blob: cb42d392e4da314cdc4c155bd1663e888da1e4d5 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SampleCode.h"
#include "SkAnimTimer.h"
#include "SkBitmapProcShader.h"
#include "SkCanvas.h"
#include "SkDrawable.h"
#include "SkLightingShader.h"
#include "SkLights.h"
#include "SkNormalSource.h"
#include "SkRandom.h"
#include "SkRSXform.h"
#include "SkView.h"
#include "sk_tool_utils.h"
class DrawLitAtlasDrawable : public SkDrawable {
public:
DrawLitAtlasDrawable(const SkRect& r)
: fBounds(r)
, fUseColors(false)
, fLightDir(SkVector3::Make(1.0f, 0.0f, 0.0f)) {
fAtlas = MakeAtlas();
SkRandom rand;
for (int i = 0; i < kNumAsteroids; ++i) {
fAsteroids[i].initAsteroid(&rand, fBounds, &fDiffTex[i], &fNormTex[i]);
}
fShip.initShip(fBounds, &fDiffTex[kNumAsteroids], &fNormTex[kNumAsteroids]);
this->updateLights();
}
void toggleUseColors() {
fUseColors = !fUseColors;
}
void rotateLight() {
SkScalar c;
SkScalar s = SkScalarSinCos(SK_ScalarPI/6.0f, &c);
SkScalar newX = c * fLightDir.fX - s * fLightDir.fY;
SkScalar newY = s * fLightDir.fX + c * fLightDir.fY;
fLightDir.set(newX, newY, 0.0f);
this->updateLights();
}
void left() {
SkScalar newRot = SkScalarMod(fShip.rot() + (2*SK_ScalarPI - SK_ScalarPI/32.0f),
2 * SK_ScalarPI);
fShip.setRot(newRot);
}
void right() {
SkScalar newRot = SkScalarMod(fShip.rot() + SK_ScalarPI/32.0f, 2 * SK_ScalarPI);
fShip.setRot(newRot);
}
void thrust() {
SkScalar c;
SkScalar s = SkScalarSinCos(fShip.rot(), &c);
SkVector newVel = fShip.velocity();
newVel.fX += s;
newVel.fY += -c;
if (newVel.lengthSqd() > kMaxShipSpeed*kMaxShipSpeed) {
newVel.setLength(SkIntToScalar(kMaxShipSpeed));
}
fShip.setVelocity(newVel);
}
protected:
void onDraw(SkCanvas* canvas) override {
SkRSXform xforms[kNumAsteroids+kNumShips];
SkColor colors[kNumAsteroids+kNumShips];
for (int i = 0; i < kNumAsteroids; ++i) {
fAsteroids[i].advance(fBounds);
xforms[i] = fAsteroids[i].asRSXform();
if (fUseColors) {
colors[i] = SkColorSetARGB(0xFF, 0xFF, 0xFF, 0xFF);
}
}
fShip.advance(fBounds);
xforms[kNumAsteroids] = fShip.asRSXform();
if (fUseColors) {
colors[kNumAsteroids] = SkColorSetARGB(0xFF, 0xFF, 0xFF, 0xFF);
}
#ifdef SK_DEBUG
canvas->drawBitmap(fAtlas, 0, 0); // just to see the atlas
this->drawLightDir(canvas, fBounds.centerX(), fBounds.centerY());
#endif
#if 0
// TODO: revitalize when drawLitAtlas API lands
SkPaint paint;
paint.setFilterQuality(kLow_SkFilterQuality);
const SkRect cull = this->getBounds();
const SkColor* colorsPtr = fUseColors ? colors : NULL;
canvas->drawLitAtlas(fAtlas, xforms, fDiffTex, fNormTex, colorsPtr, kNumAsteroids+1,
SkXfermode::kModulate_Mode, &cull, &paint, fLights);
#else
SkMatrix diffMat, normalMat;
for (int i = 0; i < kNumAsteroids+1; ++i) {
colors[i] = colors[i] & 0xFF000000; // to silence compilers
SkPaint paint;
SkRect r = fDiffTex[i];
r.offsetTo(0, 0);
diffMat.setRectToRect(fDiffTex[i], r, SkMatrix::kFill_ScaleToFit);
normalMat.setRectToRect(fNormTex[i], r, SkMatrix::kFill_ScaleToFit);
SkMatrix m;
m.setRSXform(xforms[i]);
sk_sp<SkShader> normalMap = SkMakeBitmapShader(fAtlas, SkShader::kClamp_TileMode,
SkShader::kClamp_TileMode, &normalMat, nullptr);
sk_sp<SkNormalSource> normalSource = SkNormalSource::MakeFromNormalMap(
std::move(normalMap), m);
sk_sp<SkShader> diffuseShader = SkShader::MakeBitmapShader(fAtlas,
SkShader::kClamp_TileMode, SkShader::kClamp_TileMode, &diffMat);
paint.setShader(SkLightingShader::Make(std::move(diffuseShader),
std::move(normalSource), fLights));
canvas->save();
canvas->setMatrix(m);
canvas->drawRect(r, paint);
canvas->restore();
}
#endif
#ifdef SK_DEBUG
{
SkPaint paint;
paint.setColor(SK_ColorRED);
for (int i = 0; i < kNumAsteroids; ++i) {
canvas->drawCircle(fAsteroids[i].pos().x(), fAsteroids[i].pos().y(), 2, paint);
}
canvas->drawCircle(fShip.pos().x(), fShip.pos().y(), 2, paint);
paint.setStyle(SkPaint::kStroke_Style);
canvas->drawRect(this->getBounds(), paint);
}
#endif
}
SkRect onGetBounds() override {
return fBounds;
}
private:
enum ObjType {
kBigAsteroid_ObjType = 0,
kMedAsteroid_ObjType,
kSmAsteroid_ObjType,
kShip_ObjType,
kLast_ObjType = kShip_ObjType
};
static const int kObjTypeCount = kLast_ObjType + 1;
void updateLights() {
SkLights::Builder builder;
builder.add(SkLights::Light(SkColor3f::Make(1.0f, 1.0f, 1.0f), fLightDir));
builder.add(SkLights::Light(SkColor3f::Make(0.2f, 0.2f, 0.2f)));
fLights = builder.finish();
}
#ifdef SK_DEBUG
// Draw a vector to the light
void drawLightDir(SkCanvas* canvas, SkScalar centerX, SkScalar centerY) {
static const int kBgLen = 30;
static const int kSmLen = 5;
// TODO: change the lighting coordinate system to be right handed
SkPoint p1 = SkPoint::Make(centerX + kBgLen * fLightDir.fX,
centerY - kBgLen * fLightDir.fY);
SkPoint p2 = SkPoint::Make(centerX + (kBgLen-kSmLen) * fLightDir.fX,
centerY - (kBgLen-kSmLen) * fLightDir.fY);
SkPaint p;
canvas->drawLine(centerX, centerY, p1.fX, p1.fY, p);
canvas->drawLine(p1.fX, p1.fY,
p2.fX - kSmLen * fLightDir.fY, p2.fY - kSmLen * fLightDir.fX, p);
canvas->drawLine(p1.fX, p1.fY,
p2.fX + kSmLen * fLightDir.fY, p2.fY + kSmLen * fLightDir.fX, p);
}
#endif
// Create the mixed diffuse & normal atlas
//
// big color circle | big normal hemi
// ------------------------------------
// med color circle | med normal pyra
// ------------------------------------
// sm color circle | sm normal hemi
// ------------------------------------
// big ship | big tetra normal
static SkBitmap MakeAtlas() {
SkBitmap atlas;
atlas.allocN32Pixels(kAtlasWidth, kAtlasHeight);
for (int y = 0; y < kAtlasHeight; ++y) {
int x = 0;
for ( ; x < kBigSize+kPad; ++x) {
*atlas.getAddr32(x, y) = SK_ColorTRANSPARENT;
}
for ( ; x < kAtlasWidth; ++x) {
*atlas.getAddr32(x, y) = SkPackARGB32(0xFF, 0x88, 0x88, 0xFF);
}
}
// big asteroid
{
SkPoint bigCenter = SkPoint::Make(kDiffXOff + kBigSize/2.0f, kBigYOff + kBigSize/2.0f);
for (int y = kBigYOff; y < kBigYOff+kBigSize; ++y) {
for (int x = kDiffXOff; x < kDiffXOff+kBigSize; ++x) {
SkScalar distSq = (x - bigCenter.fX) * (x - bigCenter.fX) +
(y - bigCenter.fY) * (y - bigCenter.fY);
if (distSq > kBigSize*kBigSize/4.0f) {
*atlas.getAddr32(x, y) = SkPreMultiplyARGB(0, 0, 0, 0);
} else {
*atlas.getAddr32(x, y) = SkPackARGB32(0xFF, 0xFF, 0, 0);
}
}
}
sk_tool_utils::create_hemi_normal_map(&atlas,
SkIRect::MakeXYWH(kNormXOff, kBigYOff,
kBigSize, kBigSize));
}
// medium asteroid
{
for (int y = kMedYOff; y < kMedYOff+kMedSize; ++y) {
for (int x = kDiffXOff; x < kDiffXOff+kMedSize; ++x) {
*atlas.getAddr32(x, y) = SkPackARGB32(0xFF, 0, 0xFF, 0);
}
}
sk_tool_utils::create_frustum_normal_map(&atlas,
SkIRect::MakeXYWH(kNormXOff, kMedYOff,
kMedSize, kMedSize));
}
// small asteroid
{
SkPoint smCenter = SkPoint::Make(kDiffXOff + kSmSize/2.0f, kSmYOff + kSmSize/2.0f);
for (int y = kSmYOff; y < kSmYOff+kSmSize; ++y) {
for (int x = kDiffXOff; x < kDiffXOff+kSmSize; ++x) {
SkScalar distSq = (x - smCenter.fX) * (x - smCenter.fX) +
(y - smCenter.fY) * (y - smCenter.fY);
if (distSq > kSmSize*kSmSize/4.0f) {
*atlas.getAddr32(x, y) = SkPreMultiplyARGB(0, 0, 0, 0);
} else {
*atlas.getAddr32(x, y) = SkPackARGB32(0xFF, 0, 0, 0xFF);
}
}
}
sk_tool_utils::create_hemi_normal_map(&atlas,
SkIRect::MakeXYWH(kNormXOff, kSmYOff,
kSmSize, kSmSize));
}
// ship
{
SkScalar shipMidLine = kDiffXOff + kMedSize/2.0f;
for (int y = kShipYOff; y < kShipYOff+kMedSize; ++y) {
SkScalar scaledY = (y - kShipYOff)/(float)kMedSize; // 0..1
for (int x = kDiffXOff; x < kDiffXOff+kMedSize; ++x) {
SkScalar scaledX;
if (x < shipMidLine) {
scaledX = 1.0f - (x - kDiffXOff)/(kMedSize/2.0f); // 0..1
} else {
scaledX = (x - shipMidLine)/(kMedSize/2.0f); // 0..1
}
if (scaledX < scaledY) {
*atlas.getAddr32(x, y) = SkPackARGB32(0xFF, 0, 0xFF, 0xFF);
} else {
*atlas.getAddr32(x, y) = SkPackARGB32(0, 0, 0, 0);
}
}
}
sk_tool_utils::create_tetra_normal_map(&atlas,
SkIRect::MakeXYWH(kNormXOff, kShipYOff,
kMedSize, kMedSize));
}
return atlas;
}
class ObjectRecord {
public:
void initAsteroid(SkRandom *rand, const SkRect& bounds,
SkRect* diffTex, SkRect* normTex) {
static const SkScalar gMaxSpeeds[3] = { 1, 2, 5 }; // smaller asteroids can go faster
static const SkScalar gYOffs[3] = { kBigYOff, kMedYOff, kSmYOff };
static const SkScalar gSizes[3] = { kBigSize, kMedSize, kSmSize };
static unsigned int asteroidType = 0;
fObjType = static_cast<ObjType>(asteroidType++ % 3);
fPosition.set(bounds.fLeft + rand->nextUScalar1() * bounds.width(),
bounds.fTop + rand->nextUScalar1() * bounds.height());
fVelocity.fX = rand->nextSScalar1();
fVelocity.fY = sqrt(1.0f - fVelocity.fX * fVelocity.fX);
SkASSERT(SkScalarNearlyEqual(fVelocity.length(), 1.0f));
fVelocity *= gMaxSpeeds[fObjType];
fRot = 0;
fDeltaRot = rand->nextSScalar1() / 32;
diffTex->setXYWH(SkIntToScalar(kDiffXOff), gYOffs[fObjType],
gSizes[fObjType], gSizes[fObjType]);
normTex->setXYWH(SkIntToScalar(kNormXOff), gYOffs[fObjType],
gSizes[fObjType], gSizes[fObjType]);
}
void initShip(const SkRect& bounds, SkRect* diffTex, SkRect* normTex) {
fObjType = kShip_ObjType;
fPosition.set(bounds.centerX(), bounds.centerY());
fVelocity = SkVector::Make(0.0f, 0.0f);
fRot = 0.0f;
fDeltaRot = 0.0f;
diffTex->setXYWH(SkIntToScalar(kDiffXOff), SkIntToScalar(kShipYOff),
SkIntToScalar(kMedSize), SkIntToScalar(kMedSize));
normTex->setXYWH(SkIntToScalar(kNormXOff), SkIntToScalar(kShipYOff),
SkIntToScalar(kMedSize), SkIntToScalar(kMedSize));
}
void advance(const SkRect& bounds) {
fPosition += fVelocity;
if (fPosition.fX > bounds.right()) {
SkASSERT(fVelocity.fX > 0);
fVelocity.fX = -fVelocity.fX;
} else if (fPosition.fX < bounds.left()) {
SkASSERT(fVelocity.fX < 0);
fVelocity.fX = -fVelocity.fX;
}
if (fPosition.fY > bounds.bottom()) {
if (fVelocity.fY > 0) {
fVelocity.fY = -fVelocity.fY;
}
} else if (fPosition.fY < bounds.top()) {
if (fVelocity.fY < 0) {
fVelocity.fY = -fVelocity.fY;
}
}
fRot += fDeltaRot;
fRot = SkScalarMod(fRot, 2 * SK_ScalarPI);
}
const SkPoint& pos() const { return fPosition; }
SkScalar rot() const { return fRot; }
void setRot(SkScalar rot) { fRot = rot; }
const SkPoint& velocity() const { return fVelocity; }
void setVelocity(const SkPoint& velocity) { fVelocity = velocity; }
SkRSXform asRSXform() const {
static const SkScalar gHalfSizes[kObjTypeCount] = {
SkScalarHalf(kBigSize),
SkScalarHalf(kMedSize),
SkScalarHalf(kSmSize),
SkScalarHalf(kMedSize),
};
return SkRSXform::MakeFromRadians(1.0f, fRot, fPosition.x(), fPosition.y(),
gHalfSizes[fObjType],
gHalfSizes[fObjType]);
}
private:
ObjType fObjType;
SkPoint fPosition;
SkVector fVelocity;
SkScalar fRot; // In radians.
SkScalar fDeltaRot; // In radiands. Not used by ship.
};
private:
static const int kNumLights = 2;
static const int kNumAsteroids = 6;
static const int kNumShips = 1;
static const int kBigSize = 128;
static const int kMedSize = 64;
static const int kSmSize = 32;
static const int kPad = 1;
static const int kAtlasWidth = kBigSize + kBigSize + 2 * kPad; // 2 pads in the middle
static const int kAtlasHeight = kBigSize + kMedSize + kSmSize + kMedSize + 3 * kPad;
static const int kDiffXOff = 0;
static const int kNormXOff = kBigSize + 2 * kPad;
static const int kBigYOff = 0;
static const int kMedYOff = kBigSize + kPad;
static const int kSmYOff = kMedYOff + kMedSize + kPad;
static const int kShipYOff = kSmYOff + kSmSize + kPad;
static const int kMaxShipSpeed = 5;
SkBitmap fAtlas;
ObjectRecord fAsteroids[kNumAsteroids];
ObjectRecord fShip;
SkRect fDiffTex[kNumAsteroids+kNumShips];
SkRect fNormTex[kNumAsteroids+kNumShips];
SkRect fBounds;
bool fUseColors;
SkVector3 fLightDir;
sk_sp<SkLights> fLights;
typedef SkDrawable INHERITED;
};
class DrawLitAtlasView : public SampleView {
public:
DrawLitAtlasView()
: fDrawable(new DrawLitAtlasDrawable(SkRect::MakeWH(640, 480))) {
}
protected:
bool onQuery(SkEvent* evt) override {
if (SampleCode::TitleQ(*evt)) {
SampleCode::TitleR(evt, "DrawLitAtlas");
return true;
}
SkUnichar uni;
if (SampleCode::CharQ(*evt, &uni)) {
switch (uni) {
case 'C':
fDrawable->toggleUseColors();
this->inval(NULL);
return true;
case 'j':
fDrawable->left();
this->inval(NULL);
return true;
case 'k':
fDrawable->thrust();
this->inval(NULL);
return true;
case 'l':
fDrawable->right();
this->inval(NULL);
return true;
case 'o':
fDrawable->rotateLight();
this->inval(NULL);
return true;
default:
break;
}
}
return this->INHERITED::onQuery(evt);
}
void onDrawContent(SkCanvas* canvas) override {
canvas->drawDrawable(fDrawable);
this->inval(NULL);
}
#if 0
// TODO: switch over to use this for our animation
bool onAnimate(const SkAnimTimer& timer) override {
SkScalar angle = SkDoubleToScalar(fmod(timer.secs() * 360 / 24, 360));
fAnimatingDrawable->setSweep(angle);
return true;
}
#endif
private:
SkAutoTUnref<DrawLitAtlasDrawable> fDrawable;
typedef SampleView INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
static SkView* MyFactory() { return new DrawLitAtlasView; }
static SkViewRegister reg(MyFactory);