour() { |
| 1057 | reset(); |
| 1058 | #if DEBUG_DUMP |
| 1059 | fID = ++gContourID; |
| 1060 | #endif |
| 1061 | } |
| 1062 | |
| 1063 | bool operator<(const Contour& rh) const { |
| 1064 | return fBounds.fTop == rh.fBounds.fTop |
| 1065 | ? fBounds.fLeft < rh.fBounds.fLeft |
| 1066 | : fBounds.fTop < rh.fBounds.fTop; |
| 1067 | } |
| 1068 | |
| 1069 | void addCubic(const SkPoint pts[4]) { |
| 1070 | fSegments.push_back().addCubic(pts); |
| 1071 | fContainsCurves = true; |
| 1072 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1073 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1074 | void addLine(const SkPoint pts[2]) { |
| 1075 | fSegments.push_back().addLine(pts); |
| 1076 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1077 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1078 | void addQuad(const SkPoint pts[3]) { |
| 1079 | fSegments.push_back().addQuad(pts); |
| 1080 | fContainsCurves = true; |
| 1081 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1082 | |
| 1083 | const Bounds& bounds() const { |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1084 | return fBounds; |
| 1085 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1086 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1087 | void complete() { |
| 1088 | setBounds(); |
| 1089 | fContainsIntercepts = false; |
| 1090 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1091 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1092 | void containsIntercepts() { |
| 1093 | fContainsIntercepts = true; |
| 1094 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1095 | |
| 1096 | void findTooCloseToCall(int winding) { |
| 1097 | int segmentCount = fSegments.count(); |
| 1098 | for (int sIndex = 0; sIndex < segmentCount; ++sIndex) { |
| 1099 | fSegments[sIndex].findTooCloseToCall(winding); |
| 1100 | } |
| 1101 | } |
| 1102 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1103 | void reset() { |
| 1104 | fSegments.reset(); |
| 1105 | fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax); |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 1106 | fContainsCurves = fContainsIntercepts = false; |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1107 | } |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 1108 | |
| 1109 | // OPTIMIZATION: feel pretty uneasy about this. It seems like once again |
| 1110 | // we need to sort and walk edges in y, but that on the surface opens the |
| 1111 | // same can of worms as before. But then, this is a rough sort based on |
| 1112 | // segments' top, and not a true sort, so it could be ameniable to regular |
| 1113 | // sorting instead of linear searching. Still feel like I'm missing something |
| 1114 | Segment* topSegment() { |
| 1115 | int segmentCount = fSegments.count(); |
| 1116 | SkASSERT(segmentCount > 0); |
| 1117 | int best = -1; |
| 1118 | Segment* bestSegment = NULL; |
| 1119 | while (++best < segmentCount) { |
| 1120 | Segment* testSegment = &fSegments[best]; |
| 1121 | if (testSegment->done()) { |
| 1122 | continue; |
| 1123 | } |
| 1124 | bestSegment = testSegment; |
| 1125 | break; |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1126 | } |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 1127 | if (!bestSegment) { |
| 1128 | return NULL; |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1129 | } |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 1130 | SkScalar bestTop = bestSegment->bounds().fTop; |
| 1131 | for (int test = best + 1; test < segmentCount; ++test) { |
| 1132 | Segment* testSegment = &fSegments[test]; |
| 1133 | if (testSegment->done()) { |
| 1134 | continue; |
| 1135 | } |
| 1136 | SkScalar testTop = testSegment->bounds().fTop; |
| 1137 | if (bestTop > testTop) { |
| 1138 | bestTop = testTop; |
| 1139 | bestSegment = testSegment; |
| 1140 | } |
| 1141 | } |
| 1142 | return bestSegment; |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1143 | } |
| 1144 | |
| 1145 | #if DEBUG_DUMP |
| 1146 | void dump() { |
| 1147 | int i; |
| 1148 | const char className[] = "Contour"; |
| 1149 | const int tab = 4; |
| 1150 | SkDebugf("%s %p (contour=%d)\n", className, this, fID); |
| 1151 | for (i = 0; i < fSegments.count(); ++i) { |
| 1152 | SkDebugf("%*s.fSegments[%d]:\n", tab + sizeof(className), |
| 1153 | className, i); |
| 1154 | fSegments[i].dump(); |
| 1155 | } |
| 1156 | SkDebugf("%*s.fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)\n", |
| 1157 | tab + sizeof(className), className, |
| 1158 | fBounds.fLeft, fBounds.fTop, |
| 1159 | fBounds.fRight, fBounds.fBottom); |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1160 | SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className), |
| 1161 | className, fContainsIntercepts); |
| 1162 | SkDebugf("%*s.fContainsCurves=%d\n", tab + sizeof(className), |
| 1163 | className, fContainsCurves); |
| 1164 | } |
| 1165 | #endif |
| 1166 | |
| 1167 | protected: |
| 1168 | void setBounds() { |
| 1169 | int count = fSegments.count(); |
| 1170 | if (count == 0) { |
| 1171 | SkDebugf("%s empty contour\n", __FUNCTION__); |
| 1172 | SkASSERT(0); |
| 1173 | // FIXME: delete empty contour? |
| 1174 | return; |
| 1175 | } |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1176 | fBounds = fSegments.front().bounds(); |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1177 | for (int index = 1; index < count; ++index) { |
| 1178 | fBounds.growToInclude(fSegments[index].bounds()); |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1179 | } |
| 1180 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1181 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1182 | public: |
| 1183 | SkTArray<Segment> fSegments; // not worth accessor functions? |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1184 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1185 | private: |
| 1186 | Bounds fBounds; |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1187 | bool fContainsIntercepts; |
| 1188 | bool fContainsCurves; |
| 1189 | #if DEBUG_DUMP |
| 1190 | int fID; |
| 1191 | #endif |
| 1192 | }; |
| 1193 | |
| 1194 | class EdgeBuilder { |
| 1195 | public: |
| 1196 | |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1197 | EdgeBuilder(const SkPath& path, SkTArray<Contour>& contours) |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1198 | : fPath(path) |
| 1199 | , fCurrentContour(NULL) |
| 1200 | , fContours(contours) |
| 1201 | { |
| 1202 | #if DEBUG_DUMP |
| 1203 | gContourID = 0; |
| 1204 | gSegmentID = 0; |
| 1205 | #endif |
| 1206 | walk(); |
| 1207 | } |
| 1208 | |
| 1209 | protected: |
| 1210 | |
| 1211 | void complete() { |
| 1212 | if (fCurrentContour && fCurrentContour->fSegments.count()) { |
| 1213 | fCurrentContour->complete(); |
| 1214 | fCurrentContour = NULL; |
| 1215 | } |
| 1216 | } |
| 1217 | |
| 1218 | void startContour() { |
| 1219 | if (!fCurrentContour) { |
| 1220 | fCurrentContour = fContours.push_back_n(1); |
| 1221 | } |
| 1222 | } |
| 1223 | |
| 1224 | void walk() { |
| 1225 | // FIXME:remove once we can access path pts directly |
| 1226 | SkPath::RawIter iter(fPath); // FIXME: access path directly when allowed |
| 1227 | SkPoint pts[4]; |
| 1228 | SkPath::Verb verb; |
| 1229 | do { |
| 1230 | verb = iter.next(pts); |
| 1231 | *fPathVerbs.append() = verb; |
| 1232 | if (verb == SkPath::kMove_Verb) { |
| 1233 | *fPathPts.append() = pts[0]; |
| 1234 | } else if (verb >= SkPath::kLine_Verb && verb <= SkPath::kCubic_Verb) { |
| 1235 | fPathPts.append(verb, &pts[1]); |
| 1236 | } |
| 1237 | } while (verb != SkPath::kDone_Verb); |
| 1238 | // FIXME: end of section to remove once path pts are accessed directly |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1239 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1240 | SkPath::Verb reducedVerb; |
| 1241 | uint8_t* verbPtr = fPathVerbs.begin(); |
| 1242 | const SkPoint* pointsPtr = fPathPts.begin(); |
| 1243 | while ((verb = (SkPath::Verb) *verbPtr++) != SkPath::kDone_Verb) { |
| 1244 | switch (verb) { |
| 1245 | case SkPath::kMove_Verb: |
| 1246 | complete(); |
| 1247 | startContour(); |
| 1248 | pointsPtr += 1; |
| 1249 | continue; |
| 1250 | case SkPath::kLine_Verb: |
| 1251 | // skip degenerate points |
| 1252 | if (pointsPtr[-1].fX != pointsPtr[0].fX |
| 1253 | || pointsPtr[-1].fY != pointsPtr[0].fY) { |
| 1254 | fCurrentContour->addLine(&pointsPtr[-1]); |
| 1255 | } |
| 1256 | break; |
| 1257 | case SkPath::kQuad_Verb: |
| 1258 | reducedVerb = QuadReduceOrder(&pointsPtr[-1], fReducePts); |
| 1259 | if (reducedVerb == 0) { |
| 1260 | break; // skip degenerate points |
| 1261 | } |
| 1262 | if (reducedVerb == 1) { |
| 1263 | fCurrentContour->addLine(fReducePts.end() - 2); |
| 1264 | break; |
| 1265 | } |
| 1266 | fCurrentContour->addQuad(&pointsPtr[-1]); |
| 1267 | break; |
| 1268 | case SkPath::kCubic_Verb: |
| 1269 | reducedVerb = CubicReduceOrder(&pointsPtr[-1], fReducePts); |
| 1270 | if (reducedVerb == 0) { |
| 1271 | break; // skip degenerate points |
| 1272 | } |
| 1273 | if (reducedVerb == 1) { |
| 1274 | fCurrentContour->addLine(fReducePts.end() - 2); |
| 1275 | break; |
| 1276 | } |
| 1277 | if (reducedVerb == 2) { |
| 1278 | fCurrentContour->addQuad(fReducePts.end() - 3); |
| 1279 | break; |
| 1280 | } |
| 1281 | fCurrentContour->addCubic(&pointsPtr[-1]); |
| 1282 | break; |
| 1283 | case SkPath::kClose_Verb: |
| 1284 | SkASSERT(fCurrentContour); |
| 1285 | complete(); |
| 1286 | continue; |
| 1287 | default: |
| 1288 | SkDEBUGFAIL("bad verb"); |
| 1289 | return; |
| 1290 | } |
| 1291 | pointsPtr += verb; |
| 1292 | SkASSERT(fCurrentContour); |
| 1293 | } |
| 1294 | complete(); |
| 1295 | if (fCurrentContour && !fCurrentContour->fSegments.count()) { |
| 1296 | fContours.pop_back(); |
| 1297 | } |
| 1298 | } |
| 1299 | |
| 1300 | private: |
| 1301 | const SkPath& fPath; |
| 1302 | SkTDArray<SkPoint> fPathPts; // FIXME: point directly to path pts instead |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1303 | SkTDArray<uint8_t> fPathVerbs; // FIXME: remove |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1304 | Contour* fCurrentContour; |
| 1305 | SkTArray<Contour>& fContours; |
| 1306 | SkTDArray<SkPoint> fReducePts; // segments created on the fly |
| 1307 | }; |
| 1308 | |
| 1309 | class Work { |
| 1310 | public: |
| 1311 | enum SegmentType { |
| 1312 | kHorizontalLine_Segment = -1, |
| 1313 | kVerticalLine_Segment = 0, |
| 1314 | kLine_Segment = SkPath::kLine_Verb, |
| 1315 | kQuad_Segment = SkPath::kQuad_Verb, |
| 1316 | kCubic_Segment = SkPath::kCubic_Verb, |
| 1317 | }; |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1318 | |
| 1319 | void addOtherT(int index, double other) { |
| 1320 | fContour->fSegments[fIndex].addOtherT(index, other); |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1321 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1322 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1323 | // Avoid collapsing t values that are close to the same since |
| 1324 | // we walk ts to describe consecutive intersections. Since a pair of ts can |
| 1325 | // be nearly equal, any problems caused by this should be taken care |
| 1326 | // of later. |
| 1327 | // On the edge or out of range values are negative; add 2 to get end |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 1328 | int addT(double newT, const Work& other, int coincident) { |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1329 | fContour->containsIntercepts(); |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 1330 | return fContour->fSegments[fIndex].addT(newT, |
| 1331 | other.fContour->fSegments[other.fIndex], coincident); |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1332 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1333 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1334 | bool advance() { |
| 1335 | return ++fIndex < fLast; |
| 1336 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1337 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1338 | SkScalar bottom() const { |
| 1339 | return bounds().fBottom; |
| 1340 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1341 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1342 | const Bounds& bounds() const { |
| 1343 | return fContour->fSegments[fIndex].bounds(); |
| 1344 | } |
| 1345 | |
| 1346 | const SkPoint* cubic() const { |
| 1347 | return fCubic; |
| 1348 | } |
| 1349 | |
| 1350 | void init(Contour* contour) { |
| 1351 | fContour = contour; |
| 1352 | fIndex = 0; |
| 1353 | fLast = contour->fSegments.count(); |
| 1354 | } |
| 1355 | |
| 1356 | SkScalar left() const { |
| 1357 | return bounds().fLeft; |
| 1358 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1359 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1360 | void promoteToCubic() { |
| 1361 | fCubic[0] = pts()[0]; |
| 1362 | fCubic[2] = pts()[1]; |
| 1363 | fCubic[3] = pts()[2]; |
| 1364 | fCubic[1].fX = (fCubic[0].fX + fCubic[2].fX * 2) / 3; |
| 1365 | fCubic[1].fY = (fCubic[0].fY + fCubic[2].fY * 2) / 3; |
| 1366 | fCubic[2].fX = (fCubic[3].fX + fCubic[2].fX * 2) / 3; |
| 1367 | fCubic[2].fY = (fCubic[3].fY + fCubic[2].fY * 2) / 3; |
| 1368 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1369 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1370 | const SkPoint* pts() const { |
| 1371 | return fContour->fSegments[fIndex].pts(); |
| 1372 | } |
| 1373 | |
| 1374 | SkScalar right() const { |
| 1375 | return bounds().fRight; |
| 1376 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1377 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1378 | ptrdiff_t segmentIndex() const { |
| 1379 | return fIndex; |
| 1380 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1381 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1382 | SegmentType segmentType() const { |
| 1383 | const Segment& segment = fContour->fSegments[fIndex]; |
| 1384 | SegmentType type = (SegmentType) segment.verb(); |
| 1385 | if (type != kLine_Segment) { |
| 1386 | return type; |
| 1387 | } |
| 1388 | if (segment.isHorizontal()) { |
| 1389 | return kHorizontalLine_Segment; |
| 1390 | } |
| 1391 | if (segment.isVertical()) { |
| 1392 | return kVerticalLine_Segment; |
| 1393 | } |
| 1394 | return kLine_Segment; |
| 1395 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1396 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1397 | bool startAfter(const Work& after) { |
| 1398 | fIndex = after.fIndex; |
| 1399 | return advance(); |
| 1400 | } |
| 1401 | |
| 1402 | SkScalar top() const { |
| 1403 | return bounds().fTop; |
| 1404 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1405 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1406 | SkPath::Verb verb() const { |
| 1407 | return fContour->fSegments[fIndex].verb(); |
| 1408 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1409 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1410 | SkScalar x() const { |
| 1411 | return bounds().fLeft; |
| 1412 | } |
| 1413 | |
| 1414 | bool xFlipped() const { |
| 1415 | return x() != pts()[0].fX; |
| 1416 | } |
| 1417 | |
| 1418 | SkScalar y() const { |
| 1419 | return bounds().fTop; |
| 1420 | } |
| 1421 | |
| 1422 | bool yFlipped() const { |
| 1423 | return y() != pts()[0].fX; |
| 1424 | } |
| 1425 | |
| 1426 | protected: |
| 1427 | Contour* fContour; |
| 1428 | SkPoint fCubic[4]; |
| 1429 | int fIndex; |
| 1430 | int fLast; |
| 1431 | }; |
| 1432 | |
| 1433 | static void debugShowLineIntersection(int pts, const Work& wt, |
| 1434 | const Work& wn, const double wtTs[2], const double wnTs[2]) { |
| 1435 | #if DEBUG_ADD_INTERSECTING_TS |
| 1436 | if (!pts) { |
| 1437 | return; |
| 1438 | } |
| 1439 | SkPoint wtOutPt, wnOutPt; |
| 1440 | LineXYAtT(wt.pts(), wtTs[0], &wtOutPt); |
| 1441 | LineXYAtT(wn.pts(), wnTs[0], &wnOutPt); |
| 1442 | SkDebugf("%s wtTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n", |
| 1443 | __FUNCTION__, |
| 1444 | wtTs[0], wt.pts()[0].fX, wt.pts()[0].fY, |
| 1445 | wt.pts()[1].fX, wt.pts()[1].fY, wtOutPt.fX, wtOutPt.fY); |
| 1446 | if (pts == 2) { |
| 1447 | SkDebugf("%s wtTs[1]=%g\n", __FUNCTION__, wtTs[1]); |
| 1448 | } |
| 1449 | SkDebugf("%s wnTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n", |
| 1450 | __FUNCTION__, |
| 1451 | wnTs[0], wn.pts()[0].fX, wn.pts()[0].fY, |
| 1452 | wn.pts()[1].fX, wn.pts()[1].fY, wnOutPt.fX, wnOutPt.fY); |
| 1453 | if (pts == 2) { |
| 1454 | SkDebugf("%s wnTs[1]=%g\n", __FUNCTION__, wnTs[1]); |
| 1455 | } |
| 1456 | #endif |
| 1457 | } |
| 1458 | |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1459 | static bool addIntersectTs(Contour* test, Contour* next, int winding) { |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1460 | if (test != next) { |
| 1461 | if (test->bounds().fBottom < next->bounds().fTop) { |
| 1462 | return false; |
| 1463 | } |
| 1464 | if (!Bounds::Intersects(test->bounds(), next->bounds())) { |
| 1465 | return true; |
| 1466 | } |
| 1467 | } |
| 1468 | Work wt, wn; |
| 1469 | wt.init(test); |
| 1470 | wn.init(next); |
| 1471 | do { |
| 1472 | if (test == next && !wn.startAfter(wt)) { |
| 1473 | continue; |
| 1474 | } |
| 1475 | do { |
| 1476 | if (!Bounds::Intersects(wt.bounds(), wn.bounds())) { |
| 1477 | continue; |
| 1478 | } |
| 1479 | int pts; |
| 1480 | Intersections ts; |
| 1481 | bool swap = false; |
| 1482 | switch (wt.segmentType()) { |
| 1483 | case Work::kHorizontalLine_Segment: |
| 1484 | swap = true; |
| 1485 | switch (wn.segmentType()) { |
| 1486 | case Work::kHorizontalLine_Segment: |
| 1487 | case Work::kVerticalLine_Segment: |
| 1488 | case Work::kLine_Segment: { |
| 1489 | pts = HLineIntersect(wn.pts(), wt.left(), |
| 1490 | wt.right(), wt.y(), wt.xFlipped(), ts); |
| 1491 | break; |
| 1492 | } |
| 1493 | case Work::kQuad_Segment: { |
| 1494 | pts = HQuadIntersect(wn.pts(), wt.left(), |
| 1495 | wt.right(), wt.y(), wt.xFlipped(), ts); |
| 1496 | break; |
| 1497 | } |
| 1498 | case Work::kCubic_Segment: { |
| 1499 | pts = HCubicIntersect(wn.pts(), wt.left(), |
| 1500 | wt.right(), wt.y(), wt.xFlipped(), ts); |
| 1501 | break; |
| 1502 | } |
| 1503 | default: |
| 1504 | SkASSERT(0); |
| 1505 | } |
| 1506 | break; |
| 1507 | case Work::kVerticalLine_Segment: |
| 1508 | swap = true; |
| 1509 | switch (wn.segmentType()) { |
| 1510 | case Work::kHorizontalLine_Segment: |
| 1511 | case Work::kVerticalLine_Segment: |
| 1512 | case Work::kLine_Segment: { |
| 1513 | pts = VLineIntersect(wn.pts(), wt.top(), |
| 1514 | wt.bottom(), wt.x(), wt.yFlipped(), ts); |
| 1515 | break; |
| 1516 | } |
| 1517 | case Work::kQuad_Segment: { |
| 1518 | pts = VQuadIntersect(wn.pts(), wt.top(), |
| 1519 | wt.bottom(), wt.x(), wt.yFlipped(), ts); |
| 1520 | break; |
| 1521 | } |
| 1522 | case Work::kCubic_Segment: { |
| 1523 | pts = VCubicIntersect(wn.pts(), wt.top(), |
| 1524 | wt.bottom(), wt.x(), wt.yFlipped(), ts); |
| 1525 | break; |
| 1526 | } |
| 1527 | default: |
| 1528 | SkASSERT(0); |
| 1529 | } |
| 1530 | break; |
| 1531 | case Work::kLine_Segment: |
| 1532 | switch (wn.segmentType()) { |
| 1533 | case Work::kHorizontalLine_Segment: |
| 1534 | pts = HLineIntersect(wt.pts(), wn.left(), |
| 1535 | wn.right(), wn.y(), wn.xFlipped(), ts); |
| 1536 | break; |
| 1537 | case Work::kVerticalLine_Segment: |
| 1538 | pts = VLineIntersect(wt.pts(), wn.top(), |
| 1539 | wn.bottom(), wn.x(), wn.yFlipped(), ts); |
| 1540 | break; |
| 1541 | case Work::kLine_Segment: { |
| 1542 | pts = LineIntersect(wt.pts(), wn.pts(), ts); |
| 1543 | debugShowLineIntersection(pts, wt, wn, |
| 1544 | ts.fT[1], ts.fT[0]); |
| 1545 | break; |
| 1546 | } |
| 1547 | case Work::kQuad_Segment: { |
| 1548 | swap = true; |
| 1549 | pts = QuadLineIntersect(wn.pts(), wt.pts(), ts); |
| 1550 | break; |
| 1551 | } |
| 1552 | case Work::kCubic_Segment: { |
| 1553 | swap = true; |
| 1554 | pts = CubicLineIntersect(wn.pts(), wt.pts(), ts); |
| 1555 | break; |
| 1556 | } |
| 1557 | default: |
| 1558 | SkASSERT(0); |
| 1559 | } |
| 1560 | break; |
| 1561 | case Work::kQuad_Segment: |
| 1562 | switch (wn.segmentType()) { |
| 1563 | case Work::kHorizontalLine_Segment: |
| 1564 | pts = HQuadIntersect(wt.pts(), wn.left(), |
| 1565 | wn.right(), wn.y(), wn.xFlipped(), ts); |
| 1566 | break; |
| 1567 | case Work::kVerticalLine_Segment: |
| 1568 | pts = VQuadIntersect(wt.pts(), wn.top(), |
| 1569 | wn.bottom(), wn.x(), wn.yFlipped(), ts); |
| 1570 | break; |
| 1571 | case Work::kLine_Segment: { |
| 1572 | pts = QuadLineIntersect(wt.pts(), wn.pts(), ts); |
| 1573 | break; |
| 1574 | } |
| 1575 | case Work::kQuad_Segment: { |
| 1576 | pts = QuadIntersect(wt.pts(), wn.pts(), ts); |
| 1577 | break; |
| 1578 | } |
| 1579 | case Work::kCubic_Segment: { |
| 1580 | wt.promoteToCubic(); |
| 1581 | pts = CubicIntersect(wt.cubic(), wn.pts(), ts); |
| 1582 | break; |
| 1583 | } |
| 1584 | default: |
| 1585 | SkASSERT(0); |
| 1586 | } |
| 1587 | break; |
| 1588 | case Work::kCubic_Segment: |
| 1589 | switch (wn.segmentType()) { |
| 1590 | case Work::kHorizontalLine_Segment: |
| 1591 | pts = HCubicIntersect(wt.pts(), wn.left(), |
| 1592 | wn.right(), wn.y(), wn.xFlipped(), ts); |
| 1593 | break; |
| 1594 | case Work::kVerticalLine_Segment: |
| 1595 | pts = VCubicIntersect(wt.pts(), wn.top(), |
| 1596 | wn.bottom(), wn.x(), wn.yFlipped(), ts); |
| 1597 | break; |
| 1598 | case Work::kLine_Segment: { |
| 1599 | pts = CubicLineIntersect(wt.pts(), wn.pts(), ts); |
| 1600 | break; |
| 1601 | } |
| 1602 | case Work::kQuad_Segment: { |
| 1603 | wn.promoteToCubic(); |
| 1604 | pts = CubicIntersect(wt.pts(), wn.cubic(), ts); |
| 1605 | break; |
| 1606 | } |
| 1607 | case Work::kCubic_Segment: { |
| 1608 | pts = CubicIntersect(wt.pts(), wn.pts(), ts); |
| 1609 | break; |
| 1610 | } |
| 1611 | default: |
| 1612 | SkASSERT(0); |
| 1613 | } |
| 1614 | break; |
| 1615 | default: |
| 1616 | SkASSERT(0); |
| 1617 | } |
| 1618 | // in addition to recording T values, record matching segment |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 1619 | int coincident = pts == 2 && wn.segmentType() <= Work::kLine_Segment |
| 1620 | && wt.segmentType() <= Work::kLine_Segment ? -1 :0; |
| 1621 | for (int pt = 0; pt < pts; ++pt) { |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1622 | SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1); |
| 1623 | SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1); |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 1624 | int testTAt = wt.addT(ts.fT[swap][pt], wn, coincident); |
| 1625 | int nextTAt = wn.addT(ts.fT[!swap][pt], wt, coincident); |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1626 | wt.addOtherT(testTAt, ts.fT[!swap][pt]); |
| 1627 | wn.addOtherT(nextTAt, ts.fT[swap][pt]); |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 1628 | coincident = -coincident; |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1629 | } |
| 1630 | } while (wn.advance()); |
| 1631 | } while (wt.advance()); |
| 1632 | return true; |
| 1633 | } |
| 1634 | |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1635 | // see if coincidence is formed by clipping non-concident segments |
| 1636 | static void coincidenceCheck(SkTDArray<Contour*>& contourList, int winding) { |
| 1637 | int contourCount = contourList.count(); |
| 1638 | for (size_t cIndex = 0; cIndex < contourCount; ++cIndex) { |
| 1639 | Contour* contour = contourList[cIndex]; |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1640 | contour->findTooCloseToCall(winding); |
| 1641 | } |
| 1642 | } |
| 1643 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1644 | // Each segment may have an inside or an outside. Segments contained within |
| 1645 | // winding may have insides on either side, and form a contour that should be |
| 1646 | // ignored. Segments that are coincident with opposing direction segments may |
| 1647 | // have outsides on either side, and should also disappear. |
| 1648 | // 'Normal' segments will have one inside and one outside. Subsequent connections |
| 1649 | // when winding should follow the intersection direction. If more than one edge |
| 1650 | // is an option, choose first edge that continues the inside. |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1651 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1652 | static void bridge(SkTDArray<Contour*>& contourList) { |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 1653 | int contourCount = contourList.count(); |
| 1654 | do { |
| 1655 | // OPTIMIZATION: not crazy about linear search here to find top active y. |
| 1656 | // seems like we should break down and do the sort, or maybe sort each |
| 1657 | // contours' segments? |
| 1658 | // Once the segment array is built, there's no reason I can think of not to |
| 1659 | // sort it in Y. hmmm |
| 1660 | int cIndex = 0; |
| 1661 | Segment* topStart; |
| 1662 | do { |
| 1663 | Contour* topContour = contourList[cIndex]; |
| 1664 | topStart = topContour->topSegment(); |
| 1665 | } while (!topStart && ++cIndex < contourCount); |
| 1666 | if (!topStart) { |
| 1667 | break; |
| 1668 | } |
| 1669 | SkScalar top = topStart->bounds().fTop; |
| 1670 | for (int cTest = cIndex + 1; cTest < contourCount; ++cTest) { |
| 1671 | Contour* contour = contourList[cTest]; |
| 1672 | if (top < contour->bounds().fTop) { |
| 1673 | continue; |
| 1674 | } |
| 1675 | Segment* test = contour->topSegment(); |
| 1676 | if (top > test->bounds().fTop) { |
| 1677 | cIndex = cTest; |
| 1678 | topStart = test; |
| 1679 | top = test->bounds().fTop; |
| 1680 | } |
| 1681 | } |
| 1682 | int index; |
| 1683 | const Segment* topSegment = topStart->findTop(index); |
| 1684 | // Start at the top. Above the top is outside, below is inside. |
| 1685 | // follow edges to intersection |
| 1686 | // at intersection, stay on outside, but mark remaining edges as inside |
| 1687 | // or, only mark first pair as inside? |
| 1688 | // how is this going to work for contained (but not intersecting) |
| 1689 | // segments? |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1690 | // start here ; |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1691 | // find span |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1692 | // mark neighbors winding coverage |
| 1693 | // output span |
| 1694 | // mark span as processed |
caryclark@google.com | 15fa138 | 2012-05-07 20:49:36 +0000 | [diff] [blame] | 1695 | |
| 1696 | } while (true); |
| 1697 | |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1698 | |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1699 | } |
| 1700 | |
| 1701 | static void makeContourList(SkTArray<Contour>& contours, Contour& sentinel, |
| 1702 | SkTDArray<Contour*>& list) { |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1703 | int count = contours.count(); |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1704 | if (count == 0) { |
| 1705 | return; |
| 1706 | } |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1707 | for (int index = 0; index < count; ++index) { |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1708 | *list.append() = &contours[index]; |
| 1709 | } |
| 1710 | *list.append() = &sentinel; |
| 1711 | QSort<Contour>(list.begin(), list.end() - 1); |
| 1712 | } |
| 1713 | |
| 1714 | void simplifyx(const SkPath& path, bool asFill, SkPath& simple) { |
| 1715 | // returns 1 for evenodd, -1 for winding, regardless of inverse-ness |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1716 | int winding = (path.getFillType() & 1) ? 1 : -1; |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1717 | simple.reset(); |
| 1718 | simple.setFillType(SkPath::kEvenOdd_FillType); |
| 1719 | |
| 1720 | // turn path into list of segments |
| 1721 | SkTArray<Contour> contours; |
| 1722 | // FIXME: add self-intersecting cubics' T values to segment |
| 1723 | EdgeBuilder builder(path, contours); |
| 1724 | SkTDArray<Contour*> contourList; |
| 1725 | Contour sentinel; |
| 1726 | sentinel.reset(); |
| 1727 | makeContourList(contours, sentinel, contourList); |
| 1728 | Contour** currentPtr = contourList.begin(); |
| 1729 | if (!currentPtr) { |
| 1730 | return; |
| 1731 | } |
| 1732 | // find all intersections between segments |
| 1733 | do { |
| 1734 | Contour** nextPtr = currentPtr; |
| 1735 | Contour* current = *currentPtr++; |
| 1736 | Contour* next; |
| 1737 | do { |
| 1738 | next = *nextPtr++; |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1739 | } while (next != &sentinel && addIntersectTs(current, next, winding)); |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1740 | } while (*currentPtr != &sentinel); |
caryclark@google.com | a833b5c | 2012-04-30 19:38:50 +0000 | [diff] [blame] | 1741 | // eat through coincident edges |
| 1742 | coincidenceCheck(contourList, winding); |
caryclark@google.com | fa0588f | 2012-04-26 21:01:06 +0000 | [diff] [blame] | 1743 | // construct closed contours |
| 1744 | bridge(contourList); |
| 1745 | } |
| 1746 | |