krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2014 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef SkTextureCompressor_Blitter_DEFINED |
| 9 | #define SkTextureCompressor_Blitter_DEFINED |
| 10 | |
| 11 | #include "SkTypes.h" |
| 12 | #include "SkBlitter.h" |
| 13 | |
| 14 | namespace SkTextureCompressor { |
| 15 | |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame] | 16 | // Ostensibly, SkBlitter::BlitRect is supposed to set a rect of pixels to full |
| 17 | // alpha. This becomes problematic when using compressed texture blitters, since |
| 18 | // the rect rarely falls along block boundaries. The proper way to handle this is |
| 19 | // to update the compressed encoding of a block by resetting the proper parameters |
| 20 | // (and even recompressing the block) where a rect falls inbetween block boundaries. |
| 21 | // PEDANTIC_BLIT_RECT attempts to do this by requiring the struct passed to |
| 22 | // SkTCompressedAlphaBlitter to implement an UpdateBlock function call. |
| 23 | // |
| 24 | // However, the way that BlitRect gets used almost exclusively is to bracket inverse |
| 25 | // fills for paths. In other words, the top few rows and bottom few rows of a path |
| 26 | // that's getting inverse filled are called using blitRect. The rest are called using |
| 27 | // the standard blitAntiH. As a result, we can just call blitAntiH with a faux RLE |
| 28 | // of full alpha values, and then check in our flush() call that we don't run off the |
| 29 | // edge of the buffer. This is why we do not need this flag to be turned on. |
krajcevski | d211c54 | 2014-08-12 12:48:18 -0700 | [diff] [blame] | 30 | // |
| 31 | // NOTE: This code is unfinished, but is inteded as a starting point if an when |
| 32 | // bugs are introduced from the existing code. |
| 33 | #define PEDANTIC_BLIT_RECT 0 |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame] | 34 | |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 35 | // This class implements a blitter that blits directly into a buffer that will |
| 36 | // be used as an compressed alpha texture. We compute this buffer by |
| 37 | // buffering scan lines and then outputting them all at once. The number of |
| 38 | // scan lines buffered is controlled by kBlockSize |
krajcevski | 45a0bf5 | 2014-08-07 11:10:22 -0700 | [diff] [blame] | 39 | // |
| 40 | // The CompressorType is a struct with a bunch of static methods that provides |
| 41 | // the specialized compression functionality of the blitter. A complete CompressorType |
| 42 | // will implement the following static functions; |
| 43 | // |
| 44 | // struct CompressorType { |
| 45 | // // The function used to compress an A8 block. The layout of the |
| 46 | // // block is also expected to be in column-major order. |
| 47 | // static void CompressA8Vertical(uint8_t* dst, const uint8_t block[]); |
| 48 | // |
| 49 | // // The function used to compress an A8 block. The layout of the |
| 50 | // // block is also expected to be in row-major order. |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame] | 51 | // static void CompressA8Horizontal(uint8_t* dst, const uint8_t* src, int srcRowBytes); |
krajcevski | 45a0bf5 | 2014-08-07 11:10:22 -0700 | [diff] [blame] | 52 | // |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame] | 53 | #if PEDANTIC_BLIT_RECT |
krajcevski | 45a0bf5 | 2014-08-07 11:10:22 -0700 | [diff] [blame] | 54 | // // The function used to update an already compressed block. This will |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame] | 55 | // // most likely be implementation dependent. The mask variable will have |
| 56 | // // 0xFF in positions where the block should be updated and 0 in positions |
| 57 | // // where it shouldn't. src contains an uncompressed buffer of pixels. |
halcanary | 9d524f2 | 2016-03-29 09:03:52 -0700 | [diff] [blame] | 58 | // static void UpdateBlock(uint8_t* dst, const uint8_t* src, int srcRowBytes, |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame] | 59 | // const uint8_t* mask); |
| 60 | #endif |
krajcevski | 45a0bf5 | 2014-08-07 11:10:22 -0700 | [diff] [blame] | 61 | // }; |
krajcevski | 45a0bf5 | 2014-08-07 11:10:22 -0700 | [diff] [blame] | 62 | template<int BlockDim, int EncodedBlockSize, typename CompressorType> |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 63 | class SkTCompressedAlphaBlitter : public SkBlitter { |
| 64 | public: |
| 65 | SkTCompressedAlphaBlitter(int width, int height, void *compressedBuffer) |
| 66 | // 0x7FFE is one minus the largest positive 16-bit int. We use it for |
| 67 | // debugging to make sure that we're properly setting the nextX distance |
halcanary | 9d524f2 | 2016-03-29 09:03:52 -0700 | [diff] [blame] | 68 | // in flushRuns(). |
krajcevski | dff491b | 2014-08-08 08:41:21 -0700 | [diff] [blame] | 69 | #ifdef SK_DEBUG |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame] | 70 | : fCalledOnceWithNonzeroY(false) |
| 71 | , fBlitMaskCalled(false), |
krajcevski | dff491b | 2014-08-08 08:41:21 -0700 | [diff] [blame] | 72 | #else |
| 73 | : |
| 74 | #endif |
| 75 | kLongestRun(0x7FFE), kZeroAlpha(0) |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 76 | , fNextRun(0) |
| 77 | , fWidth(width) |
| 78 | , fHeight(height) |
| 79 | , fBuffer(compressedBuffer) |
| 80 | { |
| 81 | SkASSERT((width % BlockDim) == 0); |
| 82 | SkASSERT((height % BlockDim) == 0); |
| 83 | } |
| 84 | |
| 85 | virtual ~SkTCompressedAlphaBlitter() { this->flushRuns(); } |
| 86 | |
| 87 | // Blit a horizontal run of one or more pixels. |
mtklein | 36352bf | 2015-03-25 18:17:31 -0700 | [diff] [blame] | 88 | void blitH(int x, int y, int width) override { |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 89 | // This function is intended to be called from any standard RGB |
| 90 | // buffer, so we should never encounter it. However, if some code |
| 91 | // path does end up here, then this needs to be investigated. |
| 92 | SkFAIL("Not implemented!"); |
| 93 | } |
tfarina | 283b587 | 2015-04-25 12:59:44 -0700 | [diff] [blame] | 94 | |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 95 | // Blit a horizontal run of antialiased pixels; runs[] is a *sparse* |
| 96 | // zero-terminated run-length encoding of spans of constant alpha values. |
tfarina | 283b587 | 2015-04-25 12:59:44 -0700 | [diff] [blame] | 97 | void blitAntiH(int x, int y, |
| 98 | const SkAlpha antialias[], |
| 99 | const int16_t runs[]) override { |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame] | 100 | SkASSERT(0 == x); |
| 101 | |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 102 | // Make sure that the new row to blit is either the first |
| 103 | // row that we're blitting, or it's exactly the next scan row |
| 104 | // since the last row that we blit. This is to ensure that when |
| 105 | // we go to flush the runs, that they are all the same four |
| 106 | // runs. |
| 107 | if (fNextRun > 0 && |
| 108 | ((x != fBufferedRuns[fNextRun-1].fX) || |
| 109 | (y-1 != fBufferedRuns[fNextRun-1].fY))) { |
| 110 | this->flushRuns(); |
| 111 | } |
| 112 | |
| 113 | // Align the rows to a block boundary. If we receive rows that |
| 114 | // are not on a block boundary, then fill in the preceding runs |
| 115 | // with zeros. We do this by producing a single RLE that says |
| 116 | // that we have 0x7FFE pixels of zero (0x7FFE = 32766). |
| 117 | const int row = BlockDim * (y / BlockDim); |
| 118 | while ((row + fNextRun) < y) { |
| 119 | fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha; |
| 120 | fBufferedRuns[fNextRun].fRuns = &kLongestRun; |
| 121 | fBufferedRuns[fNextRun].fX = 0; |
| 122 | fBufferedRuns[fNextRun].fY = row + fNextRun; |
| 123 | ++fNextRun; |
| 124 | } |
| 125 | |
| 126 | // Make sure that our assumptions aren't violated... |
| 127 | SkASSERT(fNextRun == (y % BlockDim)); |
| 128 | SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y); |
| 129 | |
| 130 | // Set the values of the next run |
| 131 | fBufferedRuns[fNextRun].fAlphas = antialias; |
| 132 | fBufferedRuns[fNextRun].fRuns = runs; |
| 133 | fBufferedRuns[fNextRun].fX = x; |
| 134 | fBufferedRuns[fNextRun].fY = y; |
| 135 | |
| 136 | // If we've output a block of scanlines in a row that don't violate our |
| 137 | // assumptions, then it's time to flush them... |
| 138 | if (BlockDim == ++fNextRun) { |
| 139 | this->flushRuns(); |
| 140 | } |
| 141 | } |
halcanary | 9d524f2 | 2016-03-29 09:03:52 -0700 | [diff] [blame] | 142 | |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 143 | // Blit a vertical run of pixels with a constant alpha value. |
mtklein | 36352bf | 2015-03-25 18:17:31 -0700 | [diff] [blame] | 144 | void blitV(int x, int y, int height, SkAlpha alpha) override { |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 145 | // This function is currently not implemented. It is not explicitly |
| 146 | // required by the contract, but if at some time a code path runs into |
| 147 | // this function (which is entirely possible), it needs to be implemented. |
| 148 | // |
| 149 | // TODO (krajcevski): |
| 150 | // This function will be most easily implemented in one of two ways: |
| 151 | // 1. Buffer each vertical column value and then construct a list |
| 152 | // of alpha values and output all of the blocks at once. This only |
| 153 | // requires a write to the compressed buffer |
| 154 | // 2. Replace the indices of each block with the proper indices based |
| 155 | // on the alpha value. This requires a read and write of the compressed |
| 156 | // buffer, but much less overhead. |
| 157 | SkFAIL("Not implemented!"); |
| 158 | } |
| 159 | |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame] | 160 | // Blit a solid rectangle one or more pixels wide. It's assumed that blitRect |
| 161 | // is called as a way to bracket blitAntiH where above and below the path the |
| 162 | // called path just needs a solid rectangle to fill in the mask. |
| 163 | #ifdef SK_DEBUG |
| 164 | bool fCalledOnceWithNonzeroY; |
| 165 | #endif |
mtklein | 36352bf | 2015-03-25 18:17:31 -0700 | [diff] [blame] | 166 | void blitRect(int x, int y, int width, int height) override { |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame] | 167 | |
| 168 | // Assumptions: |
| 169 | SkASSERT(0 == x); |
| 170 | SkASSERT(width <= fWidth); |
| 171 | |
| 172 | // Make sure that we're only ever bracketing calls to blitAntiH. |
| 173 | SkASSERT((0 == y) || (!fCalledOnceWithNonzeroY && (fCalledOnceWithNonzeroY = true))); |
halcanary | 9d524f2 | 2016-03-29 09:03:52 -0700 | [diff] [blame] | 174 | |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame] | 175 | #if !(PEDANTIC_BLIT_RECT) |
| 176 | for (int i = 0; i < height; ++i) { |
| 177 | const SkAlpha kFullAlpha = 0xFF; |
| 178 | this->blitAntiH(x, y+i, &kFullAlpha, &kLongestRun); |
| 179 | } |
| 180 | #else |
| 181 | const int startBlockX = (x / BlockDim) * BlockDim; |
| 182 | const int startBlockY = (y / BlockDim) * BlockDim; |
| 183 | |
| 184 | const int endBlockX = ((x + width) / BlockDim) * BlockDim; |
| 185 | const int endBlockY = ((y + height) / BlockDim) * BlockDim; |
| 186 | |
| 187 | // If start and end are the same, then we only need to update a single block... |
| 188 | if (startBlockY == endBlockY && startBlockX == endBlockX) { |
| 189 | uint8_t mask[BlockDim*BlockDim]; |
| 190 | memset(mask, 0, sizeof(mask)); |
| 191 | |
| 192 | const int xoff = x - startBlockX; |
| 193 | SkASSERT((xoff + width) <= BlockDim); |
| 194 | |
| 195 | const int yoff = y - startBlockY; |
| 196 | SkASSERT((yoff + height) <= BlockDim); |
halcanary | 9d524f2 | 2016-03-29 09:03:52 -0700 | [diff] [blame] | 197 | |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame] | 198 | for (int j = 0; j < height; ++j) { |
| 199 | memset(mask + (j + yoff)*BlockDim + xoff, 0xFF, width); |
| 200 | } |
| 201 | |
| 202 | uint8_t* dst = this->getBlock(startBlockX, startBlockY); |
| 203 | CompressorType::UpdateBlock(dst, mask, BlockDim, mask); |
| 204 | |
| 205 | // If start and end are the same in the y dimension, then we can freely update an |
| 206 | // entire row of blocks... |
| 207 | } else if (startBlockY == endBlockY) { |
| 208 | |
| 209 | this->updateBlockRow(x, y, width, height, startBlockY, startBlockX, endBlockX); |
| 210 | |
| 211 | // Similarly, if the start and end are in the same column, then we can just update |
| 212 | // an entire column of blocks... |
| 213 | } else if (startBlockX == endBlockX) { |
| 214 | |
| 215 | this->updateBlockCol(x, y, width, height, startBlockX, startBlockY, endBlockY); |
| 216 | |
| 217 | // Otherwise, the rect spans a non-trivial region of blocks, and we have to construct |
| 218 | // a kind of 9-patch to update each of the pieces of the rect. The top and bottom |
| 219 | // rows are updated using updateBlockRow, and the left and right columns are updated |
| 220 | // using updateBlockColumn. Anything in the middle is simply memset to an opaque block |
| 221 | // encoding. |
| 222 | } else { |
| 223 | |
| 224 | const int innerStartBlockX = startBlockX + BlockDim; |
| 225 | const int innerStartBlockY = startBlockY + BlockDim; |
| 226 | |
| 227 | // Blit top row |
| 228 | const int topRowHeight = innerStartBlockY - y; |
| 229 | this->updateBlockRow(x, y, width, topRowHeight, startBlockY, |
| 230 | startBlockX, endBlockX); |
| 231 | |
| 232 | // Advance y |
| 233 | y += topRowHeight; |
| 234 | height -= topRowHeight; |
| 235 | |
| 236 | // Blit middle |
| 237 | if (endBlockY > innerStartBlockY) { |
| 238 | |
| 239 | // Update left row |
| 240 | this->updateBlockCol(x, y, innerStartBlockX - x, endBlockY, startBlockY, |
| 241 | startBlockX, innerStartBlockX); |
| 242 | |
| 243 | // Update the middle with an opaque encoding... |
| 244 | uint8_t mask[BlockDim*BlockDim]; |
| 245 | memset(mask, 0xFF, sizeof(mask)); |
| 246 | |
| 247 | uint8_t opaqueEncoding[EncodedBlockSize]; |
| 248 | CompressorType::CompressA8Horizontal(opaqueEncoding, mask, BlockDim); |
| 249 | |
| 250 | for (int j = innerStartBlockY; j < endBlockY; j += BlockDim) { |
| 251 | uint8_t* opaqueDst = this->getBlock(innerStartBlockX, j); |
| 252 | for (int i = innerStartBlockX; i < endBlockX; i += BlockDim) { |
| 253 | memcpy(opaqueDst, opaqueEncoding, EncodedBlockSize); |
| 254 | opaqueDst += EncodedBlockSize; |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | // If we need to update the right column, do that too |
| 259 | if (x + width > endBlockX) { |
| 260 | this->updateBlockCol(endBlockX, y, x + width - endBlockX, endBlockY, |
| 261 | endBlockX, innerStartBlockY, endBlockY); |
| 262 | } |
| 263 | |
| 264 | // Advance y |
| 265 | height = y + height - endBlockY; |
| 266 | y = endBlockY; |
| 267 | } |
| 268 | |
| 269 | // If we need to update the last row, then do that, too. |
| 270 | if (height > 0) { |
| 271 | this->updateBlockRow(x, y, width, height, endBlockY, |
| 272 | startBlockX, endBlockX); |
| 273 | } |
| 274 | } |
| 275 | #endif |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 276 | } |
| 277 | |
| 278 | // Blit a rectangle with one alpha-blended column on the left, |
| 279 | // width (zero or more) opaque pixels, and one alpha-blended column |
| 280 | // on the right. The result will always be at least two pixels wide. |
tfarina | 283b587 | 2015-04-25 12:59:44 -0700 | [diff] [blame] | 281 | void blitAntiRect(int x, int y, int width, int height, |
| 282 | SkAlpha leftAlpha, SkAlpha rightAlpha) override { |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 283 | // This function is currently not implemented. It is not explicitly |
| 284 | // required by the contract, but if at some time a code path runs into |
| 285 | // this function (which is entirely possible), it needs to be implemented. |
| 286 | // |
| 287 | // TODO (krajcevski): |
| 288 | // This function will be most easily implemented as follows: |
| 289 | // 1. If width/height are smaller than a block, then update the |
| 290 | // indices of the affected blocks. |
| 291 | // 2. If width/height are larger than a block, then construct a 9-patch |
| 292 | // of block encodings that represent the rectangle, and write them |
| 293 | // to the compressed buffer as necessary. Whether or not the blocks |
| 294 | // are overwritten by zeros or just their indices are updated is up |
| 295 | // to debate. |
| 296 | SkFAIL("Not implemented!"); |
| 297 | } |
| 298 | |
krajcevski | dff491b | 2014-08-08 08:41:21 -0700 | [diff] [blame] | 299 | // Blit a pattern of pixels defined by a rectangle-clipped mask; We make an |
| 300 | // assumption here that if this function gets called, then it will replace all |
| 301 | // of the compressed texture blocks that it touches. Hence, two separate calls |
| 302 | // to blitMask that have clips next to one another will cause artifacts. Most |
| 303 | // of the time, however, this function gets called because constructing the mask |
| 304 | // was faster than constructing the RLE for blitAntiH, and this function will |
| 305 | // only be called once. |
| 306 | #ifdef SK_DEBUG |
| 307 | bool fBlitMaskCalled; |
| 308 | #endif |
mtklein | 36352bf | 2015-03-25 18:17:31 -0700 | [diff] [blame] | 309 | void blitMask(const SkMask& mask, const SkIRect& clip) override { |
krajcevski | dff491b | 2014-08-08 08:41:21 -0700 | [diff] [blame] | 310 | |
| 311 | // Assumptions: |
mtklein | 4bfd587 | 2014-12-03 08:48:57 -0800 | [diff] [blame] | 312 | SkASSERT(!fBlitMaskCalled); |
| 313 | SkDEBUGCODE(fBlitMaskCalled = true); |
krajcevski | dff491b | 2014-08-08 08:41:21 -0700 | [diff] [blame] | 314 | SkASSERT(SkMask::kA8_Format == mask.fFormat); |
| 315 | SkASSERT(mask.fBounds.contains(clip)); |
| 316 | |
| 317 | // Start from largest block boundary less than the clip boundaries. |
| 318 | const int startI = BlockDim * (clip.left() / BlockDim); |
| 319 | const int startJ = BlockDim * (clip.top() / BlockDim); |
| 320 | |
| 321 | for (int j = startJ; j < clip.bottom(); j += BlockDim) { |
| 322 | |
| 323 | // Get the destination for this block row |
| 324 | uint8_t* dst = this->getBlock(startI, j); |
| 325 | for (int i = startI; i < clip.right(); i += BlockDim) { |
| 326 | |
| 327 | // At this point, the block should intersect the clip. |
| 328 | SkASSERT(SkIRect::IntersectsNoEmptyCheck( |
| 329 | SkIRect::MakeXYWH(i, j, BlockDim, BlockDim), clip)); |
| 330 | |
| 331 | // Do we need to pad it? |
| 332 | if (i < clip.left() || j < clip.top() || |
| 333 | i + BlockDim > clip.right() || j + BlockDim > clip.bottom()) { |
| 334 | |
| 335 | uint8_t block[BlockDim*BlockDim]; |
| 336 | memset(block, 0, sizeof(block)); |
| 337 | |
| 338 | const int startX = SkMax32(i, clip.left()); |
| 339 | const int startY = SkMax32(j, clip.top()); |
| 340 | |
| 341 | const int endX = SkMin32(i + BlockDim, clip.right()); |
| 342 | const int endY = SkMin32(j + BlockDim, clip.bottom()); |
| 343 | |
| 344 | for (int y = startY; y < endY; ++y) { |
| 345 | const int col = startX - i; |
| 346 | const int row = y - j; |
| 347 | const int valsWide = endX - startX; |
| 348 | SkASSERT(valsWide <= BlockDim); |
| 349 | SkASSERT(0 <= col && col < BlockDim); |
| 350 | SkASSERT(0 <= row && row < BlockDim); |
| 351 | memcpy(block + row*BlockDim + col, |
| 352 | mask.getAddr8(startX, j + row), valsWide); |
| 353 | } |
| 354 | |
| 355 | CompressorType::CompressA8Horizontal(dst, block, BlockDim); |
| 356 | } else { |
| 357 | // Otherwise, just compress it. |
| 358 | uint8_t*const src = mask.getAddr8(i, j); |
| 359 | const uint32_t rb = mask.fRowBytes; |
| 360 | CompressorType::CompressA8Horizontal(dst, src, rb); |
| 361 | } |
| 362 | |
| 363 | dst += EncodedBlockSize; |
| 364 | } |
| 365 | } |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 366 | } |
| 367 | |
| 368 | // If the blitter just sets a single value for each pixel, return the |
halcanary | 96fcdcc | 2015-08-27 07:41:13 -0700 | [diff] [blame] | 369 | // bitmap it draws into, and assign value. If not, return nullptr and ignore |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 370 | // the value parameter. |
reed | 41e010c | 2015-06-09 12:16:53 -0700 | [diff] [blame] | 371 | const SkPixmap* justAnOpaqueColor(uint32_t* value) override { |
halcanary | 96fcdcc | 2015-08-27 07:41:13 -0700 | [diff] [blame] | 372 | return nullptr; |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 373 | } |
| 374 | |
| 375 | /** |
| 376 | * Compressed texture blitters only really work correctly if they get |
| 377 | * BlockDim rows at a time. That being said, this blitter tries it's best |
| 378 | * to preserve semantics if blitAntiH doesn't get called in too many |
| 379 | * weird ways... |
| 380 | */ |
mtklein | 36352bf | 2015-03-25 18:17:31 -0700 | [diff] [blame] | 381 | int requestRowsPreserved() const override { return BlockDim; } |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 382 | |
| 383 | private: |
| 384 | static const int kPixelsPerBlock = BlockDim * BlockDim; |
| 385 | |
| 386 | // The longest possible run of pixels that this blitter will receive. |
| 387 | // This is initialized in the constructor to 0x7FFE, which is one less |
| 388 | // than the largest positive 16-bit integer. We make sure that it's one |
| 389 | // less for debugging purposes. We also don't make this variable static |
| 390 | // in order to make sure that we can construct a valid pointer to it. |
| 391 | const int16_t kLongestRun; |
| 392 | |
| 393 | // Usually used in conjunction with kLongestRun. This is initialized to |
| 394 | // zero. |
| 395 | const SkAlpha kZeroAlpha; |
| 396 | |
| 397 | // This is the information that we buffer whenever we're asked to blit |
| 398 | // a row with this blitter. |
| 399 | struct BufferedRun { |
| 400 | const SkAlpha* fAlphas; |
| 401 | const int16_t* fRuns; |
| 402 | int fX, fY; |
| 403 | } fBufferedRuns[BlockDim]; |
| 404 | |
| 405 | // The next row [0, BlockDim) that we need to blit. |
| 406 | int fNextRun; |
| 407 | |
| 408 | // The width and height of the image that we're blitting |
| 409 | const int fWidth; |
| 410 | const int fHeight; |
| 411 | |
| 412 | // The compressed buffer that we're blitting into. It is assumed that the buffer |
| 413 | // is large enough to store a compressed image of size fWidth*fHeight. |
| 414 | void* const fBuffer; |
| 415 | |
| 416 | // Various utility functions |
| 417 | int blocksWide() const { return fWidth / BlockDim; } |
| 418 | int blocksTall() const { return fHeight / BlockDim; } |
| 419 | int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; } |
| 420 | |
| 421 | // Returns the block index for the block containing pixel (x, y). Block |
| 422 | // indices start at zero and proceed in raster order. |
| 423 | int getBlockOffset(int x, int y) const { |
| 424 | SkASSERT(x < fWidth); |
| 425 | SkASSERT(y < fHeight); |
| 426 | const int blockCol = x / BlockDim; |
| 427 | const int blockRow = y / BlockDim; |
| 428 | return blockRow * this->blocksWide() + blockCol; |
| 429 | } |
| 430 | |
| 431 | // Returns a pointer to the block containing pixel (x, y) |
| 432 | uint8_t *getBlock(int x, int y) const { |
| 433 | uint8_t* ptr = reinterpret_cast<uint8_t*>(fBuffer); |
| 434 | return ptr + EncodedBlockSize*this->getBlockOffset(x, y); |
| 435 | } |
| 436 | |
| 437 | // Updates the block whose columns are stored in block. curAlphai is expected |
| 438 | // to store the alpha values that will be placed within each of the columns in |
| 439 | // the range [col, col+colsLeft). |
| 440 | typedef uint32_t Column[BlockDim/4]; |
| 441 | typedef uint32_t Block[BlockDim][BlockDim/4]; |
| 442 | inline void updateBlockColumns(Block block, const int col, |
| 443 | const int colsLeft, const Column curAlphai) { |
bsalomon | 49f085d | 2014-09-05 13:34:00 -0700 | [diff] [blame] | 444 | SkASSERT(block); |
krajcevski | 10a350c | 2014-07-29 07:24:58 -0700 | [diff] [blame] | 445 | SkASSERT(col + colsLeft <= BlockDim); |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 446 | |
| 447 | for (int i = col; i < (col + colsLeft); ++i) { |
| 448 | memcpy(block[i], curAlphai, sizeof(Column)); |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | // The following function writes the buffered runs to compressed blocks. |
| 453 | // If fNextRun < BlockDim, then we fill the runs that we haven't buffered with |
| 454 | // the constant zero buffer. |
| 455 | void flushRuns() { |
| 456 | // If we don't have any runs, then just return. |
| 457 | if (0 == fNextRun) { |
| 458 | return; |
| 459 | } |
| 460 | |
| 461 | #ifndef NDEBUG |
| 462 | // Make sure that if we have any runs, they all match |
| 463 | for (int i = 1; i < fNextRun; ++i) { |
| 464 | SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1); |
| 465 | SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX); |
| 466 | } |
| 467 | #endif |
| 468 | |
| 469 | // If we don't have as many runs as we have rows, fill in the remaining |
| 470 | // runs with constant zeros. |
| 471 | for (int i = fNextRun; i < BlockDim; ++i) { |
| 472 | fBufferedRuns[i].fY = fBufferedRuns[0].fY + i; |
| 473 | fBufferedRuns[i].fX = fBufferedRuns[0].fX; |
| 474 | fBufferedRuns[i].fAlphas = &kZeroAlpha; |
| 475 | fBufferedRuns[i].fRuns = &kLongestRun; |
| 476 | } |
| 477 | |
| 478 | // Make sure that our assumptions aren't violated. |
| 479 | SkASSERT(fNextRun > 0 && fNextRun <= BlockDim); |
| 480 | SkASSERT((fBufferedRuns[0].fY % BlockDim) == 0); |
| 481 | |
| 482 | // The following logic walks BlockDim rows at a time and outputs compressed |
| 483 | // blocks to the buffer passed into the constructor. |
| 484 | // We do the following: |
| 485 | // |
| 486 | // c1 c2 c3 c4 |
| 487 | // ----------------------------------------------------------------------- |
| 488 | // ... | | | | | ----> fBufferedRuns[0] |
| 489 | // ----------------------------------------------------------------------- |
| 490 | // ... | | | | | ----> fBufferedRuns[1] |
| 491 | // ----------------------------------------------------------------------- |
| 492 | // ... | | | | | ----> fBufferedRuns[2] |
| 493 | // ----------------------------------------------------------------------- |
| 494 | // ... | | | | | ----> fBufferedRuns[3] |
| 495 | // ----------------------------------------------------------------------- |
halcanary | 9d524f2 | 2016-03-29 09:03:52 -0700 | [diff] [blame] | 496 | // |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 497 | // curX -- the macro X value that we've gotten to. |
| 498 | // c[BlockDim] -- the buffers that represent the columns of the current block |
| 499 | // that we're operating on |
| 500 | // curAlphaColumn -- buffer containing the column of alpha values from fBufferedRuns. |
| 501 | // nextX -- for each run, the next point at which we need to update curAlphaColumn |
| 502 | // after the value of curX. |
| 503 | // finalX -- the minimum of all the nextX values. |
| 504 | // |
| 505 | // curX advances to finalX outputting any blocks that it passes along |
| 506 | // the way. Since finalX will not change when we reach the end of a |
| 507 | // run, the termination criteria will be whenever curX == finalX at the |
| 508 | // end of a loop. |
| 509 | |
| 510 | // Setup: |
| 511 | Block block; |
| 512 | sk_bzero(block, sizeof(block)); |
| 513 | |
| 514 | Column curAlphaColumn; |
| 515 | sk_bzero(curAlphaColumn, sizeof(curAlphaColumn)); |
| 516 | |
| 517 | SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn); |
| 518 | |
| 519 | int nextX[BlockDim]; |
| 520 | for (int i = 0; i < BlockDim; ++i) { |
| 521 | nextX[i] = 0x7FFFFF; |
| 522 | } |
| 523 | |
| 524 | uint8_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY); |
| 525 | |
| 526 | // Populate the first set of runs and figure out how far we need to |
| 527 | // advance on the first step |
| 528 | int curX = 0; |
| 529 | int finalX = 0xFFFFF; |
| 530 | for (int i = 0; i < BlockDim; ++i) { |
| 531 | nextX[i] = *(fBufferedRuns[i].fRuns); |
| 532 | curAlpha[i] = *(fBufferedRuns[i].fAlphas); |
| 533 | |
| 534 | finalX = SkMin32(nextX[i], finalX); |
| 535 | } |
| 536 | |
| 537 | // Make sure that we have a valid right-bound X value |
| 538 | SkASSERT(finalX < 0xFFFFF); |
| 539 | |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame] | 540 | // If the finalX is the longest run, then just blit until we have |
| 541 | // width... |
| 542 | if (kLongestRun == finalX) { |
| 543 | finalX = fWidth; |
| 544 | } |
| 545 | |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 546 | // Run the blitter... |
| 547 | while (curX != finalX) { |
| 548 | SkASSERT(finalX >= curX); |
| 549 | |
| 550 | // Do we need to populate the rest of the block? |
| 551 | if ((finalX - (BlockDim*(curX / BlockDim))) >= BlockDim) { |
| 552 | const int col = curX % BlockDim; |
| 553 | const int colsLeft = BlockDim - col; |
| 554 | SkASSERT(curX + colsLeft <= finalX); |
| 555 | |
| 556 | this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); |
| 557 | |
| 558 | // Write this block |
krajcevski | 45a0bf5 | 2014-08-07 11:10:22 -0700 | [diff] [blame] | 559 | CompressorType::CompressA8Vertical(outPtr, reinterpret_cast<uint8_t*>(block)); |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 560 | outPtr += EncodedBlockSize; |
| 561 | curX += colsLeft; |
| 562 | } |
| 563 | |
| 564 | // If we can advance even further, then just keep memsetting the block |
| 565 | if ((finalX - curX) >= BlockDim) { |
| 566 | SkASSERT((curX % BlockDim) == 0); |
| 567 | |
| 568 | const int col = 0; |
| 569 | const int colsLeft = BlockDim; |
| 570 | |
| 571 | this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); |
| 572 | |
| 573 | // While we can keep advancing, just keep writing the block. |
| 574 | uint8_t lastBlock[EncodedBlockSize]; |
krajcevski | 45a0bf5 | 2014-08-07 11:10:22 -0700 | [diff] [blame] | 575 | CompressorType::CompressA8Vertical(lastBlock, reinterpret_cast<uint8_t*>(block)); |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 576 | while((finalX - curX) >= BlockDim) { |
| 577 | memcpy(outPtr, lastBlock, EncodedBlockSize); |
| 578 | outPtr += EncodedBlockSize; |
| 579 | curX += BlockDim; |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | // If we haven't advanced within the block then do so. |
| 584 | if (curX < finalX) { |
| 585 | const int col = curX % BlockDim; |
| 586 | const int colsLeft = finalX - curX; |
| 587 | |
| 588 | this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); |
| 589 | curX += colsLeft; |
| 590 | } |
| 591 | |
| 592 | SkASSERT(curX == finalX); |
| 593 | |
| 594 | // Figure out what the next advancement is... |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame] | 595 | if (finalX < fWidth) { |
| 596 | for (int i = 0; i < BlockDim; ++i) { |
| 597 | if (nextX[i] == finalX) { |
| 598 | const int16_t run = *(fBufferedRuns[i].fRuns); |
| 599 | fBufferedRuns[i].fRuns += run; |
| 600 | fBufferedRuns[i].fAlphas += run; |
| 601 | curAlpha[i] = *(fBufferedRuns[i].fAlphas); |
| 602 | nextX[i] += *(fBufferedRuns[i].fRuns); |
| 603 | } |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 604 | } |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 605 | |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame] | 606 | finalX = 0xFFFFF; |
| 607 | for (int i = 0; i < BlockDim; ++i) { |
| 608 | finalX = SkMin32(nextX[i], finalX); |
| 609 | } |
| 610 | } else { |
| 611 | curX = finalX; |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 612 | } |
| 613 | } |
| 614 | |
| 615 | // If we didn't land on a block boundary, output the block... |
krajcevski | ab4c711 | 2014-08-08 08:12:29 -0700 | [diff] [blame] | 616 | if ((curX % BlockDim) > 0) { |
| 617 | #ifdef SK_DEBUG |
| 618 | for (int i = 0; i < BlockDim; ++i) { |
| 619 | SkASSERT(nextX[i] == kLongestRun || nextX[i] == curX); |
| 620 | } |
| 621 | #endif |
| 622 | const int col = curX % BlockDim; |
| 623 | const int colsLeft = BlockDim - col; |
| 624 | |
| 625 | memset(curAlphaColumn, 0, sizeof(curAlphaColumn)); |
| 626 | this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); |
| 627 | |
krajcevski | 45a0bf5 | 2014-08-07 11:10:22 -0700 | [diff] [blame] | 628 | CompressorType::CompressA8Vertical(outPtr, reinterpret_cast<uint8_t*>(block)); |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 629 | } |
| 630 | |
| 631 | fNextRun = 0; |
| 632 | } |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame] | 633 | |
| 634 | #if PEDANTIC_BLIT_RECT |
| 635 | void updateBlockRow(int x, int y, int width, int height, |
| 636 | int blockRow, int startBlockX, int endBlockX) { |
| 637 | if (0 == width || 0 == height || startBlockX == endBlockX) { |
| 638 | return; |
| 639 | } |
| 640 | |
| 641 | uint8_t* dst = this->getBlock(startBlockX, BlockDim * (y / BlockDim)); |
| 642 | |
| 643 | // One horizontal strip to update |
| 644 | uint8_t mask[BlockDim*BlockDim]; |
| 645 | memset(mask, 0, sizeof(mask)); |
| 646 | |
| 647 | // Update the left cap |
| 648 | int blockX = startBlockX; |
| 649 | const int yoff = y - blockRow; |
| 650 | for (int j = 0; j < height; ++j) { |
| 651 | const int xoff = x - blockX; |
| 652 | memset(mask + (j + yoff)*BlockDim + xoff, 0xFF, BlockDim - xoff); |
| 653 | } |
| 654 | CompressorType::UpdateBlock(dst, mask, BlockDim, mask); |
| 655 | dst += EncodedBlockSize; |
| 656 | blockX += BlockDim; |
| 657 | |
| 658 | // Update the middle |
| 659 | if (blockX < endBlockX) { |
| 660 | for (int j = 0; j < height; ++j) { |
| 661 | memset(mask + (j + yoff)*BlockDim, 0xFF, BlockDim); |
| 662 | } |
| 663 | while (blockX < endBlockX) { |
| 664 | CompressorType::UpdateBlock(dst, mask, BlockDim, mask); |
| 665 | dst += EncodedBlockSize; |
| 666 | blockX += BlockDim; |
| 667 | } |
| 668 | } |
| 669 | |
| 670 | SkASSERT(endBlockX == blockX); |
| 671 | |
| 672 | // Update the right cap (if we need to) |
| 673 | if (x + width > endBlockX) { |
| 674 | memset(mask, 0, sizeof(mask)); |
| 675 | for (int j = 0; j < height; ++j) { |
| 676 | const int xoff = (x+width-blockX); |
| 677 | memset(mask + (j+yoff)*BlockDim, 0xFF, xoff); |
| 678 | } |
| 679 | CompressorType::UpdateBlock(dst, mask, BlockDim, mask); |
| 680 | } |
| 681 | } |
| 682 | |
| 683 | void updateBlockCol(int x, int y, int width, int height, |
| 684 | int blockCol, int startBlockY, int endBlockY) { |
| 685 | if (0 == width || 0 == height || startBlockY == endBlockY) { |
| 686 | return; |
| 687 | } |
| 688 | |
| 689 | // One vertical strip to update |
| 690 | uint8_t mask[BlockDim*BlockDim]; |
| 691 | memset(mask, 0, sizeof(mask)); |
| 692 | const int maskX0 = x - blockCol; |
| 693 | const int maskWidth = maskX0 + width; |
| 694 | SkASSERT(maskWidth <= BlockDim); |
| 695 | |
| 696 | // Update the top cap |
| 697 | int blockY = startBlockY; |
| 698 | for (int j = (y - blockY); j < BlockDim; ++j) { |
| 699 | memset(mask + maskX0 + j*BlockDim, 0xFF, maskWidth); |
| 700 | } |
| 701 | CompressorType::UpdateBlock(this->getBlock(blockCol, blockY), mask, BlockDim, mask); |
| 702 | blockY += BlockDim; |
| 703 | |
| 704 | // Update middle |
| 705 | if (blockY < endBlockY) { |
| 706 | for (int j = 0; j < BlockDim; ++j) { |
| 707 | memset(mask + maskX0 + j*BlockDim, 0xFF, maskWidth); |
| 708 | } |
| 709 | while (blockY < endBlockY) { |
| 710 | CompressorType::UpdateBlock(this->getBlock(blockCol, blockY), |
| 711 | mask, BlockDim, mask); |
| 712 | blockY += BlockDim; |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | SkASSERT(endBlockY == blockY); |
| 717 | |
| 718 | // Update bottom |
| 719 | if (y + height > endBlockY) { |
| 720 | for (int j = y+height; j < endBlockY + BlockDim; ++j) { |
| 721 | memset(mask + (j-endBlockY)*BlockDim, 0, BlockDim); |
| 722 | } |
| 723 | CompressorType::UpdateBlock(this->getBlock(blockCol, blockY), |
| 724 | mask, BlockDim, mask); |
| 725 | } |
| 726 | } |
| 727 | #endif // PEDANTIC_BLIT_RECT |
| 728 | |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 729 | }; |
| 730 | |
| 731 | } // namespace SkTextureCompressor |
| 732 | |
| 733 | #endif // SkTextureCompressor_Blitter_DEFINED |