blob: 7aaf55401537028d0b8bd020db604c42f1511705 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Description:
* This test defines a series of elementatry test steps that perform
* a single or a small group of canvas API calls. Each test step is
* used in several test cases that verify that different types of SkCanvas
* flavors and derivatives pass it and yield consistent behavior. The
* test cases analyse results that are queryable through the API. They do
* not look at rendering results.
*
* Adding test stepss:
* The general pattern for creating a new test step is to write a test
* function of the form:
*
* static void MyTestStepFunction(SkCanvas* canvas,
* const TestData& d,
* skiatest::Reporter* reporter,
* CanvasTestStep* testStep)
* {
* canvas->someCanvasAPImethod();
* (...)
* REPORTER_ASSERT_MESSAGE(reporter, (...), \
* testStep->assertMessage());
* }
*
* The definition of the test step function should be followed by an
* invocation of the TEST_STEP macro, which generates a class and
* instance for the test step:
*
* TEST_STEP(MyTestStep, MyTestStepFunction)
*
* There are also short hand macros for defining simple test steps
* in a single line of code. A simple test step is a one that is made
* of a single canvas API call.
*
* SIMPLE_TEST_STEP(MytestStep, someCanvasAPIMethod());
*
* There is another macro called SIMPLE_TEST_STEP_WITH_ASSERT that
* works the same way as SIMPLE_TEST_STEP, and additionally verifies
* that the invoked method returns a non-zero value.
*/
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkClipStack.h"
#include "SkDocument.h"
#include "SkMatrix.h"
#include "SkNWayCanvas.h"
#include "SkPaint.h"
#include "SkPaintFilterCanvas.h"
#include "SkPath.h"
#include "SkPicture.h"
#include "SkPictureRecord.h"
#include "SkPictureRecorder.h"
#include "SkRasterClip.h"
#include "SkRect.h"
#include "SkRegion.h"
#include "SkShader.h"
#include "SkStream.h"
#include "SkSurface.h"
#include "SkTemplates.h"
#include "SkTDArray.h"
#include "SkVertices.h"
#include "Test.h"
DEF_TEST(canvas_clipbounds, reporter) {
SkCanvas canvas(10, 10);
SkIRect irect, irect2;
SkRect rect, rect2;
irect = canvas.getDeviceClipBounds();
REPORTER_ASSERT(reporter, irect == SkIRect::MakeWH(10, 10));
REPORTER_ASSERT(reporter, canvas.getDeviceClipBounds(&irect2));
REPORTER_ASSERT(reporter, irect == irect2);
// local bounds are always too big today -- can we trim them?
rect = canvas.getLocalClipBounds();
REPORTER_ASSERT(reporter, rect.contains(SkRect::MakeWH(10, 10)));
REPORTER_ASSERT(reporter, canvas.getLocalClipBounds(&rect2));
REPORTER_ASSERT(reporter, rect == rect2);
canvas.clipRect(SkRect::MakeEmpty());
irect = canvas.getDeviceClipBounds();
REPORTER_ASSERT(reporter, irect == SkIRect::MakeEmpty());
REPORTER_ASSERT(reporter, !canvas.getDeviceClipBounds(&irect2));
REPORTER_ASSERT(reporter, irect == irect2);
rect = canvas.getLocalClipBounds();
REPORTER_ASSERT(reporter, rect == SkRect::MakeEmpty());
REPORTER_ASSERT(reporter, !canvas.getLocalClipBounds(&rect2));
REPORTER_ASSERT(reporter, rect == rect2);
// Test for wacky sizes that we (historically) have guarded against
{
SkCanvas c(-10, -20);
REPORTER_ASSERT(reporter, c.getBaseLayerSize() == SkISize::MakeEmpty());
SkPictureRecorder().beginRecording({ 5, 5, 4, 4 });
}
}
// Will call proc with multiple styles of canvas (recording, raster, pdf)
template <typename F> static void multi_canvas_driver(int w, int h, F proc) {
proc(SkPictureRecorder().beginRecording(SkRect::MakeIWH(w, h)));
SkNullWStream stream;
proc(SkDocument::MakePDF(&stream)->beginPage(SkIntToScalar(w), SkIntToScalar(h)));
proc(SkSurface::MakeRasterN32Premul(w, h, nullptr)->getCanvas());
}
const SkIRect gBaseRestrictedR = { 0, 0, 10, 10 };
static void test_restriction(skiatest::Reporter* reporter, SkCanvas* canvas) {
REPORTER_ASSERT(reporter, canvas->getDeviceClipBounds() == gBaseRestrictedR);
const SkIRect restrictionR = { 2, 2, 8, 8 };
canvas->androidFramework_setDeviceClipRestriction(restrictionR);
REPORTER_ASSERT(reporter, canvas->getDeviceClipBounds() == restrictionR);
const SkIRect clipR = { 4, 4, 6, 6 };
canvas->clipRect(SkRect::Make(clipR), SkClipOp::kIntersect);
REPORTER_ASSERT(reporter, canvas->getDeviceClipBounds() == clipR);
#ifdef SK_SUPPORT_DEPRECATED_CLIPOPS
// now test that expanding clipops can't exceed the restriction
const SkClipOp expanders[] = {
SkClipOp::kUnion_deprecated,
SkClipOp::kXOR_deprecated,
SkClipOp::kReverseDifference_deprecated,
SkClipOp::kReplace_deprecated,
};
const SkRect expandR = { 0, 0, 5, 9 };
SkASSERT(!SkRect::Make(restrictionR).contains(expandR));
for (SkClipOp op : expanders) {
canvas->save();
canvas->clipRect(expandR, op);
REPORTER_ASSERT(reporter, gBaseRestrictedR.contains(canvas->getDeviceClipBounds()));
canvas->restore();
}
#endif
}
/**
* Clip restriction logic exists in the canvas itself, and in various kinds of devices.
*
* This test explicitly tries to exercise that variety:
* - picture : empty device but exercises canvas itself
* - pdf : uses SkClipStack in its device (as does SVG and GPU)
* - raster : uses SkRasterClip in its device
*/
DEF_TEST(canvas_clip_restriction, reporter) {
multi_canvas_driver(gBaseRestrictedR.width(), gBaseRestrictedR.height(),
[reporter](SkCanvas* canvas) { test_restriction(reporter, canvas); });
}
DEF_TEST(canvas_empty_clip, reporter) {
multi_canvas_driver(50, 50, [reporter](SkCanvas* canvas) {
canvas->save();
canvas->clipRect({0, 0, 20, 40 });
REPORTER_ASSERT(reporter, !canvas->isClipEmpty());
canvas->clipRect({30, 0, 50, 40 });
REPORTER_ASSERT(reporter, canvas->isClipEmpty());
});
}
static const int kWidth = 2, kHeight = 2;
static void createBitmap(SkBitmap* bm, SkColor color) {
bm->allocN32Pixels(kWidth, kHeight);
bm->eraseColor(color);
}
///////////////////////////////////////////////////////////////////////////////
// Constants used by test steps
const SkPoint kTestPoints[] = {
{SkIntToScalar(0), SkIntToScalar(0)},
{SkIntToScalar(2), SkIntToScalar(1)},
{SkIntToScalar(0), SkIntToScalar(2)}
};
const SkPoint kTestPoints2[] = {
{ SkIntToScalar(0), SkIntToScalar(1) },
{ SkIntToScalar(1), SkIntToScalar(1) },
{ SkIntToScalar(2), SkIntToScalar(1) },
{ SkIntToScalar(3), SkIntToScalar(1) },
{ SkIntToScalar(4), SkIntToScalar(1) },
{ SkIntToScalar(5), SkIntToScalar(1) },
{ SkIntToScalar(6), SkIntToScalar(1) },
{ SkIntToScalar(7), SkIntToScalar(1) },
{ SkIntToScalar(8), SkIntToScalar(1) },
{ SkIntToScalar(9), SkIntToScalar(1) },
{ SkIntToScalar(10), SkIntToScalar(1) }
};
struct TestData {
public:
TestData()
: fRect(SkRect::MakeXYWH(SkIntToScalar(0), SkIntToScalar(0),
SkIntToScalar(2), SkIntToScalar(1)))
, fMatrix(TestMatrix())
, fPath(TestPath())
, fNearlyZeroLengthPath(TestNearlyZeroLengthPath())
, fIRect(SkIRect::MakeXYWH(0, 0, 2, 1))
, fRegion(TestRegion())
, fColor(0x01020304)
, fPoints(kTestPoints)
, fPointCount(3)
, fWidth(2)
, fHeight(2)
, fText("Hello World")
, fPoints2(kTestPoints2)
, fBitmap(TestBitmap())
{ }
SkRect fRect;
SkMatrix fMatrix;
SkPath fPath;
SkPath fNearlyZeroLengthPath;
SkIRect fIRect;
SkRegion fRegion;
SkColor fColor;
SkPaint fPaint;
const SkPoint* fPoints;
size_t fPointCount;
int fWidth;
int fHeight;
SkString fText;
const SkPoint* fPoints2;
SkBitmap fBitmap;
private:
static SkMatrix TestMatrix() {
SkMatrix matrix;
matrix.reset();
matrix.setScale(SkIntToScalar(2), SkIntToScalar(3));
return matrix;
}
static SkPath TestPath() {
SkPath path;
path.addRect(SkRect::MakeXYWH(SkIntToScalar(0), SkIntToScalar(0),
SkIntToScalar(2), SkIntToScalar(1)));
return path;
}
static SkPath TestNearlyZeroLengthPath() {
SkPath path;
SkPoint pt1 = { 0, 0 };
SkPoint pt2 = { 0, SK_ScalarNearlyZero };
SkPoint pt3 = { SkIntToScalar(1), 0 };
SkPoint pt4 = { SkIntToScalar(1), SK_ScalarNearlyZero/2 };
path.moveTo(pt1);
path.lineTo(pt2);
path.lineTo(pt3);
path.lineTo(pt4);
return path;
}
static SkRegion TestRegion() {
SkRegion region;
SkIRect rect = SkIRect::MakeXYWH(0, 0, 2, 1);
region.setRect(rect);
return region;
}
static SkBitmap TestBitmap() {
SkBitmap bitmap;
createBitmap(&bitmap, 0x05060708);
return bitmap;
}
};
// Format strings that describe the test context. The %s token is where
// the name of the test step is inserted. The context is required for
// disambiguating the error in the case of failures that are reported in
// functions that are called multiple times in different contexts (test
// cases and test steps).
static const char* const kDefaultAssertMessageFormat = "%s";
static const char* const kCanvasDrawAssertMessageFormat =
"Drawing test step %s with SkCanvas";
static const char* const kPdfAssertMessageFormat =
"PDF sanity check failed %s";
class CanvasTestStep;
static SkTDArray<CanvasTestStep*>& testStepArray() {
static SkTDArray<CanvasTestStep*> theTests;
return theTests;
}
class CanvasTestStep {
public:
CanvasTestStep(bool fEnablePdfTesting = true) {
*testStepArray().append() = this;
fAssertMessageFormat = kDefaultAssertMessageFormat;
this->fEnablePdfTesting = fEnablePdfTesting;
}
virtual ~CanvasTestStep() { }
virtual void draw(SkCanvas*, const TestData&, skiatest::Reporter*) = 0;
virtual const char* name() const = 0;
const char* assertMessage() {
fAssertMessage.printf(fAssertMessageFormat, name());
return fAssertMessage.c_str();
}
void setAssertMessageFormat(const char* format) {
fAssertMessageFormat = format;
}
bool enablePdfTesting() { return fEnablePdfTesting; }
private:
SkString fAssertMessage;
const char* fAssertMessageFormat;
bool fEnablePdfTesting;
};
///////////////////////////////////////////////////////////////////////////////
// Macros for defining test steps
#define TEST_STEP(NAME, FUNCTION) \
class NAME##_TestStep : public CanvasTestStep{ \
public: \
virtual void draw(SkCanvas* canvas, const TestData& d, \
skiatest::Reporter* reporter) { \
FUNCTION (canvas, d, reporter, this); \
} \
virtual const char* name() const {return #NAME ;} \
}; \
static NAME##_TestStep NAME##_TestStepInstance;
#define TEST_STEP_NO_PDF(NAME, FUNCTION) \
class NAME##_TestStep : public CanvasTestStep{ \
public: \
NAME##_TestStep() : CanvasTestStep(false) {} \
virtual void draw(SkCanvas* canvas, const TestData& d, \
skiatest::Reporter* reporter) { \
FUNCTION (canvas, d, reporter, this); \
} \
virtual const char* name() const {return #NAME ;} \
}; \
static NAME##_TestStep NAME##_TestStepInstance;
#define SIMPLE_TEST_STEP(NAME, CALL) \
static void NAME##TestStep(SkCanvas* canvas, const TestData& d, \
skiatest::Reporter*, CanvasTestStep*) { \
canvas-> CALL ; \
} \
TEST_STEP(NAME, NAME##TestStep )
#define SIMPLE_TEST_STEP_WITH_ASSERT(NAME, CALL) \
static void NAME##TestStep(SkCanvas* canvas, const TestData& d, \
skiatest::Reporter*, CanvasTestStep* testStep) { \
REPORTER_ASSERT_MESSAGE(reporter, canvas-> CALL , \
testStep->assertMessage()); \
} \
TEST_STEP(NAME, NAME##TestStep )
///////////////////////////////////////////////////////////////////////////////
// Basic test steps for most virtual methods in SkCanvas that draw or affect
// the state of the canvas.
SIMPLE_TEST_STEP(Translate, translate(SkIntToScalar(1), SkIntToScalar(2)));
SIMPLE_TEST_STEP(Scale, scale(SkIntToScalar(1), SkIntToScalar(2)));
SIMPLE_TEST_STEP(Rotate, rotate(SkIntToScalar(1)));
SIMPLE_TEST_STEP(Skew, skew(SkIntToScalar(1), SkIntToScalar(2)));
SIMPLE_TEST_STEP(Concat, concat(d.fMatrix));
SIMPLE_TEST_STEP(SetMatrix, setMatrix(d.fMatrix));
SIMPLE_TEST_STEP(ClipRect, clipRect(d.fRect));
SIMPLE_TEST_STEP(ClipPath, clipPath(d.fPath));
SIMPLE_TEST_STEP(ClipRegion, clipRegion(d.fRegion, kReplace_SkClipOp));
SIMPLE_TEST_STEP(Clear, clear(d.fColor));
///////////////////////////////////////////////////////////////////////////////
// Complex test steps
static void SaveMatrixClipStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter* reporter, CanvasTestStep* testStep) {
int saveCount = canvas->getSaveCount();
canvas->save();
canvas->translate(SkIntToScalar(1), SkIntToScalar(2));
canvas->clipRegion(d.fRegion);
canvas->restore();
REPORTER_ASSERT_MESSAGE(reporter, canvas->getSaveCount() == saveCount,
testStep->assertMessage());
REPORTER_ASSERT_MESSAGE(reporter, canvas->getTotalMatrix().isIdentity(),
testStep->assertMessage());
// REPORTER_ASSERT_MESSAGE(reporter, canvas->getTotalClip() != kTestRegion, testStep->assertMessage());
}
TEST_STEP(SaveMatrixClip, SaveMatrixClipStep);
static void SaveLayerStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter* reporter, CanvasTestStep* testStep) {
int saveCount = canvas->getSaveCount();
canvas->saveLayer(nullptr, nullptr);
canvas->restore();
REPORTER_ASSERT_MESSAGE(reporter, canvas->getSaveCount() == saveCount,
testStep->assertMessage());
}
TEST_STEP(SaveLayer, SaveLayerStep);
static void BoundedSaveLayerStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter* reporter, CanvasTestStep* testStep) {
int saveCount = canvas->getSaveCount();
canvas->saveLayer(&d.fRect, nullptr);
canvas->restore();
REPORTER_ASSERT_MESSAGE(reporter, canvas->getSaveCount() == saveCount,
testStep->assertMessage());
}
TEST_STEP(BoundedSaveLayer, BoundedSaveLayerStep);
static void PaintSaveLayerStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter* reporter, CanvasTestStep* testStep) {
int saveCount = canvas->getSaveCount();
canvas->saveLayer(nullptr, &d.fPaint);
canvas->restore();
REPORTER_ASSERT_MESSAGE(reporter, canvas->getSaveCount() == saveCount,
testStep->assertMessage());
}
TEST_STEP(PaintSaveLayer, PaintSaveLayerStep);
static void TwoClipOpsStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter*, CanvasTestStep*) {
// This test exercises a functionality in SkPicture that leads to the
// recording of restore offset placeholders. This test will trigger an
// assertion at playback time if the placeholders are not properly
// filled when the recording ends.
canvas->clipRect(d.fRect);
canvas->clipRegion(d.fRegion);
}
TEST_STEP(TwoClipOps, TwoClipOpsStep);
// exercise fix for http://code.google.com/p/skia/issues/detail?id=560
// ('SkPathStroker::lineTo() fails for line with length SK_ScalarNearlyZero')
static void DrawNearlyZeroLengthPathTestStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter*, CanvasTestStep*) {
SkPaint paint;
paint.setStrokeWidth(SkIntToScalar(1));
paint.setStyle(SkPaint::kStroke_Style);
canvas->drawPath(d.fNearlyZeroLengthPath, paint);
}
TEST_STEP(DrawNearlyZeroLengthPath, DrawNearlyZeroLengthPathTestStep);
static void DrawVerticesShaderTestStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter*, CanvasTestStep*) {
SkPoint pts[4];
pts[0].set(0, 0);
pts[1].set(SkIntToScalar(d.fWidth), 0);
pts[2].set(SkIntToScalar(d.fWidth), SkIntToScalar(d.fHeight));
pts[3].set(0, SkIntToScalar(d.fHeight));
SkPaint paint;
paint.setShader(SkShader::MakeBitmapShader(d.fBitmap, SkShader::kClamp_TileMode,
SkShader::kClamp_TileMode));
canvas->drawVertices(SkVertices::MakeCopy(SkVertices::kTriangleFan_VertexMode, 4, pts, pts,
nullptr),
SkBlendMode::kModulate, paint);
}
// NYI: issue 240.
TEST_STEP_NO_PDF(DrawVerticesShader, DrawVerticesShaderTestStep);
static void DrawPictureTestStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter*, CanvasTestStep*) {
SkPictureRecorder recorder;
SkCanvas* testCanvas = recorder.beginRecording(SkIntToScalar(d.fWidth), SkIntToScalar(d.fHeight),
nullptr, 0);
testCanvas->scale(SkIntToScalar(2), SkIntToScalar(1));
testCanvas->clipRect(d.fRect);
testCanvas->drawRect(d.fRect, d.fPaint);
canvas->drawPicture(recorder.finishRecordingAsPicture());
}
TEST_STEP(DrawPicture, DrawPictureTestStep);
static void SaveRestoreTestStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter* reporter, CanvasTestStep* testStep) {
int baseSaveCount = canvas->getSaveCount();
int n = canvas->save();
REPORTER_ASSERT_MESSAGE(reporter, baseSaveCount == n, testStep->assertMessage());
REPORTER_ASSERT_MESSAGE(reporter, baseSaveCount + 1 == canvas->getSaveCount(),
testStep->assertMessage());
canvas->save();
canvas->save();
REPORTER_ASSERT_MESSAGE(reporter, baseSaveCount + 3 == canvas->getSaveCount(),
testStep->assertMessage());
canvas->restoreToCount(baseSaveCount + 1);
REPORTER_ASSERT_MESSAGE(reporter, baseSaveCount + 1 == canvas->getSaveCount(),
testStep->assertMessage());
// should this pin to 1, or be a no-op, or crash?
canvas->restoreToCount(0);
REPORTER_ASSERT_MESSAGE(reporter, 1 == canvas->getSaveCount(),
testStep->assertMessage());
}
TEST_STEP(SaveRestore, SaveRestoreTestStep);
static void NestedSaveRestoreWithSolidPaintTestStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter*, CanvasTestStep*) {
// This test step challenges the TestDeferredCanvasStateConsistency
// test cases because the opaque paint can trigger an optimization
// that discards previously recorded commands. The challenge is to maintain
// correct clip and matrix stack state.
canvas->resetMatrix();
canvas->rotate(SkIntToScalar(30));
canvas->save();
canvas->translate(SkIntToScalar(2), SkIntToScalar(1));
canvas->save();
canvas->scale(SkIntToScalar(3), SkIntToScalar(3));
SkPaint paint;
paint.setColor(0xFFFFFFFF);
canvas->drawPaint(paint);
canvas->restore();
canvas->restore();
}
TEST_STEP(NestedSaveRestoreWithSolidPaint, \
NestedSaveRestoreWithSolidPaintTestStep);
static void NestedSaveRestoreWithFlushTestStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter*, CanvasTestStep*) {
// This test step challenges the TestDeferredCanvasStateConsistency
// test case because the canvas flush on a deferred canvas will
// reset the recording session. The challenge is to maintain correct
// clip and matrix stack state on the playback canvas.
canvas->resetMatrix();
canvas->rotate(SkIntToScalar(30));
canvas->save();
canvas->translate(SkIntToScalar(2), SkIntToScalar(1));
canvas->save();
canvas->scale(SkIntToScalar(3), SkIntToScalar(3));
canvas->drawRect(d.fRect,d.fPaint);
canvas->flush();
canvas->restore();
canvas->restore();
}
TEST_STEP(NestedSaveRestoreWithFlush, NestedSaveRestoreWithFlushTestStep);
static void TestPdfDevice(skiatest::Reporter* reporter, const TestData& d, CanvasTestStep* step) {
SkDynamicMemoryWStream outStream;
sk_sp<SkDocument> doc(SkDocument::MakePDF(&outStream));
REPORTER_ASSERT(reporter, doc);
if (!doc) {
return;
}
SkCanvas* canvas = doc->beginPage(SkIntToScalar(d.fWidth),
SkIntToScalar(d.fHeight));
REPORTER_ASSERT(reporter, canvas);
step->setAssertMessageFormat(kPdfAssertMessageFormat);
step->draw(canvas, d, reporter);
}
/*
* This sub-test verifies that the test step passes when executed
* with SkCanvas and with classes derrived from SkCanvas. It also verifies
* that the all canvas derivatives report the same state as an SkCanvas
* after having executed the test step.
*/
static void TestOverrideStateConsistency(skiatest::Reporter* reporter, const TestData& d,
CanvasTestStep* testStep) {
SkBitmap referenceStore;
createBitmap(&referenceStore, 0xFFFFFFFF);
SkCanvas referenceCanvas(referenceStore);
testStep->setAssertMessageFormat(kCanvasDrawAssertMessageFormat);
testStep->draw(&referenceCanvas, d, reporter);
}
static void test_newraster(skiatest::Reporter* reporter) {
SkImageInfo info = SkImageInfo::MakeN32Premul(10, 10);
const size_t minRowBytes = info.minRowBytes();
const size_t size = info.getSafeSize(minRowBytes);
SkAutoTMalloc<SkPMColor> storage(size);
SkPMColor* baseAddr = storage.get();
sk_bzero(baseAddr, size);
std::unique_ptr<SkCanvas> canvas = SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes);
REPORTER_ASSERT(reporter, canvas);
SkPixmap pmap;
const SkPMColor* addr = canvas->peekPixels(&pmap) ? pmap.addr32() : nullptr;
REPORTER_ASSERT(reporter, addr);
REPORTER_ASSERT(reporter, info == pmap.info());
REPORTER_ASSERT(reporter, minRowBytes == pmap.rowBytes());
for (int y = 0; y < info.height(); ++y) {
for (int x = 0; x < info.width(); ++x) {
REPORTER_ASSERT(reporter, 0 == addr[x]);
}
addr = (const SkPMColor*)((const char*)addr + pmap.rowBytes());
}
// now try a deliberately bad info
info = info.makeWH(-1, info.height());
REPORTER_ASSERT(reporter, nullptr == SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes));
// too big
info = info.makeWH(1 << 30, 1 << 30);
REPORTER_ASSERT(reporter, nullptr == SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes));
// not a valid pixel type
info = SkImageInfo::Make(10, 10, kUnknown_SkColorType, info.alphaType());
REPORTER_ASSERT(reporter, nullptr == SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes));
// We should succeed with a zero-sized valid info
info = SkImageInfo::MakeN32Premul(0, 0);
canvas = SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes);
REPORTER_ASSERT(reporter, canvas);
}
DEF_TEST(Canvas, reporter) {
TestData d;
for (int testStep = 0; testStep < testStepArray().count(); testStep++) {
TestOverrideStateConsistency(reporter, d, testStepArray()[testStep]);
if (testStepArray()[testStep]->enablePdfTesting()) {
TestPdfDevice(reporter, d, testStepArray()[testStep]);
}
}
test_newraster(reporter);
}
DEF_TEST(Canvas_SaveState, reporter) {
SkCanvas canvas(10, 10);
REPORTER_ASSERT(reporter, 1 == canvas.getSaveCount());
int n = canvas.save();
REPORTER_ASSERT(reporter, 1 == n);
REPORTER_ASSERT(reporter, 2 == canvas.getSaveCount());
n = canvas.saveLayer(nullptr, nullptr);
REPORTER_ASSERT(reporter, 2 == n);
REPORTER_ASSERT(reporter, 3 == canvas.getSaveCount());
canvas.restore();
REPORTER_ASSERT(reporter, 2 == canvas.getSaveCount());
canvas.restore();
REPORTER_ASSERT(reporter, 1 == canvas.getSaveCount());
}
DEF_TEST(Canvas_ClipEmptyPath, reporter) {
SkCanvas canvas(10, 10);
canvas.save();
SkPath path;
canvas.clipPath(path);
canvas.restore();
canvas.save();
path.moveTo(5, 5);
canvas.clipPath(path);
canvas.restore();
canvas.save();
path.moveTo(7, 7);
canvas.clipPath(path); // should not assert here
canvas.restore();
}
namespace {
class MockFilterCanvas : public SkPaintFilterCanvas {
public:
MockFilterCanvas(SkCanvas* canvas) : INHERITED(canvas) { }
protected:
bool onFilter(SkTCopyOnFirstWrite<SkPaint>*, Type) const override { return true; }
private:
typedef SkPaintFilterCanvas INHERITED;
};
} // anonymous namespace
// SkPaintFilterCanvas should inherit the initial target canvas state.
DEF_TEST(PaintFilterCanvas_ConsistentState, reporter) {
SkCanvas canvas(100, 100);
canvas.clipRect(SkRect::MakeXYWH(12.7f, 12.7f, 75, 75));
canvas.scale(0.5f, 0.75f);
MockFilterCanvas filterCanvas(&canvas);
REPORTER_ASSERT(reporter, canvas.getTotalMatrix() == filterCanvas.getTotalMatrix());
REPORTER_ASSERT(reporter, canvas.getLocalClipBounds() == filterCanvas.getLocalClipBounds());
filterCanvas.clipRect(SkRect::MakeXYWH(30.5f, 30.7f, 100, 100));
filterCanvas.scale(0.75f, 0.5f);
REPORTER_ASSERT(reporter, canvas.getTotalMatrix() == filterCanvas.getTotalMatrix());
REPORTER_ASSERT(reporter, filterCanvas.getLocalClipBounds().contains(canvas.getLocalClipBounds()));
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "SkCanvasStack.h"
#include "SkNWayCanvas.h"
// Subclass that takes a bool*, which it updates in its construct (true) and destructor (false)
// to allow the caller to know how long the object is alive.
class LifeLineCanvas : public SkCanvas {
bool* fLifeLine;
public:
LifeLineCanvas(int w, int h, bool* lifeline) : SkCanvas(w, h), fLifeLine(lifeline) {
*fLifeLine = true;
}
~LifeLineCanvas() {
*fLifeLine = false;
}
};
// Check that NWayCanvas does NOT try to manage the lifetime of its sub-canvases
DEF_TEST(NWayCanvas, r) {
const int w = 10;
const int h = 10;
bool life[2];
{
LifeLineCanvas c0(w, h, &life[0]);
REPORTER_ASSERT(r, life[0]);
}
REPORTER_ASSERT(r, !life[0]);
std::unique_ptr<SkCanvas> c0 = std::unique_ptr<SkCanvas>(new LifeLineCanvas(w, h, &life[0]));
std::unique_ptr<SkCanvas> c1 = std::unique_ptr<SkCanvas>(new LifeLineCanvas(w, h, &life[1]));
REPORTER_ASSERT(r, life[0]);
REPORTER_ASSERT(r, life[1]);
{
SkNWayCanvas nway(w, h);
nway.addCanvas(c0.get());
nway.addCanvas(c1.get());
REPORTER_ASSERT(r, life[0]);
REPORTER_ASSERT(r, life[1]);
}
// Now assert that the death of the nway has NOT also killed the sub-canvases
REPORTER_ASSERT(r, life[0]);
REPORTER_ASSERT(r, life[1]);
}
// Check that CanvasStack DOES manage the lifetime of its sub-canvases
DEF_TEST(CanvasStack, r) {
const int w = 10;
const int h = 10;
bool life[2];
std::unique_ptr<SkCanvas> c0 = std::unique_ptr<SkCanvas>(new LifeLineCanvas(w, h, &life[0]));
std::unique_ptr<SkCanvas> c1 = std::unique_ptr<SkCanvas>(new LifeLineCanvas(w, h, &life[1]));
REPORTER_ASSERT(r, life[0]);
REPORTER_ASSERT(r, life[1]);
{
SkCanvasStack stack(w, h);
stack.pushCanvas(std::move(c0), {0,0});
stack.pushCanvas(std::move(c1), {0,0});
REPORTER_ASSERT(r, life[0]);
REPORTER_ASSERT(r, life[1]);
}
// Now assert that the death of the canvasstack has also killed the sub-canvases
REPORTER_ASSERT(r, !life[0]);
REPORTER_ASSERT(r, !life[1]);
}
static void test_cliptype(SkCanvas* canvas, skiatest::Reporter* r) {
REPORTER_ASSERT(r, !canvas->isClipEmpty());
REPORTER_ASSERT(r, canvas->isClipRect());
canvas->save();
canvas->clipRect({0, 0, 0, 0});
REPORTER_ASSERT(r, canvas->isClipEmpty());
REPORTER_ASSERT(r, !canvas->isClipRect());
canvas->restore();
canvas->save();
canvas->clipRect({2, 2, 6, 6});
REPORTER_ASSERT(r, !canvas->isClipEmpty());
REPORTER_ASSERT(r, canvas->isClipRect());
canvas->restore();
canvas->save();
canvas->clipRect({2, 2, 6, 6}, SkClipOp::kDifference); // punch a hole in the clip
REPORTER_ASSERT(r, !canvas->isClipEmpty());
REPORTER_ASSERT(r, !canvas->isClipRect());
canvas->restore();
REPORTER_ASSERT(r, !canvas->isClipEmpty());
REPORTER_ASSERT(r, canvas->isClipRect());
}
DEF_TEST(CanvasClipType, r) {
// test rasterclip backend
test_cliptype(SkSurface::MakeRasterN32Premul(10, 10)->getCanvas(), r);
// test clipstack backend
SkDynamicMemoryWStream stream;
test_cliptype(SkDocument::MakePDF(&stream)->beginPage(100, 100), r);
}
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
DEF_TEST(Canvas_LegacyColorBehavior, r) {
sk_sp<SkColorSpace> cs = SkColorSpace::MakeRGB(SkColorSpace::kSRGB_RenderTargetGamma,
SkColorSpace::kAdobeRGB_Gamut);
// Make a Adobe RGB bitmap.
SkBitmap bitmap;
bitmap.allocPixels(SkImageInfo::MakeN32(1, 1, kOpaque_SkAlphaType, cs));
bitmap.eraseColor(0xFF000000);
// Wrap it in a legacy canvas. Test that the canvas behaves like a legacy canvas.
SkCanvas canvas(bitmap, SkCanvas::ColorBehavior::kLegacy);
REPORTER_ASSERT(r, !canvas.imageInfo().colorSpace());
SkPaint p;
p.setColor(SK_ColorRED);
canvas.drawIRect(SkIRect::MakeWH(1, 1), p);
REPORTER_ASSERT(r, SK_ColorRED == SkSwizzle_BGRA_to_PMColor(*bitmap.getAddr32(0, 0)));
}
#endif