| |
| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "GrBinHashKey.h" |
| #include "GrGLProgram.h" |
| #include "GrGpuGLShaders.h" |
| #include "GrGpuVertex.h" |
| #include "GrNoncopyable.h" |
| #include "GrStringBuilder.h" |
| #include "GrRandom.h" |
| |
| #define SKIP_CACHE_CHECK true |
| #define GR_UINT32_MAX static_cast<uint32_t>(-1) |
| |
| #include "GrTHashCache.h" |
| |
| class GrGpuGLShaders::ProgramCache : public ::GrNoncopyable { |
| private: |
| class Entry; |
| |
| typedef GrBinHashKey<Entry, GrGLProgram::kProgramKeySize> ProgramHashKey; |
| |
| class Entry : public ::GrNoncopyable { |
| public: |
| Entry() {} |
| void copyAndTakeOwnership(Entry& entry) { |
| fProgramData.copyAndTakeOwnership(entry.fProgramData); |
| fKey = entry.fKey; // ownership transfer |
| fLRUStamp = entry.fLRUStamp; |
| } |
| |
| public: |
| int compare(const ProgramHashKey& key) const { return fKey.compare(key); } |
| |
| public: |
| GrGLProgram::CachedData fProgramData; |
| ProgramHashKey fKey; |
| unsigned int fLRUStamp; |
| }; |
| |
| GrTHashTable<Entry, ProgramHashKey, 8> fHashCache; |
| |
| // We may have kMaxEntries+1 shaders in the GL context because |
| // we create a new shader before evicting from the cache. |
| enum { |
| kMaxEntries = 32 |
| }; |
| Entry fEntries[kMaxEntries]; |
| int fCount; |
| unsigned int fCurrLRUStamp; |
| const GrGLInterface* fGL; |
| GrGLProgram::GLSLVersion fGLSLVersion; |
| |
| public: |
| ProgramCache(const GrGLInterface* gl, |
| GrGLProgram::GLSLVersion glslVersion) |
| : fCount(0) |
| , fCurrLRUStamp(0) |
| , fGL(gl) |
| , fGLSLVersion(glslVersion) { |
| } |
| |
| ~ProgramCache() { |
| for (int i = 0; i < fCount; ++i) { |
| GrGpuGLShaders::DeleteProgram(fGL, &fEntries[i].fProgramData); |
| } |
| } |
| |
| void abandon() { |
| fCount = 0; |
| } |
| |
| void invalidateViewMatrices() { |
| for (int i = 0; i < fCount; ++i) { |
| // set to illegal matrix |
| fEntries[i].fProgramData.fViewMatrix = GrMatrix::InvalidMatrix(); |
| } |
| } |
| |
| GrGLProgram::CachedData* getProgramData(const GrGLProgram& desc) { |
| Entry newEntry; |
| newEntry.fKey.setKeyData(desc.keyData()); |
| |
| Entry* entry = fHashCache.find(newEntry.fKey); |
| if (NULL == entry) { |
| if (!desc.genProgram(fGL, fGLSLVersion, &newEntry.fProgramData)) { |
| return NULL; |
| } |
| if (fCount < kMaxEntries) { |
| entry = fEntries + fCount; |
| ++fCount; |
| } else { |
| GrAssert(kMaxEntries == fCount); |
| entry = fEntries; |
| for (int i = 1; i < kMaxEntries; ++i) { |
| if (fEntries[i].fLRUStamp < entry->fLRUStamp) { |
| entry = fEntries + i; |
| } |
| } |
| fHashCache.remove(entry->fKey, entry); |
| GrGpuGLShaders::DeleteProgram(fGL, &entry->fProgramData); |
| } |
| entry->copyAndTakeOwnership(newEntry); |
| fHashCache.insert(entry->fKey, entry); |
| } |
| |
| entry->fLRUStamp = fCurrLRUStamp; |
| if (GR_UINT32_MAX == fCurrLRUStamp) { |
| // wrap around! just trash our LRU, one time hit. |
| for (int i = 0; i < fCount; ++i) { |
| fEntries[i].fLRUStamp = 0; |
| } |
| } |
| ++fCurrLRUStamp; |
| return &entry->fProgramData; |
| } |
| }; |
| |
| void GrGpuGLShaders::abandonResources(){ |
| INHERITED::abandonResources(); |
| fProgramCache->abandon(); |
| } |
| |
| void GrGpuGLShaders::DeleteProgram(const GrGLInterface* gl, |
| CachedData* programData) { |
| GR_GL_CALL(gl, DeleteShader(programData->fVShaderID)); |
| if (programData->fGShaderID) { |
| GR_GL_CALL(gl, DeleteShader(programData->fGShaderID)); |
| } |
| GR_GL_CALL(gl, DeleteShader(programData->fFShaderID)); |
| GR_GL_CALL(gl, DeleteProgram(programData->fProgramID)); |
| GR_DEBUGCODE(memset(programData, 0, sizeof(*programData));) |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| #define GL_CALL(X) GR_GL_CALL(this->glInterface(), X) |
| |
| namespace { |
| |
| GrGLProgram::GLSLVersion get_glsl_version(GrGLBinding binding, |
| const GrGLInterface* gl) { |
| GrGLSLVersion ver = GrGLGetGLSLVersion(gl); |
| switch (binding) { |
| case kDesktop_GrGLBinding: |
| GrAssert(ver >= GR_GLSL_VER(1,10)); |
| if (ver >= GR_GLSL_VER(1,50)) { |
| return GrGLProgram::k150_GLSLVersion; |
| } else if (ver >= GR_GLSL_VER(1,30)) { |
| return GrGLProgram::k130_GLSLVersion; |
| } else { |
| return GrGLProgram::k110_GLSLVersion; |
| } |
| case kES2_GrGLBinding: |
| // version 1.00 of ES GLSL based on ver 1.20 of desktop GLSL |
| GrAssert(ver >= GR_GL_VER(1,00)); |
| return GrGLProgram::k110_GLSLVersion; |
| default: |
| GrCrash("Attempting to get GLSL version in unknown or fixed-" |
| "function GL binding."); |
| return GrGLProgram::k110_GLSLVersion; // suppress warning |
| } |
| } |
| |
| template <typename T> |
| T random_val(GrRandom* r, T count) { |
| return (T)(int)(r->nextF() * count); |
| } |
| |
| } |
| |
| bool GrGpuGLShaders::programUnitTest() { |
| |
| GrGLProgram::GLSLVersion glslVersion = |
| get_glsl_version(this->glBinding(), this->glInterface()); |
| static const int STAGE_OPTS[] = { |
| 0, |
| StageDesc::kNoPerspective_OptFlagBit, |
| StageDesc::kIdentity_CoordMapping |
| }; |
| GrGLProgram program; |
| ProgramDesc& pdesc = program.fProgramDesc; |
| |
| static const int NUM_TESTS = 512; |
| |
| // GrRandoms nextU() values have patterns in the low bits |
| // So using nextU() % array_count might never take some values. |
| GrRandom random; |
| for (int t = 0; t < NUM_TESTS; ++t) { |
| |
| #if 0 |
| GrPrintf("\nTest Program %d\n-------------\n", t); |
| static const int stop = -1; |
| if (t == stop) { |
| int breakpointhere = 9; |
| } |
| #endif |
| |
| pdesc.fVertexLayout = 0; |
| pdesc.fEmitsPointSize = random.nextF() > .5f; |
| pdesc.fColorInput = static_cast<int>(random.nextF() * |
| ProgramDesc::kColorInputCnt); |
| |
| int idx = (int)(random.nextF() * (SkXfermode::kCoeffModesCnt)); |
| pdesc.fColorFilterXfermode = (SkXfermode::Mode)idx; |
| |
| idx = (int)(random.nextF() * (GrDrawState::kNumStages + 1)); |
| pdesc.fFirstCoverageStage = idx; |
| |
| pdesc.fVertexLayout |= (random.nextF() > .5f) ? |
| GrDrawTarget::kCoverage_VertexLayoutBit : |
| 0; |
| |
| #if GR_GL_EXPERIMENTAL_GS |
| pdesc.fExperimentalGS = this->getCaps().fGeometryShaderSupport && |
| random.nextF() > .5f; |
| #endif |
| pdesc.fOutputPM = static_cast<int>(random.nextF() * |
| ProgramDesc::kOutputPMCnt); |
| |
| bool edgeAA = random.nextF() > .5f; |
| if (edgeAA) { |
| bool vertexEdgeAA = random.nextF() > .5f; |
| if (vertexEdgeAA) { |
| pdesc.fVertexLayout |= GrDrawTarget::kEdge_VertexLayoutBit; |
| if (this->getCaps().fShaderDerivativeSupport) { |
| pdesc.fVertexEdgeType = random.nextF() > 0.5f ? |
| GrDrawState::kHairQuad_EdgeType : |
| GrDrawState::kHairLine_EdgeType; |
| } else { |
| pdesc.fVertexEdgeType = GrDrawState::kHairLine_EdgeType; |
| } |
| pdesc.fEdgeAANumEdges = 0; |
| } else { |
| pdesc.fEdgeAANumEdges = static_cast<int>(1 + random.nextF() * |
| this->getMaxEdges()); |
| pdesc.fEdgeAAConcave = random.nextF() > .5f; |
| } |
| } else { |
| pdesc.fEdgeAANumEdges = 0; |
| } |
| |
| if (this->getCaps().fDualSourceBlendingSupport) { |
| pdesc.fDualSrcOutput = |
| (ProgramDesc::DualSrcOutput) |
| (int)(random.nextF() * ProgramDesc::kDualSrcOutputCnt); |
| } else { |
| pdesc.fDualSrcOutput = ProgramDesc::kNone_DualSrcOutput; |
| } |
| |
| for (int s = 0; s < GrDrawState::kNumStages; ++s) { |
| // enable the stage? |
| if (random.nextF() > .5f) { |
| // use separate tex coords? |
| if (random.nextF() > .5f) { |
| int t = (int)(random.nextF() * GrDrawState::kMaxTexCoords); |
| pdesc.fVertexLayout |= StageTexCoordVertexLayoutBit(s, t); |
| } else { |
| pdesc.fVertexLayout |= StagePosAsTexCoordVertexLayoutBit(s); |
| } |
| } |
| // use text-formatted verts? |
| if (random.nextF() > .5f) { |
| pdesc.fVertexLayout |= kTextFormat_VertexLayoutBit; |
| } |
| idx = (int)(random.nextF() * GR_ARRAY_COUNT(STAGE_OPTS)); |
| StageDesc& stage = pdesc.fStages[s]; |
| stage.fOptFlags = STAGE_OPTS[idx]; |
| stage.fSwizzle = random_val(&random, StageDesc::kSwizzleCnt); |
| stage.fCoordMapping = random_val(&random, StageDesc::kCoordMappingCnt); |
| stage.fFetchMode = random_val(&random, StageDesc::kFetchModeCnt); |
| // convolution shaders don't work with persp tex matrix |
| if (stage.fFetchMode == StageDesc::kConvolution_FetchMode) { |
| stage.fOptFlags |= StageDesc::kNoPerspective_OptFlagBit; |
| } |
| stage.setEnabled(VertexUsesStage(s, pdesc.fVertexLayout)); |
| stage.fKernelWidth = static_cast<int8_t>(4 * random.nextF() + 2); |
| } |
| CachedData cachedData; |
| if (!program.genProgram(this->glInterface(), |
| glslVersion, |
| &cachedData)) { |
| return false; |
| } |
| DeleteProgram(this->glInterface(), &cachedData); |
| } |
| return true; |
| } |
| |
| namespace { |
| GrGLBinding get_binding_in_use(const GrGLInterface* gl) { |
| if (gl->supportsDesktop()) { |
| return kDesktop_GrGLBinding; |
| } else { |
| GrAssert(gl->supportsES2()); |
| return kES2_GrGLBinding; |
| } |
| } |
| } |
| |
| GrGpuGLShaders::GrGpuGLShaders(const GrGLInterface* gl) |
| : GrGpuGL(gl, get_binding_in_use(gl)) { |
| |
| GrGLProgram::GLSLVersion glslVersion = |
| get_glsl_version(this->glBinding(), gl); |
| |
| // Enable supported shader-releated caps |
| fCaps.fShaderSupport = true; |
| fCaps.fSupportPerVertexCoverage = true; |
| if (kDesktop_GrGLBinding == this->glBinding()) { |
| fCaps.fDualSourceBlendingSupport = |
| this->glVersion() >= GR_GL_VER(3,3) || |
| this->hasExtension("GL_ARB_blend_func_extended"); |
| fCaps.fShaderDerivativeSupport = true; |
| // we don't support GL_ARB_geometry_shader4, just GL 3.2+ GS |
| fCaps.fGeometryShaderSupport = |
| this->glVersion() >= GR_GL_VER(3,2) && |
| glslVersion >= GrGLProgram::k150_GLSLVersion; |
| } else { |
| fCaps.fShaderDerivativeSupport = |
| this->hasExtension("GL_OES_standard_derivatives"); |
| } |
| |
| GR_GL_GetIntegerv(gl, GR_GL_MAX_VERTEX_ATTRIBS, &fMaxVertexAttribs); |
| |
| fProgramData = NULL; |
| fProgramCache = new ProgramCache(gl, glslVersion); |
| |
| #if 0 |
| this->programUnitTest(); |
| #endif |
| } |
| |
| GrGpuGLShaders::~GrGpuGLShaders() { |
| delete fProgramCache; |
| } |
| |
| const GrMatrix& GrGpuGLShaders::getHWSamplerMatrix(int stage) { |
| GrAssert(fProgramData); |
| |
| if (GrGLProgram::kSetAsAttribute == |
| fProgramData->fUniLocations.fStages[stage].fTextureMatrixUni) { |
| return fHWDrawState.fSamplerStates[stage].getMatrix(); |
| } else { |
| return fProgramData->fTextureMatrices[stage]; |
| } |
| } |
| |
| void GrGpuGLShaders::recordHWSamplerMatrix(int stage, const GrMatrix& matrix) { |
| GrAssert(fProgramData); |
| if (GrGLProgram::kSetAsAttribute == |
| fProgramData->fUniLocations.fStages[stage].fTextureMatrixUni) { |
| fHWDrawState.fSamplerStates[stage].setMatrix(matrix); |
| } else { |
| fProgramData->fTextureMatrices[stage] = matrix; |
| } |
| } |
| |
| void GrGpuGLShaders::onResetContext() { |
| INHERITED::onResetContext(); |
| |
| fHWGeometryState.fVertexOffset = ~0; |
| |
| // Third party GL code may have left vertex attributes enabled. Some GL |
| // implementations (osmesa) may read vetex attributes that are not required |
| // by the current shader. Therefore, we have to ensure that only the |
| // attributes we require for the current draw are enabled or we may cause an |
| // invalid read. |
| |
| // Disable all vertex layout bits so that next flush will assume all |
| // optional vertex attributes are disabled. |
| fHWGeometryState.fVertexLayout = 0; |
| |
| // We always use the this attribute and assume it is always enabled. |
| int posAttrIdx = GrGLProgram::PositionAttributeIdx(); |
| GL_CALL(EnableVertexAttribArray(posAttrIdx)); |
| // Disable all other vertex attributes. |
| for (int va = 0; va < fMaxVertexAttribs; ++va) { |
| if (va != posAttrIdx) { |
| GL_CALL(DisableVertexAttribArray(va)); |
| } |
| } |
| |
| fHWProgramID = 0; |
| } |
| |
| void GrGpuGLShaders::flushViewMatrix() { |
| GrAssert(NULL != fCurrDrawState.fRenderTarget); |
| GrMatrix m; |
| m.setAll( |
| GrIntToScalar(2) / fCurrDrawState.fRenderTarget->width(), 0, -GR_Scalar1, |
| 0,-GrIntToScalar(2) / fCurrDrawState.fRenderTarget->height(), GR_Scalar1, |
| 0, 0, GrMatrix::I()[8]); |
| m.setConcat(m, fCurrDrawState.fViewMatrix); |
| |
| // ES doesn't allow you to pass true to the transpose param, |
| // so do our own transpose |
| GrGLfloat mt[] = { |
| GrScalarToFloat(m[GrMatrix::kMScaleX]), |
| GrScalarToFloat(m[GrMatrix::kMSkewY]), |
| GrScalarToFloat(m[GrMatrix::kMPersp0]), |
| GrScalarToFloat(m[GrMatrix::kMSkewX]), |
| GrScalarToFloat(m[GrMatrix::kMScaleY]), |
| GrScalarToFloat(m[GrMatrix::kMPersp1]), |
| GrScalarToFloat(m[GrMatrix::kMTransX]), |
| GrScalarToFloat(m[GrMatrix::kMTransY]), |
| GrScalarToFloat(m[GrMatrix::kMPersp2]) |
| }; |
| |
| if (GrGLProgram::kSetAsAttribute == |
| fProgramData->fUniLocations.fViewMatrixUni) { |
| int baseIdx = GrGLProgram::ViewMatrixAttributeIdx(); |
| GL_CALL(VertexAttrib4fv(baseIdx + 0, mt+0)); |
| GL_CALL(VertexAttrib4fv(baseIdx + 1, mt+3)); |
| GL_CALL(VertexAttrib4fv(baseIdx + 2, mt+6)); |
| } else { |
| GrAssert(GrGLProgram::kUnusedUniform != |
| fProgramData->fUniLocations.fViewMatrixUni); |
| GL_CALL(UniformMatrix3fv(fProgramData->fUniLocations.fViewMatrixUni, |
| 1, false, mt)); |
| } |
| } |
| |
| void GrGpuGLShaders::flushTextureDomain(int s) { |
| const GrGLint& uni = fProgramData->fUniLocations.fStages[s].fTexDomUni; |
| if (GrGLProgram::kUnusedUniform != uni) { |
| const GrRect &texDom = |
| fCurrDrawState.fSamplerStates[s].getTextureDomain(); |
| |
| if (((1 << s) & fDirtyFlags.fTextureChangedMask) || |
| fProgramData->fTextureDomain[s] != texDom) { |
| |
| fProgramData->fTextureDomain[s] = texDom; |
| |
| float values[4] = { |
| GrScalarToFloat(texDom.left()), |
| GrScalarToFloat(texDom.top()), |
| GrScalarToFloat(texDom.right()), |
| GrScalarToFloat(texDom.bottom()) |
| }; |
| |
| GrGLTexture* texture = (GrGLTexture*) fCurrDrawState.fTextures[s]; |
| GrGLTexture::Orientation orientation = texture->orientation(); |
| |
| // vertical flip if necessary |
| if (GrGLTexture::kBottomUp_Orientation == orientation) { |
| values[1] = 1.0f - values[1]; |
| values[3] = 1.0f - values[3]; |
| // The top and bottom were just flipped, so correct the ordering |
| // of elements so that values = (l, t, r, b). |
| SkTSwap(values[1], values[3]); |
| } |
| |
| values[0] *= SkScalarToFloat(texture->contentScaleX()); |
| values[2] *= SkScalarToFloat(texture->contentScaleX()); |
| values[1] *= SkScalarToFloat(texture->contentScaleY()); |
| values[3] *= SkScalarToFloat(texture->contentScaleY()); |
| |
| GL_CALL(Uniform4fv(uni, 1, values)); |
| } |
| } |
| } |
| |
| void GrGpuGLShaders::flushTextureMatrix(int s) { |
| const GrGLint& uni = fProgramData->fUniLocations.fStages[s].fTextureMatrixUni; |
| GrGLTexture* texture = (GrGLTexture*) fCurrDrawState.fTextures[s]; |
| if (NULL != texture) { |
| if (GrGLProgram::kUnusedUniform != uni && |
| (((1 << s) & fDirtyFlags.fTextureChangedMask) || |
| getHWSamplerMatrix(s) != getSamplerMatrix(s))) { |
| |
| GrAssert(NULL != fCurrDrawState.fTextures[s]); |
| |
| GrGLTexture* texture = (GrGLTexture*) fCurrDrawState.fTextures[s]; |
| |
| GrMatrix m = getSamplerMatrix(s); |
| GrSamplerState::SampleMode mode = |
| fCurrDrawState.fSamplerStates[s].getSampleMode(); |
| AdjustTextureMatrix(texture, mode, &m); |
| |
| // ES doesn't allow you to pass true to the transpose param, |
| // so do our own transpose |
| GrGLfloat mt[] = { |
| GrScalarToFloat(m[GrMatrix::kMScaleX]), |
| GrScalarToFloat(m[GrMatrix::kMSkewY]), |
| GrScalarToFloat(m[GrMatrix::kMPersp0]), |
| GrScalarToFloat(m[GrMatrix::kMSkewX]), |
| GrScalarToFloat(m[GrMatrix::kMScaleY]), |
| GrScalarToFloat(m[GrMatrix::kMPersp1]), |
| GrScalarToFloat(m[GrMatrix::kMTransX]), |
| GrScalarToFloat(m[GrMatrix::kMTransY]), |
| GrScalarToFloat(m[GrMatrix::kMPersp2]) |
| }; |
| |
| if (GrGLProgram::kSetAsAttribute == |
| fProgramData->fUniLocations.fStages[s].fTextureMatrixUni) { |
| int baseIdx = GrGLProgram::TextureMatrixAttributeIdx(s); |
| GL_CALL(VertexAttrib4fv(baseIdx + 0, mt+0)); |
| GL_CALL(VertexAttrib4fv(baseIdx + 1, mt+3)); |
| GL_CALL(VertexAttrib4fv(baseIdx + 2, mt+6)); |
| } else { |
| GL_CALL(UniformMatrix3fv(uni, 1, false, mt)); |
| } |
| recordHWSamplerMatrix(s, getSamplerMatrix(s)); |
| } |
| } |
| } |
| |
| void GrGpuGLShaders::flushRadial2(int s) { |
| |
| const int &uni = fProgramData->fUniLocations.fStages[s].fRadial2Uni; |
| const GrSamplerState& sampler = fCurrDrawState.fSamplerStates[s]; |
| if (GrGLProgram::kUnusedUniform != uni && |
| (fProgramData->fRadial2CenterX1[s] != sampler.getRadial2CenterX1() || |
| fProgramData->fRadial2Radius0[s] != sampler.getRadial2Radius0() || |
| fProgramData->fRadial2PosRoot[s] != sampler.isRadial2PosRoot())) { |
| |
| GrScalar centerX1 = sampler.getRadial2CenterX1(); |
| GrScalar radius0 = sampler.getRadial2Radius0(); |
| |
| GrScalar a = GrMul(centerX1, centerX1) - GR_Scalar1; |
| |
| // when were in the degenerate (linear) case the second |
| // value will be INF but the program doesn't read it. (We |
| // use the same 6 uniforms even though we don't need them |
| // all in the linear case just to keep the code complexity |
| // down). |
| float values[6] = { |
| GrScalarToFloat(a), |
| 1 / (2.f * values[0]), |
| GrScalarToFloat(centerX1), |
| GrScalarToFloat(radius0), |
| GrScalarToFloat(GrMul(radius0, radius0)), |
| sampler.isRadial2PosRoot() ? 1.f : -1.f |
| }; |
| GL_CALL(Uniform1fv(uni, 6, values)); |
| fProgramData->fRadial2CenterX1[s] = sampler.getRadial2CenterX1(); |
| fProgramData->fRadial2Radius0[s] = sampler.getRadial2Radius0(); |
| fProgramData->fRadial2PosRoot[s] = sampler.isRadial2PosRoot(); |
| } |
| } |
| |
| void GrGpuGLShaders::flushConvolution(int s) { |
| const GrSamplerState& sampler = fCurrDrawState.fSamplerStates[s]; |
| int kernelUni = fProgramData->fUniLocations.fStages[s].fKernelUni; |
| if (GrGLProgram::kUnusedUniform != kernelUni) { |
| GL_CALL(Uniform1fv(kernelUni, sampler.getKernelWidth(), |
| sampler.getKernel())); |
| } |
| int imageIncrementUni = fProgramData->fUniLocations.fStages[s].fImageIncrementUni; |
| if (GrGLProgram::kUnusedUniform != imageIncrementUni) { |
| GL_CALL(Uniform2fv(imageIncrementUni, 1, sampler.getImageIncrement())); |
| } |
| } |
| |
| void GrGpuGLShaders::flushTexelSize(int s) { |
| const int& uni = fProgramData->fUniLocations.fStages[s].fNormalizedTexelSizeUni; |
| if (GrGLProgram::kUnusedUniform != uni) { |
| GrGLTexture* texture = (GrGLTexture*) fCurrDrawState.fTextures[s]; |
| if (texture->allocatedWidth() != fProgramData->fTextureWidth[s] || |
| texture->allocatedHeight() != fProgramData->fTextureWidth[s]) { |
| |
| float texelSize[] = {1.f / texture->allocatedWidth(), |
| 1.f / texture->allocatedHeight()}; |
| GL_CALL(Uniform2fv(uni, 1, texelSize)); |
| } |
| } |
| } |
| |
| void GrGpuGLShaders::flushEdgeAAData() { |
| const int& uni = fProgramData->fUniLocations.fEdgesUni; |
| if (GrGLProgram::kUnusedUniform != uni) { |
| int count = fCurrDrawState.fEdgeAANumEdges; |
| GrDrawState::Edge edges[GrDrawState::kMaxEdges]; |
| // Flip the edges in Y |
| float height = |
| static_cast<float>(fCurrDrawState.fRenderTarget->height()); |
| for (int i = 0; i < count; ++i) { |
| edges[i] = fCurrDrawState.fEdgeAAEdges[i]; |
| float b = edges[i].fY; |
| edges[i].fY = -b; |
| edges[i].fZ += b * height; |
| } |
| GL_CALL(Uniform3fv(uni, count, &edges[0].fX)); |
| } |
| } |
| |
| static const float ONE_OVER_255 = 1.f / 255.f; |
| |
| #define GR_COLOR_TO_VEC4(color) {\ |
| GrColorUnpackR(color) * ONE_OVER_255,\ |
| GrColorUnpackG(color) * ONE_OVER_255,\ |
| GrColorUnpackB(color) * ONE_OVER_255,\ |
| GrColorUnpackA(color) * ONE_OVER_255 \ |
| } |
| |
| void GrGpuGLShaders::flushColor(GrColor color) { |
| const ProgramDesc& desc = fCurrentProgram.getDesc(); |
| if (this->getGeomSrc().fVertexLayout & kColor_VertexLayoutBit) { |
| // color will be specified per-vertex as an attribute |
| // invalidate the const vertex attrib color |
| fHWDrawState.fColor = GrColor_ILLEGAL; |
| } else { |
| switch (desc.fColorInput) { |
| case ProgramDesc::kAttribute_ColorInput: |
| if (fHWDrawState.fColor != color) { |
| // OpenGL ES only supports the float varities of glVertexAttrib |
| float c[] = GR_COLOR_TO_VEC4(color); |
| GL_CALL(VertexAttrib4fv(GrGLProgram::ColorAttributeIdx(), |
| c)); |
| fHWDrawState.fColor = color; |
| } |
| break; |
| case ProgramDesc::kUniform_ColorInput: |
| if (fProgramData->fColor != color) { |
| // OpenGL ES only supports the float varities of glVertexAttrib |
| float c[] = GR_COLOR_TO_VEC4(color); |
| GrAssert(GrGLProgram::kUnusedUniform != |
| fProgramData->fUniLocations.fColorUni); |
| GL_CALL(Uniform4fv(fProgramData->fUniLocations.fColorUni, |
| 1, c)); |
| fProgramData->fColor = color; |
| } |
| break; |
| case ProgramDesc::kSolidWhite_ColorInput: |
| case ProgramDesc::kTransBlack_ColorInput: |
| break; |
| default: |
| GrCrash("Unknown color type."); |
| } |
| } |
| if (fProgramData->fUniLocations.fColorFilterUni |
| != GrGLProgram::kUnusedUniform |
| && fProgramData->fColorFilterColor |
| != fCurrDrawState.fColorFilterColor) { |
| float c[] = GR_COLOR_TO_VEC4(fCurrDrawState.fColorFilterColor); |
| GL_CALL(Uniform4fv(fProgramData->fUniLocations.fColorFilterUni, 1, c)); |
| fProgramData->fColorFilterColor = fCurrDrawState.fColorFilterColor; |
| } |
| } |
| |
| |
| bool GrGpuGLShaders::flushGraphicsState(GrPrimitiveType type) { |
| if (!flushGLStateCommon(type)) { |
| return false; |
| } |
| |
| if (fDirtyFlags.fRenderTargetChanged) { |
| // our coords are in pixel space and the GL matrices map to NDC |
| // so if the viewport changed, our matrix is now wrong. |
| fHWDrawState.fViewMatrix = GrMatrix::InvalidMatrix(); |
| // we assume all shader matrices may be wrong after viewport changes |
| fProgramCache->invalidateViewMatrices(); |
| } |
| |
| GrBlendCoeff srcCoeff; |
| GrBlendCoeff dstCoeff; |
| BlendOptFlags blendOpts = this->getBlendOpts(false, &srcCoeff, &dstCoeff); |
| if (kSkipDraw_BlendOptFlag & blendOpts) { |
| return false; |
| } |
| |
| this->buildProgram(type, blendOpts, dstCoeff); |
| fProgramData = fProgramCache->getProgramData(fCurrentProgram); |
| if (NULL == fProgramData) { |
| GrAssert(!"Failed to create program!"); |
| return false; |
| } |
| |
| if (fHWProgramID != fProgramData->fProgramID) { |
| GL_CALL(UseProgram(fProgramData->fProgramID)); |
| fHWProgramID = fProgramData->fProgramID; |
| } |
| fCurrentProgram.overrideBlend(&srcCoeff, &dstCoeff); |
| this->flushBlend(type, srcCoeff, dstCoeff); |
| |
| GrColor color; |
| if (blendOpts & kEmitTransBlack_BlendOptFlag) { |
| color = 0; |
| } else if (blendOpts & kEmitCoverage_BlendOptFlag) { |
| color = 0xffffffff; |
| } else { |
| color = fCurrDrawState.fColor; |
| } |
| this->flushColor(color); |
| |
| GrMatrix* currViewMatrix; |
| if (GrGLProgram::kSetAsAttribute == |
| fProgramData->fUniLocations.fViewMatrixUni) { |
| currViewMatrix = &fHWDrawState.fViewMatrix; |
| } else { |
| currViewMatrix = &fProgramData->fViewMatrix; |
| } |
| |
| if (*currViewMatrix != fCurrDrawState.fViewMatrix) { |
| flushViewMatrix(); |
| *currViewMatrix = fCurrDrawState.fViewMatrix; |
| } |
| |
| for (int s = 0; s < GrDrawState::kNumStages; ++s) { |
| this->flushTextureMatrix(s); |
| |
| this->flushRadial2(s); |
| |
| this->flushConvolution(s); |
| |
| this->flushTexelSize(s); |
| |
| this->flushTextureDomain(s); |
| } |
| this->flushEdgeAAData(); |
| resetDirtyFlags(); |
| return true; |
| } |
| |
| void GrGpuGLShaders::postDraw() { |
| } |
| |
| void GrGpuGLShaders::setupGeometry(int* startVertex, |
| int* startIndex, |
| int vertexCount, |
| int indexCount) { |
| |
| int newColorOffset; |
| int newCoverageOffset; |
| int newTexCoordOffsets[GrDrawState::kMaxTexCoords]; |
| int newEdgeOffset; |
| |
| GrGLsizei newStride = VertexSizeAndOffsetsByIdx( |
| this->getGeomSrc().fVertexLayout, |
| newTexCoordOffsets, |
| &newColorOffset, |
| &newCoverageOffset, |
| &newEdgeOffset); |
| int oldColorOffset; |
| int oldCoverageOffset; |
| int oldTexCoordOffsets[GrDrawState::kMaxTexCoords]; |
| int oldEdgeOffset; |
| |
| GrGLsizei oldStride = VertexSizeAndOffsetsByIdx( |
| fHWGeometryState.fVertexLayout, |
| oldTexCoordOffsets, |
| &oldColorOffset, |
| &oldCoverageOffset, |
| &oldEdgeOffset); |
| bool indexed = NULL != startIndex; |
| |
| int extraVertexOffset; |
| int extraIndexOffset; |
| this->setBuffers(indexed, &extraVertexOffset, &extraIndexOffset); |
| |
| GrGLenum scalarType; |
| bool texCoordNorm; |
| if (this->getGeomSrc().fVertexLayout & kTextFormat_VertexLayoutBit) { |
| scalarType = GrGLTextType; |
| texCoordNorm = GR_GL_TEXT_TEXTURE_NORMALIZED; |
| } else { |
| scalarType = GrGLType; |
| texCoordNorm = false; |
| } |
| |
| size_t vertexOffset = (*startVertex + extraVertexOffset) * newStride; |
| *startVertex = 0; |
| if (indexed) { |
| *startIndex += extraIndexOffset; |
| } |
| |
| // all the Pointers must be set if any of these are true |
| bool allOffsetsChange = fHWGeometryState.fArrayPtrsDirty || |
| vertexOffset != fHWGeometryState.fVertexOffset || |
| newStride != oldStride; |
| |
| // position and tex coord offsets change if above conditions are true |
| // or the type/normalization changed based on text vs nontext type coords. |
| bool posAndTexChange = allOffsetsChange || |
| (((GrGLTextType != GrGLType) || GR_GL_TEXT_TEXTURE_NORMALIZED) && |
| (kTextFormat_VertexLayoutBit & |
| (fHWGeometryState.fVertexLayout ^ |
| this->getGeomSrc().fVertexLayout))); |
| |
| if (posAndTexChange) { |
| int idx = GrGLProgram::PositionAttributeIdx(); |
| GL_CALL(VertexAttribPointer(idx, 2, scalarType, false, newStride, |
| (GrGLvoid*)vertexOffset)); |
| fHWGeometryState.fVertexOffset = vertexOffset; |
| } |
| |
| for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) { |
| if (newTexCoordOffsets[t] > 0) { |
| GrGLvoid* texCoordOffset = (GrGLvoid*)(vertexOffset + newTexCoordOffsets[t]); |
| int idx = GrGLProgram::TexCoordAttributeIdx(t); |
| if (oldTexCoordOffsets[t] <= 0) { |
| GL_CALL(EnableVertexAttribArray(idx)); |
| GL_CALL(VertexAttribPointer(idx, 2, scalarType, texCoordNorm, |
| newStride, texCoordOffset)); |
| } else if (posAndTexChange || |
| newTexCoordOffsets[t] != oldTexCoordOffsets[t]) { |
| GL_CALL(VertexAttribPointer(idx, 2, scalarType, texCoordNorm, |
| newStride, texCoordOffset)); |
| } |
| } else if (oldTexCoordOffsets[t] > 0) { |
| GL_CALL(DisableVertexAttribArray(GrGLProgram::TexCoordAttributeIdx(t))); |
| } |
| } |
| |
| if (newColorOffset > 0) { |
| GrGLvoid* colorOffset = (int8_t*)(vertexOffset + newColorOffset); |
| int idx = GrGLProgram::ColorAttributeIdx(); |
| if (oldColorOffset <= 0) { |
| GL_CALL(EnableVertexAttribArray(idx)); |
| GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE, |
| true, newStride, colorOffset)); |
| } else if (allOffsetsChange || newColorOffset != oldColorOffset) { |
| GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE, |
| true, newStride, colorOffset)); |
| } |
| } else if (oldColorOffset > 0) { |
| GL_CALL(DisableVertexAttribArray(GrGLProgram::ColorAttributeIdx())); |
| } |
| |
| if (newCoverageOffset > 0) { |
| // bind a single channel, they should all have the same value. |
| GrGLvoid* coverageOffset = (int8_t*)(vertexOffset + newCoverageOffset); |
| int idx = GrGLProgram::CoverageAttributeIdx(); |
| if (oldCoverageOffset <= 0) { |
| GL_CALL(EnableVertexAttribArray(idx)); |
| GL_CALL(VertexAttribPointer(idx, 1, GR_GL_UNSIGNED_BYTE, |
| true, newStride, coverageOffset)); |
| } else if (allOffsetsChange || newCoverageOffset != oldCoverageOffset) { |
| GL_CALL(VertexAttribPointer(idx, 1, GR_GL_UNSIGNED_BYTE, |
| true, newStride, coverageOffset)); |
| } |
| } else if (oldCoverageOffset > 0) { |
| GL_CALL(DisableVertexAttribArray(GrGLProgram::CoverageAttributeIdx())); |
| } |
| |
| if (newEdgeOffset > 0) { |
| GrGLvoid* edgeOffset = (int8_t*)(vertexOffset + newEdgeOffset); |
| int idx = GrGLProgram::EdgeAttributeIdx(); |
| if (oldEdgeOffset <= 0) { |
| GL_CALL(EnableVertexAttribArray(idx)); |
| GL_CALL(VertexAttribPointer(idx, 4, scalarType, |
| false, newStride, edgeOffset)); |
| } else if (allOffsetsChange || newEdgeOffset != oldEdgeOffset) { |
| GL_CALL(VertexAttribPointer(idx, 4, scalarType, |
| false, newStride, edgeOffset)); |
| } |
| } else if (oldEdgeOffset > 0) { |
| GL_CALL(DisableVertexAttribArray(GrGLProgram::EdgeAttributeIdx())); |
| } |
| |
| fHWGeometryState.fVertexLayout = this->getGeomSrc().fVertexLayout; |
| fHWGeometryState.fArrayPtrsDirty = false; |
| } |
| |
| void GrGpuGLShaders::buildProgram(GrPrimitiveType type, |
| BlendOptFlags blendOpts, |
| GrBlendCoeff dstCoeff) { |
| ProgramDesc& desc = fCurrentProgram.fProgramDesc; |
| |
| // This should already have been caught |
| GrAssert(!(kSkipDraw_BlendOptFlag & blendOpts)); |
| |
| bool skipCoverage = SkToBool(blendOpts & kEmitTransBlack_BlendOptFlag); |
| |
| bool skipColor = SkToBool(blendOpts & (kEmitTransBlack_BlendOptFlag | |
| kEmitCoverage_BlendOptFlag)); |
| |
| // The descriptor is used as a cache key. Thus when a field of the |
| // descriptor will not affect program generation (because of the vertex |
| // layout in use or other descriptor field settings) it should be set |
| // to a canonical value to avoid duplicate programs with different keys. |
| |
| // Must initialize all fields or cache will have false negatives! |
| desc.fVertexLayout = this->getGeomSrc().fVertexLayout; |
| |
| desc.fEmitsPointSize = kPoints_PrimitiveType == type; |
| |
| bool requiresAttributeColors = |
| !skipColor && SkToBool(desc.fVertexLayout & kColor_VertexLayoutBit); |
| // fColorInput records how colors are specified for the program. Strip |
| // the bit from the layout to avoid false negatives when searching for an |
| // existing program in the cache. |
| desc.fVertexLayout &= ~(kColor_VertexLayoutBit); |
| |
| desc.fColorFilterXfermode = skipColor ? |
| SkXfermode::kDst_Mode : |
| fCurrDrawState.fColorFilterXfermode; |
| |
| // no reason to do edge aa or look at per-vertex coverage if coverage is |
| // ignored |
| if (skipCoverage) { |
| desc.fVertexLayout &= ~(kEdge_VertexLayoutBit | |
| kCoverage_VertexLayoutBit); |
| } |
| |
| bool colorIsTransBlack = SkToBool(blendOpts & kEmitTransBlack_BlendOptFlag); |
| bool colorIsSolidWhite = (blendOpts & kEmitCoverage_BlendOptFlag) || |
| (!requiresAttributeColors && |
| 0xffffffff == fCurrDrawState.fColor); |
| if (GR_AGGRESSIVE_SHADER_OPTS && colorIsTransBlack) { |
| desc.fColorInput = ProgramDesc::kTransBlack_ColorInput; |
| } else if (GR_AGGRESSIVE_SHADER_OPTS && colorIsSolidWhite) { |
| desc.fColorInput = ProgramDesc::kSolidWhite_ColorInput; |
| } else if (GR_GL_NO_CONSTANT_ATTRIBUTES && !requiresAttributeColors) { |
| desc.fColorInput = ProgramDesc::kUniform_ColorInput; |
| } else { |
| desc.fColorInput = ProgramDesc::kAttribute_ColorInput; |
| } |
| |
| desc.fEdgeAANumEdges = skipCoverage ? 0 : fCurrDrawState.fEdgeAANumEdges; |
| desc.fEdgeAAConcave = desc.fEdgeAANumEdges > 0 && |
| SkToBool(fCurrDrawState.fFlagBits & |
| kEdgeAAConcave_StateBit); |
| |
| int lastEnabledStage = -1; |
| |
| if (!skipCoverage && (desc.fVertexLayout & |
| GrDrawTarget::kEdge_VertexLayoutBit)) { |
| desc.fVertexEdgeType = fCurrDrawState.fVertexEdgeType; |
| } else { |
| // use canonical value when not set to avoid cache misses |
| desc.fVertexEdgeType = GrDrawState::kHairLine_EdgeType; |
| } |
| |
| for (int s = 0; s < GrDrawState::kNumStages; ++s) { |
| StageDesc& stage = desc.fStages[s]; |
| |
| stage.fOptFlags = 0; |
| stage.setEnabled(this->isStageEnabled(s)); |
| |
| bool skip = s < fCurrDrawState.fFirstCoverageStage ? skipColor : |
| skipCoverage; |
| |
| if (!skip && stage.isEnabled()) { |
| lastEnabledStage = s; |
| GrGLTexture* texture = (GrGLTexture*) fCurrDrawState.fTextures[s]; |
| GrAssert(NULL != texture); |
| const GrSamplerState& sampler = fCurrDrawState.fSamplerStates[s]; |
| // we matrix to invert when orientation is TopDown, so make sure |
| // we aren't in that case before flagging as identity. |
| if (TextureMatrixIsIdentity(texture, sampler)) { |
| stage.fOptFlags |= StageDesc::kIdentityMatrix_OptFlagBit; |
| } else if (!getSamplerMatrix(s).hasPerspective()) { |
| stage.fOptFlags |= StageDesc::kNoPerspective_OptFlagBit; |
| } |
| switch (sampler.getSampleMode()) { |
| case GrSamplerState::kNormal_SampleMode: |
| stage.fCoordMapping = StageDesc::kIdentity_CoordMapping; |
| break; |
| case GrSamplerState::kRadial_SampleMode: |
| stage.fCoordMapping = StageDesc::kRadialGradient_CoordMapping; |
| break; |
| case GrSamplerState::kRadial2_SampleMode: |
| if (sampler.radial2IsDegenerate()) { |
| stage.fCoordMapping = |
| StageDesc::kRadial2GradientDegenerate_CoordMapping; |
| } else { |
| stage.fCoordMapping = |
| StageDesc::kRadial2Gradient_CoordMapping; |
| } |
| break; |
| case GrSamplerState::kSweep_SampleMode: |
| stage.fCoordMapping = StageDesc::kSweepGradient_CoordMapping; |
| break; |
| default: |
| GrCrash("Unexpected sample mode!"); |
| break; |
| } |
| |
| switch (sampler.getFilter()) { |
| // these both can use a regular texture2D() |
| case GrSamplerState::kNearest_Filter: |
| case GrSamplerState::kBilinear_Filter: |
| stage.fFetchMode = StageDesc::kSingle_FetchMode; |
| break; |
| // performs 4 texture2D()s |
| case GrSamplerState::k4x4Downsample_Filter: |
| stage.fFetchMode = StageDesc::k2x2_FetchMode; |
| break; |
| // performs fKernelWidth texture2D()s |
| case GrSamplerState::kConvolution_Filter: |
| stage.fFetchMode = StageDesc::kConvolution_FetchMode; |
| break; |
| default: |
| GrCrash("Unexpected filter!"); |
| break; |
| } |
| |
| if (sampler.hasTextureDomain()) { |
| GrAssert(GrSamplerState::kClamp_WrapMode == |
| sampler.getWrapX() && |
| GrSamplerState::kClamp_WrapMode == |
| sampler.getWrapY()); |
| stage.fOptFlags |= StageDesc::kCustomTextureDomain_OptFlagBit; |
| } |
| |
| if (!this->glCaps().fTextureSwizzle) { |
| if (GrPixelConfigIsAlphaOnly(texture->config())) { |
| // if we don't have texture swizzle support then |
| // the shader must do an alpha smear after reading |
| // the texture |
| stage.fSwizzle = StageDesc::kAlphaSmear_Swizzle; |
| } else if (sampler.swapsRAndB()) { |
| stage.fSwizzle = StageDesc::kSwapRAndB_Swizzle; |
| } else { |
| stage.fSwizzle = StageDesc::kNone_Swizzle; |
| } |
| } else { |
| stage.fSwizzle = StageDesc::kNone_Swizzle; |
| } |
| |
| if (sampler.getFilter() == GrSamplerState::kConvolution_Filter) { |
| stage.fKernelWidth = sampler.getKernelWidth(); |
| } else { |
| stage.fKernelWidth = 0; |
| } |
| } else { |
| stage.fOptFlags = 0; |
| stage.fCoordMapping = (StageDesc::CoordMapping) 0; |
| stage.fSwizzle = (StageDesc::Swizzle) 0; |
| stage.fFetchMode = (StageDesc::FetchMode) 0; |
| stage.fKernelWidth = 0; |
| } |
| } |
| |
| if (GrPixelConfigIsUnpremultiplied(fCurrDrawState.fRenderTarget->config())) { |
| desc.fOutputPM = ProgramDesc::kNo_OutputPM; |
| } else { |
| desc.fOutputPM = ProgramDesc::kYes_OutputPM; |
| } |
| |
| desc.fDualSrcOutput = ProgramDesc::kNone_DualSrcOutput; |
| |
| // currently the experimental GS will only work with triangle prims |
| // (and it doesn't do anything other than pass through values from |
| // the VS to the FS anyway). |
| #if 0 && GR_GL_EXPERIMENTAL_GS |
| desc.fExperimentalGS = this->getCaps().fGeometryShaderSupport; |
| #endif |
| |
| // we want to avoid generating programs with different "first cov stage" |
| // values when they would compute the same result. |
| // We set field in the desc to kNumStages when either there are no |
| // coverage stages or the distinction between coverage and color is |
| // immaterial. |
| int firstCoverageStage = GrDrawState::kNumStages; |
| desc.fFirstCoverageStage = GrDrawState::kNumStages; |
| bool hasCoverage = fCurrDrawState.fFirstCoverageStage <= lastEnabledStage; |
| if (hasCoverage) { |
| firstCoverageStage = fCurrDrawState.fFirstCoverageStage; |
| } |
| |
| // other coverage inputs |
| if (!hasCoverage) { |
| hasCoverage = |
| desc.fEdgeAANumEdges || |
| (desc.fVertexLayout & GrDrawTarget::kCoverage_VertexLayoutBit) || |
| (desc.fVertexLayout & GrDrawTarget::kEdge_VertexLayoutBit); |
| } |
| |
| if (hasCoverage) { |
| // color filter is applied between color/coverage computation |
| if (SkXfermode::kDst_Mode != desc.fColorFilterXfermode) { |
| desc.fFirstCoverageStage = firstCoverageStage; |
| } |
| |
| if (this->getCaps().fDualSourceBlendingSupport && |
| !(blendOpts & (kEmitCoverage_BlendOptFlag | |
| kCoverageAsAlpha_BlendOptFlag))) { |
| if (kZero_BlendCoeff == dstCoeff) { |
| // write the coverage value to second color |
| desc.fDualSrcOutput = ProgramDesc::kCoverage_DualSrcOutput; |
| desc.fFirstCoverageStage = firstCoverageStage; |
| } else if (kSA_BlendCoeff == dstCoeff) { |
| // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially |
| // cover |
| desc.fDualSrcOutput = ProgramDesc::kCoverageISA_DualSrcOutput; |
| desc.fFirstCoverageStage = firstCoverageStage; |
| } else if (kSC_BlendCoeff == dstCoeff) { |
| // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially |
| // cover |
| desc.fDualSrcOutput = ProgramDesc::kCoverageISC_DualSrcOutput; |
| desc.fFirstCoverageStage = firstCoverageStage; |
| } |
| } |
| } |
| } |