blob: 3af7dbede5f9108f7b8cb2d9703cf3a74ddd5021 [file] [log] [blame]
#include "CrashHandler.h"
#include "DMJsonWriter.h"
#include "DMSrcSink.h"
#include "OverwriteLine.h"
#include "ProcStats.h"
#include "SkBBHFactory.h"
#include "SkChecksum.h"
#include "SkCommonFlags.h"
#include "SkForceLinking.h"
#include "SkGraphics.h"
#include "SkInstCnt.h"
#include "SkMD5.h"
#include "SkOSFile.h"
#include "SkTDynamicHash.h"
#include "SkTaskGroup.h"
#include "Test.h"
#include "Timer.h"
DEFINE_string(images, "resources", "Images to decode.");
DEFINE_string(src, "tests gm skp image subset", "Source types to test.");
DEFINE_bool(nameByHash, false,
"If true, write to FLAGS_writePath[0]/<hash>.png instead of "
"to FLAGS_writePath[0]/<config>/<sourceType>/<name>.png");
DEFINE_bool2(pathOpsExtended, x, false, "Run extended pathOps tests.");
DEFINE_string(matrix, "1 0 0 0 1 0 0 0 1",
"Matrix to apply when using 'matrix' in config.");
DEFINE_bool(gpu_threading, false, "Allow GPU work to run on multiple threads?");
DEFINE_string(blacklist, "",
"Space-separated config/src/name triples to blacklist. '_' matches anything. E.g. \n"
"'--blacklist gpu skp _' will blacklist all SKPs drawn into the gpu config.\n"
"'--blacklist gpu skp _ 8888 gm aarects' will also blacklist the aarects GM on 8888.");
DEFINE_string2(readPath, r, "", "If set check for equality with golden results in this directory.");
__SK_FORCE_IMAGE_DECODER_LINKING;
using namespace DM;
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
SK_DECLARE_STATIC_MUTEX(gFailuresMutex);
static SkTArray<SkString> gFailures;
static void fail(ImplicitString err) {
SkAutoMutexAcquire lock(gFailuresMutex);
SkDebugf("\n\nFAILURE: %s\n\n", err.c_str());
gFailures.push_back(err);
}
static int32_t gPending = 0; // Atomic.
static void done(double ms,
ImplicitString config, ImplicitString src, ImplicitString name,
ImplicitString log) {
if (!log.isEmpty()) {
log.prepend("\n");
}
auto pending = sk_atomic_dec(&gPending)-1;
SkDebugf("%s(%4dMB %5d) %s\t%s %s %s%s", FLAGS_verbose ? "\n" : kSkOverwriteLine
, sk_tools::getMaxResidentSetSizeMB()
, pending
, HumanizeMs(ms).c_str()
, config.c_str()
, src.c_str()
, name.c_str()
, log.c_str());
// We write our dm.json file every once in a while in case we crash.
// Notice this also handles the final dm.json when pending == 0.
if (pending % 500 == 0) {
JsonWriter::DumpJson();
}
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
struct Gold : public SkString {
Gold(ImplicitString sink, ImplicitString src, ImplicitString name, ImplicitString md5)
: SkString("") {
this->append(sink);
this->append(src);
this->append(name);
this->append(md5);
while (this->size() % 4) {
this->append("!"); // Pad out if needed so we can pass this to Murmur3.
}
}
static const Gold& GetKey(const Gold& g) { return g; }
static uint32_t Hash(const Gold& g) {
return SkChecksum::Murmur3((const uint32_t*)g.c_str(), g.size());
}
};
static SkTDynamicHash<Gold, Gold> gGold;
static void add_gold(JsonWriter::BitmapResult r) {
gGold.add(new Gold(r.config, r.sourceType, r.name, r.md5)); // We'll let these leak. Lazybones.
}
static void gather_gold() {
if (!FLAGS_readPath.isEmpty()) {
SkString path(FLAGS_readPath[0]);
path.append("/dm.json");
if (!JsonWriter::ReadJson(path.c_str(), add_gold)) {
fail(SkStringPrintf("Couldn't read %s for golden results.", path.c_str()));
}
}
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
template <typename T>
struct Tagged : public SkAutoTDelete<T> { const char* tag; };
static const bool kMemcpyOK = true;
static SkTArray<Tagged<Src>, kMemcpyOK> gSrcs;
static SkTArray<Tagged<Sink>, kMemcpyOK> gSinks;
static void push_src(const char* tag, Src* s) {
SkAutoTDelete<Src> src(s);
if (FLAGS_src.contains(tag) &&
!SkCommandLineFlags::ShouldSkip(FLAGS_match, src->name().c_str())) {
Tagged<Src>& s = gSrcs.push_back();
s.reset(src.detach());
s.tag = tag;
}
}
static void gather_srcs() {
for (const skiagm::GMRegistry* r = skiagm::GMRegistry::Head(); r; r = r->next()) {
push_src("gm", new GMSrc(r->factory()));
}
for (int i = 0; i < FLAGS_skps.count(); i++) {
const char* path = FLAGS_skps[i];
if (sk_isdir(path)) {
SkOSFile::Iter it(path, "skp");
for (SkString file; it.next(&file); ) {
push_src("skp", new SKPSrc(SkOSPath::Join(path, file.c_str())));
}
} else {
push_src("skp", new SKPSrc(path));
}
}
static const char* const exts[] = {
"bmp", "gif", "jpg", "jpeg", "png", "webp", "ktx", "astc", "wbmp", "ico",
"BMP", "GIF", "JPG", "JPEG", "PNG", "WEBP", "KTX", "ASTC", "WBMP", "ICO",
};
for (int i = 0; i < FLAGS_images.count(); i++) {
const char* flag = FLAGS_images[i];
if (sk_isdir(flag)) {
for (size_t j = 0; j < SK_ARRAY_COUNT(exts); j++) {
SkOSFile::Iter it(flag, exts[j]);
for (SkString file; it.next(&file); ) {
SkString path = SkOSPath::Join(flag, file.c_str());
push_src("image", new ImageSrc(path)); // Decode entire image.
push_src("subset", new ImageSrc(path, 2)); // Decode into 2 x 2 subsets
}
}
} else if (sk_exists(flag)) {
// assume that FLAGS_images[i] is a valid image if it is a file.
push_src("image", new ImageSrc(flag)); // Decode entire image.
push_src("subset", new ImageSrc(flag, 2)); // Decode into 2 x 2 subsets
}
}
}
static GrGLStandard get_gpu_api() {
if (FLAGS_gpuAPI.contains("gl")) { return kGL_GrGLStandard; }
if (FLAGS_gpuAPI.contains("gles")) { return kGLES_GrGLStandard; }
return kNone_GrGLStandard;
}
static void push_sink(const char* tag, Sink* s) {
SkAutoTDelete<Sink> sink(s);
if (!FLAGS_config.contains(tag)) {
return;
}
// Try a noop Src as a canary. If it fails, skip this sink.
struct : public Src {
Error draw(SkCanvas*) const SK_OVERRIDE { return ""; }
SkISize size() const SK_OVERRIDE { return SkISize::Make(16, 16); }
Name name() const SK_OVERRIDE { return "noop"; }
} noop;
SkBitmap bitmap;
SkDynamicMemoryWStream stream;
SkString log;
Error err = sink->draw(noop, &bitmap, &stream, &log);
if (!err.isEmpty()) {
SkDebugf("Skipping %s: %s\n", tag, err.c_str());
return;
}
Tagged<Sink>& ts = gSinks.push_back();
ts.reset(sink.detach());
ts.tag = tag;
}
static bool gpu_supported() {
#if SK_SUPPORT_GPU
return FLAGS_gpu;
#else
return false;
#endif
}
static Sink* create_sink(const char* tag) {
#define SINK(t, sink, ...) if (0 == strcmp(t, tag)) { return new sink(__VA_ARGS__); }
if (gpu_supported()) {
typedef GrContextFactory Gr;
const GrGLStandard api = get_gpu_api();
SINK("gpunull", GPUSink, Gr::kNull_GLContextType, api, 0, false, FLAGS_gpu_threading);
SINK("gpudebug", GPUSink, Gr::kDebug_GLContextType, api, 0, false, FLAGS_gpu_threading);
SINK("gpu", GPUSink, Gr::kNative_GLContextType, api, 0, false, FLAGS_gpu_threading);
SINK("gpudft", GPUSink, Gr::kNative_GLContextType, api, 0, true, FLAGS_gpu_threading);
SINK("msaa4", GPUSink, Gr::kNative_GLContextType, api, 4, false, FLAGS_gpu_threading);
SINK("msaa16", GPUSink, Gr::kNative_GLContextType, api, 16, false, FLAGS_gpu_threading);
SINK("nvprmsaa4", GPUSink, Gr::kNVPR_GLContextType, api, 4, false, FLAGS_gpu_threading);
SINK("nvprmsaa16", GPUSink, Gr::kNVPR_GLContextType, api, 16, false, FLAGS_gpu_threading);
#if SK_ANGLE
SINK("angle", GPUSink, Gr::kANGLE_GLContextType, api, 0, false, FLAGS_gpu_threading);
#endif
#if SK_MESA
SINK("mesa", GPUSink, Gr::kMESA_GLContextType, api, 0, false, FLAGS_gpu_threading);
#endif
}
if (FLAGS_cpu) {
SINK("565", RasterSink, kRGB_565_SkColorType);
SINK("8888", RasterSink, kN32_SkColorType);
SINK("pdf", PDFSink);
SINK("skp", SKPSink);
SINK("svg", SVGSink);
SINK("null", NullSink);
}
#undef SINK
return NULL;
}
static Sink* create_via(const char* tag, Sink* wrapped) {
#define VIA(t, via, ...) if (0 == strcmp(t, tag)) { return new via(__VA_ARGS__); }
VIA("pipe", ViaPipe, wrapped);
VIA("serialize", ViaSerialization, wrapped);
VIA("tiles", ViaTiles, 256, 256, NULL, wrapped);
VIA("tiles_rt", ViaTiles, 256, 256, new SkRTreeFactory, wrapped);
if (FLAGS_matrix.count() == 9) {
SkMatrix m;
for (int i = 0; i < 9; i++) {
m[i] = (SkScalar)atof(FLAGS_matrix[i]);
}
VIA("matrix", ViaMatrix, m, wrapped);
}
#undef VIA
return NULL;
}
static void gather_sinks() {
for (int i = 0; i < FLAGS_config.count(); i++) {
const char* config = FLAGS_config[i];
SkTArray<SkString> parts;
SkStrSplit(config, "-", &parts);
Sink* sink = NULL;
for (int i = parts.count(); i-- > 0;) {
const char* part = parts[i].c_str();
Sink* next = (sink == NULL) ? create_sink(part) : create_via(part, sink);
if (next == NULL) {
SkDebugf("Skipping %s: Don't understand '%s'.\n", config, part);
delete sink;
sink = NULL;
break;
}
sink = next;
}
if (sink) {
push_sink(config, sink);
}
}
}
static bool match(const char* needle, const char* haystack) {
return 0 == strcmp("_", needle) || NULL != strstr(haystack, needle);
}
static ImplicitString is_blacklisted(const char* sink, const char* src, const char* name) {
for (int i = 0; i < FLAGS_blacklist.count() - 2; i += 3) {
if (match(FLAGS_blacklist[i+0], sink) &&
match(FLAGS_blacklist[i+1], src) &&
match(FLAGS_blacklist[i+2], name)) {
return SkStringPrintf("%s %s %s",
FLAGS_blacklist[i+0], FLAGS_blacklist[i+1], FLAGS_blacklist[i+2]);
}
}
return "";
}
// The finest-grained unit of work we can run: draw a single Src into a single Sink,
// report any errors, and perhaps write out the output: a .png of the bitmap, or a raw stream.
struct Task {
Task(const Tagged<Src>& src, const Tagged<Sink>& sink) : src(src), sink(sink) {}
const Tagged<Src>& src;
const Tagged<Sink>& sink;
static void Run(Task* task) {
SkString name = task->src->name();
SkString whyBlacklisted = is_blacklisted(task->sink.tag, task->src.tag, name.c_str());
SkString log;
WallTimer timer;
timer.start();
if (!FLAGS_dryRun && whyBlacklisted.isEmpty()) {
SkBitmap bitmap;
SkDynamicMemoryWStream stream;
Error err = task->sink->draw(*task->src, &bitmap, &stream, &log);
if (!err.isEmpty()) {
fail(SkStringPrintf("%s %s %s: %s",
task->sink.tag,
task->src.tag,
name.c_str(),
err.c_str()));
}
SkAutoTDelete<SkStreamAsset> data(stream.detachAsStream());
SkString md5;
if (!FLAGS_writePath.isEmpty() || !FLAGS_readPath.isEmpty()) {
SkMD5 hash;
if (data->getLength()) {
hash.writeStream(data, data->getLength());
data->rewind();
} else {
hash.write(bitmap.getPixels(), bitmap.getSize());
}
SkMD5::Digest digest;
hash.finish(digest);
for (int i = 0; i < 16; i++) {
md5.appendf("%02x", digest.data[i]);
}
}
if (!FLAGS_readPath.isEmpty() &&
!gGold.find(Gold(task->sink.tag, task->src.tag, name, md5))) {
fail(SkStringPrintf("%s not found for %s %s %s in %s",
md5.c_str(),
task->sink.tag,
task->src.tag,
name.c_str(),
FLAGS_readPath[0]));
}
if (!FLAGS_writePath.isEmpty()) {
const char* ext = task->sink->fileExtension();
if (data->getLength()) {
WriteToDisk(*task, md5, ext, data, data->getLength(), NULL);
SkASSERT(bitmap.drawsNothing());
} else if (!bitmap.drawsNothing()) {
WriteToDisk(*task, md5, ext, NULL, 0, &bitmap);
}
}
}
timer.end();
if (!whyBlacklisted.isEmpty()) {
name.appendf(" (--blacklist, %s)", whyBlacklisted.c_str());
}
done(timer.fWall, task->sink.tag, task->src.tag, name, log);
}
static void WriteToDisk(const Task& task,
SkString md5,
const char* ext,
SkStream* data, size_t len,
const SkBitmap* bitmap) {
JsonWriter::BitmapResult result;
result.name = task.src->name();
result.config = task.sink.tag;
result.sourceType = task.src.tag;
result.ext = ext;
result.md5 = md5;
JsonWriter::AddBitmapResult(result);
const char* dir = FLAGS_writePath[0];
if (0 == strcmp(dir, "@")) { // Needed for iOS.
dir = FLAGS_resourcePath[0];
}
sk_mkdir(dir);
SkString path;
if (FLAGS_nameByHash) {
path = SkOSPath::Join(dir, result.md5.c_str());
path.append(".");
path.append(ext);
if (sk_exists(path.c_str())) {
return; // Content-addressed. If it exists already, we're done.
}
} else {
path = SkOSPath::Join(dir, task.sink.tag);
sk_mkdir(path.c_str());
path = SkOSPath::Join(path.c_str(), task.src.tag);
sk_mkdir(path.c_str());
path = SkOSPath::Join(path.c_str(), task.src->name().c_str());
path.append(".");
path.append(ext);
}
SkFILEWStream file(path.c_str());
if (!file.isValid()) {
fail(SkStringPrintf("Can't open %s for writing.\n", path.c_str()));
return;
}
if (bitmap) {
// We can't encode A8 bitmaps as PNGs. Convert them to 8888 first.
SkBitmap converted;
if (bitmap->info().colorType() == kAlpha_8_SkColorType) {
if (!bitmap->copyTo(&converted, kN32_SkColorType)) {
fail("Can't convert A8 to 8888.\n");
return;
}
bitmap = &converted;
}
if (!SkImageEncoder::EncodeStream(&file, *bitmap, SkImageEncoder::kPNG_Type, 100)) {
fail(SkStringPrintf("Can't encode PNG to %s.\n", path.c_str()));
return;
}
} else {
if (!file.writeStream(data, len)) {
fail(SkStringPrintf("Can't write to %s.\n", path.c_str()));
return;
}
}
}
};
// Run all tasks in the same enclave serially on the same thread.
// They can't possibly run concurrently with each other.
static void run_enclave(SkTArray<Task>* tasks) {
for (int i = 0; i < tasks->count(); i++) {
Task::Run(tasks->begin() + i);
}
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// Unit tests don't fit so well into the Src/Sink model, so we give them special treatment.
static SkTDArray<skiatest::Test> gThreadedTests, gGPUTests;
static void gather_tests() {
if (!FLAGS_src.contains("tests")) {
return;
}
for (const skiatest::TestRegistry* r = skiatest::TestRegistry::Head(); r;
r = r->next()) {
// Despite its name, factory() is returning a reference to
// link-time static const POD data.
const skiatest::Test& test = r->factory();
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, test.name)) {
continue;
}
if (test.needsGpu && gpu_supported()) {
(FLAGS_gpu_threading ? gThreadedTests : gGPUTests).push(test);
} else if (!test.needsGpu && FLAGS_cpu) {
gThreadedTests.push(test);
}
}
}
static void run_test(skiatest::Test* test) {
struct : public skiatest::Reporter {
void reportFailed(const skiatest::Failure& failure) SK_OVERRIDE {
fail(failure.toString());
JsonWriter::AddTestFailure(failure);
}
bool allowExtendedTest() const SK_OVERRIDE {
return FLAGS_pathOpsExtended;
}
bool verbose() const SK_OVERRIDE { return FLAGS_veryVerbose; }
} reporter;
WallTimer timer;
timer.start();
if (!FLAGS_dryRun) {
GrContextFactory factory;
test->proc(&reporter, &factory);
}
timer.end();
done(timer.fWall, "unit", "test", test->name, "");
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// If we're isolating all GPU-bound work to one thread (the default), this function runs all that.
static void run_enclave_and_gpu_tests(SkTArray<Task>* tasks) {
run_enclave(tasks);
for (int i = 0; i < gGPUTests.count(); i++) {
run_test(&gGPUTests[i]);
}
}
int dm_main();
int dm_main() {
SetupCrashHandler();
SkAutoGraphics ag;
SkTaskGroup::Enabler enabled(FLAGS_threads);
if (FLAGS_leaks) {
SkInstCountPrintLeaksOnExit();
}
gather_gold();
gather_srcs();
gather_sinks();
gather_tests();
gPending = gSrcs.count() * gSinks.count() + gThreadedTests.count() + gGPUTests.count();
SkDebugf("%d srcs * %d sinks + %d tests == %d tasks\n",
gSrcs.count(), gSinks.count(), gThreadedTests.count() + gGPUTests.count(), gPending);
// We try to exploit as much parallelism as is safe. Most Src/Sink pairs run on any thread,
// but Sinks that identify as part of a particular enclave run serially on a single thread.
// CPU tests run on any thread. GPU tests depend on --gpu_threading.
SkTArray<Task> enclaves[kNumEnclaves];
for (int j = 0; j < gSinks.count(); j++) {
SkTArray<Task>& tasks = enclaves[gSinks[j]->enclave()];
for (int i = 0; i < gSrcs.count(); i++) {
tasks.push_back(Task(gSrcs[i], gSinks[j]));
}
}
SkTaskGroup tg;
tg.batch(run_test, gThreadedTests.begin(), gThreadedTests.count());
for (int i = 0; i < kNumEnclaves; i++) {
switch(i) {
case kAnyThread_Enclave:
tg.batch(Task::Run, enclaves[i].begin(), enclaves[i].count());
break;
case kGPU_Enclave:
tg.add(run_enclave_and_gpu_tests, &enclaves[i]);
break;
default:
tg.add(run_enclave, &enclaves[i]);
break;
}
}
tg.wait();
// At this point we're back in single-threaded land.
SkDebugf("\n");
if (gFailures.count() > 0) {
SkDebugf("Failures:\n");
for (int i = 0; i < gFailures.count(); i++) {
SkDebugf("\t%s\n", gFailures[i].c_str());
}
SkDebugf("%d failures\n", gFailures.count());
return 1;
}
if (gPending > 0) {
SkDebugf("Hrm, we didn't seem to run everything we intended to! Please file a bug.\n");
return 1;
}
return 0;
}
#if !defined(SK_BUILD_FOR_IOS) && !defined(SK_BUILD_FOR_NACL)
int main(int argc, char** argv) {
SkCommandLineFlags::Parse(argc, argv);
return dm_main();
}
#endif