| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkShadowUtils.h" |
| #include "SkCanvas.h" |
| #include "SkColorFilter.h" |
| #include "SkPath.h" |
| #include "SkRandom.h" |
| #include "SkResourceCache.h" |
| #include "SkShadowTessellator.h" |
| #include "SkString.h" |
| #include "SkTLazy.h" |
| #include "SkVertices.h" |
| #if SK_SUPPORT_GPU |
| #include "GrShape.h" |
| #include "effects/GrBlurredEdgeFragmentProcessor.h" |
| #endif |
| #include "../../src/effects/shadows/SkAmbientShadowMaskFilter.h" |
| #include "../../src/effects/shadows/SkSpotShadowMaskFilter.h" |
| |
| /** |
| * Gaussian color filter -- produces a Gaussian ramp based on the color's B value, |
| * then blends with the color's G value. |
| * Final result is black with alpha of Gaussian(B)*G. |
| * The assumption is that the original color's alpha is 1. |
| */ |
| class SK_API SkGaussianColorFilter : public SkColorFilter { |
| public: |
| static sk_sp<SkColorFilter> Make() { |
| return sk_sp<SkColorFilter>(new SkGaussianColorFilter); |
| } |
| |
| void filterSpan(const SkPMColor src[], int count, SkPMColor dst[]) const override; |
| |
| #if SK_SUPPORT_GPU |
| sk_sp<GrFragmentProcessor> asFragmentProcessor(GrContext*, SkColorSpace*) const override; |
| #endif |
| |
| SK_TO_STRING_OVERRIDE() |
| SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkGaussianColorFilter) |
| |
| protected: |
| void flatten(SkWriteBuffer&) const override {} |
| |
| private: |
| SkGaussianColorFilter() : INHERITED() {} |
| |
| typedef SkColorFilter INHERITED; |
| }; |
| |
| void SkGaussianColorFilter::filterSpan(const SkPMColor src[], int count, SkPMColor dst[]) const { |
| for (int i = 0; i < count; ++i) { |
| SkPMColor c = src[i]; |
| |
| SkScalar factor = SK_Scalar1 - SkGetPackedB32(c) / 255.f; |
| factor = SkScalarExp(-factor * factor * 4) - 0.018f; |
| |
| SkScalar a = factor * SkGetPackedG32(c); |
| dst[i] = SkPackARGB32(a, a, a, a); |
| } |
| } |
| |
| sk_sp<SkFlattenable> SkGaussianColorFilter::CreateProc(SkReadBuffer&) { |
| return Make(); |
| } |
| |
| #ifndef SK_IGNORE_TO_STRING |
| void SkGaussianColorFilter::toString(SkString* str) const { |
| str->append("SkGaussianColorFilter "); |
| } |
| #endif |
| |
| #if SK_SUPPORT_GPU |
| |
| sk_sp<GrFragmentProcessor> SkGaussianColorFilter::asFragmentProcessor(GrContext*, |
| SkColorSpace*) const { |
| return GrBlurredEdgeFP::Make(GrBlurredEdgeFP::kGaussian_Mode); |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| namespace { |
| |
| uint64_t resource_cache_shared_id() { |
| return 0x2020776f64616873llu; // 'shadow ' |
| } |
| |
| /** Factory for an ambient shadow mesh with particular shadow properties. */ |
| struct AmbientVerticesFactory { |
| SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed. |
| SkScalar fAmbientAlpha; |
| bool fTransparent; |
| |
| bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const { |
| if (fOccluderHeight != that.fOccluderHeight || fAmbientAlpha != that.fAmbientAlpha || |
| fTransparent != that.fTransparent) { |
| return false; |
| } |
| translate->set(0, 0); |
| return true; |
| } |
| |
| sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm) const { |
| SkScalar z = fOccluderHeight; |
| return SkShadowTessellator::MakeAmbient(path, ctm, |
| [z](SkScalar, SkScalar) { return z; }, |
| fAmbientAlpha, fTransparent); |
| } |
| }; |
| |
| /** Factory for an spot shadow mesh with particular shadow properties. */ |
| struct SpotVerticesFactory { |
| enum class OccluderType { |
| // The umbra cannot be dropped out because the occluder is not opaque. |
| kTransparent, |
| // The umbra can be dropped where it is occluded. |
| kOpaque, |
| // It is known that the entire umbra is occluded. |
| kOpaqueCoversUmbra |
| }; |
| |
| SkVector fOffset; |
| SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed. |
| SkPoint3 fDevLightPos; |
| SkScalar fLightRadius; |
| SkScalar fSpotAlpha; |
| OccluderType fOccluderType; |
| |
| bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const { |
| if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ || |
| fLightRadius != that.fLightRadius || fSpotAlpha != that.fSpotAlpha || |
| fOccluderType != that.fOccluderType) { |
| return false; |
| } |
| switch (fOccluderType) { |
| case OccluderType::kTransparent: |
| case OccluderType::kOpaqueCoversUmbra: |
| // 'this' and 'that' will either both have no umbra removed or both have all the |
| // umbra removed. |
| *translate = that.fOffset - fOffset; |
| return true; |
| case OccluderType::kOpaque: |
| // In this case we partially remove the umbra differently for 'this' and 'that' |
| // if the offsets don't match. |
| if (fOffset == that.fOffset) { |
| translate->set(0, 0); |
| return true; |
| } |
| return false; |
| } |
| SkFAIL("Uninitialized occluder type?"); |
| return false; |
| } |
| |
| sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm) const { |
| bool transparent = OccluderType::kTransparent == fOccluderType; |
| SkScalar z = fOccluderHeight; |
| return SkShadowTessellator::MakeSpot(path, ctm, |
| [z](SkScalar, SkScalar) -> SkScalar { return z; }, |
| fDevLightPos, fLightRadius, |
| fSpotAlpha, transparent); |
| } |
| }; |
| |
| /** |
| * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache |
| * records are immutable this is not itself a Rec. When we need to update it we return this on |
| * the FindVisitor and let the cache destory the Rec. We'll update the tessellations and then add |
| * a new Rec with an adjusted size for any deletions/additions. |
| */ |
| class CachedTessellations : public SkRefCnt { |
| public: |
| size_t size() const { return fAmbientSet.size() + fSpotSet.size(); } |
| |
| sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix, |
| SkVector* translate) const { |
| return fAmbientSet.find(ambient, matrix, translate); |
| } |
| |
| sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient, |
| const SkMatrix& matrix) { |
| return fAmbientSet.add(devPath, ambient, matrix); |
| } |
| |
| sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix, |
| SkVector* translate) const { |
| return fSpotSet.find(spot, matrix, translate); |
| } |
| |
| sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot, |
| const SkMatrix& matrix) { |
| return fSpotSet.add(devPath, spot, matrix); |
| } |
| |
| private: |
| template <typename FACTORY, int MAX_ENTRIES> |
| class Set { |
| public: |
| size_t size() const { return fSize; } |
| |
| sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix, |
| SkVector* translate) const { |
| for (int i = 0; i < MAX_ENTRIES; ++i) { |
| if (fEntries[i].fFactory.isCompatible(factory, translate)) { |
| const SkMatrix& m = fEntries[i].fMatrix; |
| if (matrix.hasPerspective() || m.hasPerspective()) { |
| if (matrix != fEntries[i].fMatrix) { |
| continue; |
| } |
| } else if (matrix.getScaleX() != m.getScaleX() || |
| matrix.getSkewX() != m.getSkewX() || |
| matrix.getScaleY() != m.getScaleY() || |
| matrix.getSkewY() != m.getSkewY()) { |
| continue; |
| } |
| *translate += SkVector{matrix.getTranslateX() - m.getTranslateX(), |
| matrix.getTranslateY() - m.getTranslateY()}; |
| return fEntries[i].fVertices; |
| } |
| } |
| return nullptr; |
| } |
| |
| sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix) { |
| sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix); |
| if (!vertices) { |
| return nullptr; |
| } |
| int i; |
| if (fCount < MAX_ENTRIES) { |
| i = fCount++; |
| } else { |
| i = gRandom.nextULessThan(MAX_ENTRIES); |
| fSize -= fEntries[i].fVertices->approximateSize(); |
| } |
| fEntries[i].fFactory = factory; |
| fEntries[i].fVertices = vertices; |
| fEntries[i].fMatrix = matrix; |
| fSize += vertices->approximateSize(); |
| return vertices; |
| } |
| |
| private: |
| struct Entry { |
| FACTORY fFactory; |
| sk_sp<SkVertices> fVertices; |
| SkMatrix fMatrix; |
| }; |
| Entry fEntries[MAX_ENTRIES]; |
| int fCount = 0; |
| size_t fSize = 0; |
| }; |
| |
| Set<AmbientVerticesFactory, 4> fAmbientSet; |
| Set<SpotVerticesFactory, 4> fSpotSet; |
| |
| static SkRandom gRandom; |
| }; |
| |
| SkRandom CachedTessellations::gRandom; |
| |
| /** |
| * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular |
| * path. The key represents the path's geometry and not any shadow params. |
| */ |
| class CachedTessellationsRec : public SkResourceCache::Rec { |
| public: |
| CachedTessellationsRec(const SkResourceCache::Key& key, |
| sk_sp<CachedTessellations> tessellations) |
| : fTessellations(std::move(tessellations)) { |
| fKey.reset(new uint8_t[key.size()]); |
| memcpy(fKey.get(), &key, key.size()); |
| } |
| |
| const Key& getKey() const override { |
| return *reinterpret_cast<SkResourceCache::Key*>(fKey.get()); |
| } |
| |
| size_t bytesUsed() const override { return fTessellations->size(); } |
| |
| const char* getCategory() const override { return "tessellated shadow masks"; } |
| |
| sk_sp<CachedTessellations> refTessellations() const { return fTessellations; } |
| |
| template <typename FACTORY> |
| sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix, |
| SkVector* translate) const { |
| return fTessellations->find(factory, matrix, translate); |
| } |
| |
| private: |
| std::unique_ptr<uint8_t[]> fKey; |
| sk_sp<CachedTessellations> fTessellations; |
| }; |
| |
| /** |
| * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the |
| * vertices and a translation vector. If the CachedTessellations does not contain a suitable |
| * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations |
| * to the caller. The caller will update it and reinsert it back into the cache. |
| */ |
| template <typename FACTORY> |
| struct FindContext { |
| FindContext(const SkMatrix* viewMatrix, const FACTORY* factory) |
| : fViewMatrix(viewMatrix), fFactory(factory) {} |
| const SkMatrix* const fViewMatrix; |
| // If this is valid after Find is called then we found the vertices and they should be drawn |
| // with fTranslate applied. |
| sk_sp<SkVertices> fVertices; |
| SkVector fTranslate = {0, 0}; |
| |
| // If this is valid after Find then the caller should add the vertices to the tessellation set |
| // and create a new CachedTessellationsRec and insert it into SkResourceCache. |
| sk_sp<CachedTessellations> fTessellationsOnFailure; |
| |
| const FACTORY* fFactory; |
| }; |
| |
| /** |
| * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of |
| * the FindContext are used to determine if the vertices are reusable. If so the vertices and |
| * necessary translation vector are set on the FindContext. |
| */ |
| template <typename FACTORY> |
| bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) { |
| FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx; |
| const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec); |
| findContext->fVertices = |
| rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate); |
| if (findContext->fVertices) { |
| return true; |
| } |
| // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been |
| // manipulated we will add a new Rec. |
| findContext->fTessellationsOnFailure = rec.refTessellations(); |
| return false; |
| } |
| |
| class ShadowedPath { |
| public: |
| ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix) |
| : fPath(path) |
| , fViewMatrix(viewMatrix) |
| #if SK_SUPPORT_GPU |
| , fShapeForKey(*path, GrStyle::SimpleFill()) |
| #endif |
| {} |
| |
| const SkPath& path() const { return *fPath; } |
| const SkMatrix& viewMatrix() const { return *fViewMatrix; } |
| #if SK_SUPPORT_GPU |
| /** Negative means the vertices should not be cached for this path. */ |
| int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); } |
| void writeKey(void* key) const { |
| fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key)); |
| } |
| bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); } |
| #else |
| int keyBytes() const { return -1; } |
| void writeKey(void* key) const { SkFAIL("Should never be called"); } |
| bool isRRect(SkRRect* rrect) { return false; } |
| #endif |
| |
| private: |
| const SkPath* fPath; |
| const SkMatrix* fViewMatrix; |
| #if SK_SUPPORT_GPU |
| GrShape fShapeForKey; |
| #endif |
| }; |
| |
| // This creates a domain of keys in SkResourceCache used by this file. |
| static void* kNamespace; |
| |
| /** |
| * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless |
| * they are first found in SkResourceCache. |
| */ |
| template <typename FACTORY> |
| void draw_shadow(const FACTORY& factory, SkCanvas* canvas, ShadowedPath& path, SkColor color, |
| SkResourceCache* cache) { |
| FindContext<FACTORY> context(&path.viewMatrix(), &factory); |
| |
| SkResourceCache::Key* key = nullptr; |
| SkAutoSTArray<32 * 4, uint8_t> keyStorage; |
| int keyDataBytes = path.keyBytes(); |
| if (keyDataBytes >= 0) { |
| keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key)); |
| key = new (keyStorage.begin()) SkResourceCache::Key(); |
| path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key))); |
| key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes); |
| if (cache) { |
| cache->find(*key, FindVisitor<FACTORY>, &context); |
| } else { |
| SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context); |
| } |
| } |
| |
| sk_sp<SkVertices> vertices; |
| const SkVector* translate; |
| static constexpr SkVector kZeroTranslate = {0, 0}; |
| bool foundInCache = SkToBool(context.fVertices); |
| if (foundInCache) { |
| vertices = std::move(context.fVertices); |
| translate = &context.fTranslate; |
| } else { |
| // TODO: handle transforming the path as part of the tessellator |
| if (key) { |
| // Update or initialize a tessellation set and add it to the cache. |
| sk_sp<CachedTessellations> tessellations; |
| if (context.fTessellationsOnFailure) { |
| tessellations = std::move(context.fTessellationsOnFailure); |
| } else { |
| tessellations.reset(new CachedTessellations()); |
| } |
| vertices = tessellations->add(path.path(), factory, path.viewMatrix()); |
| if (!vertices) { |
| return; |
| } |
| auto rec = new CachedTessellationsRec(*key, std::move(tessellations)); |
| if (cache) { |
| cache->add(rec); |
| } else { |
| SkResourceCache::Add(rec); |
| } |
| } else { |
| vertices = factory.makeVertices(path.path(), path.viewMatrix()); |
| if (!vertices) { |
| return; |
| } |
| } |
| translate = &kZeroTranslate; |
| } |
| |
| SkPaint paint; |
| // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of |
| // that against our 'color' param. |
| paint.setColorFilter(SkColorFilter::MakeComposeFilter( |
| SkColorFilter::MakeModeFilter(color, SkBlendMode::kModulate), |
| SkGaussianColorFilter::Make())); |
| if (translate->fX || translate->fY) { |
| canvas->save(); |
| canvas->translate(translate->fX, translate->fY); |
| } |
| canvas->drawVertices(vertices, SkBlendMode::kModulate, paint); |
| if (translate->fX || translate->fY) { |
| canvas->restore(); |
| } |
| } |
| } |
| |
| // Draw an offset spot shadow and outlining ambient shadow for the given path. |
| void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, SkScalar occluderHeight, |
| const SkPoint3& devLightPos, SkScalar lightRadius, |
| SkScalar ambientAlpha, SkScalar spotAlpha, SkColor color, |
| uint32_t flags, SkResourceCache* cache) { |
| SkAutoCanvasRestore acr(canvas, true); |
| SkMatrix viewMatrix = canvas->getTotalMatrix(); |
| |
| // try circular fast path |
| SkRect rect; |
| if (viewMatrix.isSimilarity() && |
| path.isOval(&rect) && rect.width() == rect.height()) { |
| SkPaint newPaint; |
| newPaint.setColor(color); |
| if (ambientAlpha > 0) { |
| newPaint.setMaskFilter(SkAmbientShadowMaskFilter::Make(occluderHeight, ambientAlpha, |
| flags)); |
| canvas->drawPath(path, newPaint); |
| } |
| if (spotAlpha > 0) { |
| newPaint.setMaskFilter(SkSpotShadowMaskFilter::Make(occluderHeight, devLightPos, |
| lightRadius, spotAlpha, flags)); |
| canvas->drawPath(path, newPaint); |
| } |
| return; |
| } |
| |
| canvas->resetMatrix(); |
| |
| ShadowedPath shadowedPath(&path, &viewMatrix); |
| |
| bool transparent = SkToBool(flags & SkShadowFlags::kTransparentOccluder_ShadowFlag); |
| |
| if (ambientAlpha > 0) { |
| ambientAlpha = SkTMin(ambientAlpha, 1.f); |
| AmbientVerticesFactory factory; |
| factory.fOccluderHeight = occluderHeight; |
| factory.fAmbientAlpha = ambientAlpha; |
| factory.fTransparent = transparent; |
| |
| draw_shadow(factory, canvas, shadowedPath, color, cache); |
| } |
| |
| if (spotAlpha > 0) { |
| spotAlpha = SkTMin(spotAlpha, 1.f); |
| SpotVerticesFactory factory; |
| float zRatio = SkTPin(occluderHeight / (devLightPos.fZ - occluderHeight), 0.0f, 0.95f); |
| SkScalar radius = lightRadius * zRatio; |
| |
| // Compute the scale and translation for the spot shadow. |
| SkScalar scale = devLightPos.fZ / (devLightPos.fZ - occluderHeight); |
| |
| SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY()); |
| viewMatrix.mapPoints(¢er, 1); |
| factory.fOffset = SkVector::Make(zRatio * (center.fX - devLightPos.fX), |
| zRatio * (center.fY - devLightPos.fY)); |
| factory.fOccluderHeight = occluderHeight; |
| factory.fDevLightPos = devLightPos; |
| factory.fLightRadius = lightRadius; |
| factory.fSpotAlpha = spotAlpha; |
| |
| SkRRect rrect; |
| if (transparent) { |
| factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent; |
| } else { |
| factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaque; |
| if (shadowedPath.isRRect(&rrect)) { |
| SkRRect devRRect; |
| if (rrect.transform(viewMatrix, &devRRect)) { |
| SkScalar s = 1.f - scale; |
| SkScalar w = devRRect.width(); |
| SkScalar h = devRRect.height(); |
| SkScalar hw = w / 2.f; |
| SkScalar hh = h / 2.f; |
| SkScalar umbraInsetX = s * hw + radius; |
| SkScalar umbraInsetY = s * hh + radius; |
| // The umbra is inset by radius along the diagonal, so adjust for that. |
| SkScalar d = 1.f / SkScalarSqrt(hw * hw + hh * hh); |
| umbraInsetX *= hw * d; |
| umbraInsetY *= hh * d; |
| if (umbraInsetX > hw || umbraInsetY > hh) { |
| // There is no umbra to occlude. |
| factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent; |
| } else if (fabsf(factory.fOffset.fX) < umbraInsetX && |
| fabsf(factory.fOffset.fY) < umbraInsetY) { |
| factory.fOccluderType = |
| SpotVerticesFactory::OccluderType::kOpaqueCoversUmbra; |
| } else if (factory.fOffset.fX > w - umbraInsetX || |
| factory.fOffset.fY > h - umbraInsetY) { |
| // There umbra is fully exposed, there is nothing to omit. |
| factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent; |
| } |
| } |
| } |
| } |
| if (factory.fOccluderType == SpotVerticesFactory::OccluderType::kOpaque) { |
| factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent; |
| } |
| draw_shadow(factory, canvas, shadowedPath, color, cache); |
| } |
| } |
| |
| // Draw an offset spot shadow and outlining ambient shadow for the given path, |
| // without caching and using a function based on local position to compute the height. |
| void SkShadowUtils::DrawUncachedShadow(SkCanvas* canvas, const SkPath& path, |
| std::function<SkScalar(SkScalar, SkScalar)> heightFunc, |
| const SkPoint3& lightPos, SkScalar lightRadius, |
| SkScalar ambientAlpha, SkScalar spotAlpha, SkColor color, |
| uint32_t flags) { |
| SkAutoCanvasRestore acr(canvas, true); |
| SkMatrix viewMatrix = canvas->getTotalMatrix(); |
| canvas->resetMatrix(); |
| |
| bool transparent = SkToBool(flags & SkShadowFlags::kTransparentOccluder_ShadowFlag); |
| |
| if (ambientAlpha > 0) { |
| ambientAlpha = SkTMin(ambientAlpha, 1.f); |
| sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix, |
| heightFunc, ambientAlpha, |
| transparent); |
| SkPaint paint; |
| // Run the vertex color through a GaussianColorFilter and then modulate the grayscale |
| // result of that against our 'color' param. |
| paint.setColorFilter(SkColorFilter::MakeComposeFilter( |
| SkColorFilter::MakeModeFilter(color, SkBlendMode::kModulate), |
| SkGaussianColorFilter::Make())); |
| canvas->drawVertices(vertices, SkBlendMode::kModulate, paint); |
| } |
| |
| if (spotAlpha > 0) { |
| spotAlpha = SkTMin(spotAlpha, 1.f); |
| sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix, heightFunc, |
| lightPos, lightRadius, |
| spotAlpha, transparent); |
| SkPaint paint; |
| // Run the vertex color through a GaussianColorFilter and then modulate the grayscale |
| // result of that against our 'color' param. |
| paint.setColorFilter(SkColorFilter::MakeComposeFilter( |
| SkColorFilter::MakeModeFilter(color, SkBlendMode::kModulate), |
| SkGaussianColorFilter::Make())); |
| canvas->drawVertices(vertices, SkBlendMode::kModulate, paint); |
| } |
| } |